
Proceedings of The Third Arabic Natural Language Processing Conference, pages 26–41
November 8-9, 2025 ©2025 Association for Computational Linguistics

Semitic Root Encoding: Tokenization Based on the Templatic Morphology
of Semitic Languages in NMT

Brendan T. Hatch Stephen D. Richardson
Brigham Young University

Provo, UT
{hatch5o6, srichardson}@byu.edu

Abstract

The morphological structure of Semitic lan-
guages, such as Arabic, is based on non-
concatenative roots and templates. This com-
plex word structure used by humans is obscured
to neural models that employ traditional to-
kenization algorithms, such as byte-pair en-
coding (BPE) (Sennrich et al., 2016; Gage,
1994). In this work, we present and evaluate
Semitic Root Encoding (SRE), a tokenization
method that represents both concatenative and
non-concatenative structures in Semitic words
with sequences of root, template stem, and BPE
tokens. We apply the method to neural machine
translation (NMT) and find that SRE tokeniza-
tion yields an average increase of 1.15 BLEU
over the baseline. SRE tokenization is also ro-
bust against generating combinations of roots
with template stems that do not occur in na-
ture. Finally, we compare the performance of
SRE to tokenization based on non-linguistic
root and template structures and tokenization
based on stems, providing evidence that NMT
models are capable of leveraging tokens based
on non-concatenative Semitic morphology.

1 Introduction

1.1 Overview

Byte-pair encoding (BPE) (Sennrich et al., 2016;
Gage, 1994) and unigram language modeling
(Kudo, 2018) are commonly used approaches for
sub-word segmentation in language models. Seg-
menting words into sub-words with these meth-
ods often allows models to learn concatenative
word structures, such as prefixation, suffixation,
and compounding, making them especially desir-
able for modeling languages with rich concatena-
tive morphology. However, since these approaches
only segment on continuous strings, they cannot
account for the templatic morphology of Semitic
languages like Arabic and Hebrew, which is based
on non-concatenative root and template paradigms.

In this work, we present a sub-word segmentation
method called Semitic Root Encoding (SRE) which
represents word stems with two tokens: a root to-
ken and a template stem token.

We evaluate the impact of SRE tokenization
on neural machine translation (NMT), assessing
general translation quality and examining dubious
word stems generated (i.e., stems created by root +
template stems combinations that do not occur in
nature). We make the following contributions:

1. We show that SRE yields small improvements
in general translation quality compared to
BPE.

2. We show that models trained with SRE rarely
generate dubious root + template stem combi-
nations.

3. We provide further evidence that NMT models
can learn Semitic non-concatenative morphol-
ogy, leveraging root tokens and template stem
tokens.

1.2 The Templatic Morphology of Semitic
Languages

The morphology of Semitic languages is based on
non-concatenative root and template paradigms.
The principles of Semitic templatic morphology
are explained here with examples from Modern
Standard Arabic. While Arabic, like many lan-
guages, employs concatenative word structures, it
also famously exhibits a non-concatenative root
and template schematic to create word stems. Most
roots consist of three consonants (though this does
vary), known as radicals, which are inserted into
various templates to form words. While the data
used in this research is in the original Arabic script,
throughout this paper, example words will be pro-
vided in Latin transliterations where roots will be
represented with capital letters and templates will

26

Root Template Template function Word Gloss
K-T-B y123 verb yKTB he writes
S-K-N y123 verb ySKN he lives/resides (in)
K-T-B m12u3 passive participle mKTuB is written
S-K-N m12u3 passive participle mSKuN is haunted/lived (in)
K-T-B 1a23 active participle KaTB writer, is writing
S-K-N 1a23 active participle SaKN is living/residing (in), resident
K-T-B 12a3 plural active participle KTaB writers (plural of KaTB)
S-K-N 12a3 plural active participle SKaN residents, population (plural of SaKN)

Table 1: Example templates and their functions. Roots in the first column are inserted into templates in the second
column to produce words in the fourth column.

be represented with lowercase letters and the num-
bers 1, 2, and 3 that act as placeholders for the
first, second, and third radicals. It should also be
noted that short vowels in Arabic, represented with
diacritics, are usually omitted, and therefore, only
long vowels will be represented in the examples
provided. For example, the verb yKTB (I. �JºK
)
consists of the root K-T-B and the template y123,
where K is in slot 1, T is in slot 2, and B is in slot 3.
Words that share a root are usually closely related
semantically. Table 1 shows a few words made
with the roots K-T-B and S-K-N and four different
templates, and demonstrates that words with the
root K-T-B relate to writing while words with root
S-K-N relate to residence. Additionally we see that
each template connects each root meaning with a
grammatical function.

As seen in Table 1, roots are not always a contin-
uous sequence of characters, but are broken up in
several different ways depending on the template
they are inserted into. Non-continuous portions of
templates can also be a single unit that serves a
special grammatical function. Because sub-word
segmentation methods like BPE and unigram can
only represent words as a concatenative series of
sub-words, they obscure non-concatenative word
structures to translation models, even though the
non-concatenative structures are transparent and
useful to humans. In attempt to remedy this weak-
ness, the SRE method represents word stems as a
root token followed by a template stem token, oper-
ating on the hypothesis that this will allow models
to make generalizations about root meanings and
template functions in ways that are impossible with
traditional sub-word segmentation methods.

In this work, the term stem will refer to the sub-
string ranging from the first radical of a word to
the last radical. The term template stem will sim-

ilarly refer to the substring ranging from the first
placeholder of the template to the last placeholder.
For example, in the word almKTuBh (�éK. ñ�JºÖÏ @),
the stem is KTuB. In the corresponding template
alm12u3h, the template stem is 12u3.

Often, prefixes, suffixes, and clitics are appended
to these stems. Additionally, some words, such
as those borrowed from other languages, do not
have stems with the templatic structure described,
but still may have affixes. For these reasons, SRE
is designed to account for both the concatenative
and non-concatenative/templatic word structures of
Semitic languages.

2 Related Works

BPE (Sennrich et al., 2016; Gage, 1994) and
unigram language modeling (Kudo, 2018) are
common strategies for handling morphological
complexity in language models. Toolkits like
MADAMIRA (Pasha et al., 2014), Farasa (Abde-
lali et al., 2016), and CAMeL Tools (Obeid et al.,
2020), provide, among other capabilities, Arabic
morphological sub-word segmentation functions, a
problem also tackled by Almuhareb et al. (2019),
who propose a bi-directional long short-term mem-
ory system. Chaudhary et al. (2018) train named
entity recognition (NER) and machine translation
(MT) systems on both morphemic and phonemic
sub-words of various languages; Alkaoud and Syed
(2020) train traditional and contextual Arabic word
embedding models on morphemic sub-words; and
Guzmán et al. (2016) use embeddings of Arabic
lexical and morpho-syntactic units in the evalua-
tion of MT. Shapiro and Duh (2018) create Arabic
word embeddings that capture the whole word as
well as the lemma, and Salama et al. (2018) train
Arabic lemma-based embeddings as well as whole
word embeddings that incorporated morphological

27

annotations. Additionally, Alyafeai et al. (2023)
compare six tokenizing strategies on four Arabic
text classification datasets, revealing that the best
approach is task-dependent.

Semitic root extraction has been addressed in
various works. De Roeck and Al-Fares (2000) pro-
pose a clustering algorithm, Taghva et al. (2005)
a rule-based system, Sakakini et al. (2017) an un-
supervised learning method, and El-Kishky et al.
(2019) a constrained seq2seq model.

Few works, however, fully tackle challenges of
non-concatenative morphology on language gener-
ation tasks, and traditional sub-word segmentation
methods may not be optimal for it. Amrhein and
Sennrich (2021), for instance, though not address-
ing Semitic root and template morphology, demon-
strate that BPE underperforms for other kinds of
non-concatenative morphology like vowel harmony.
That said, El-Kishky et al. (2019), like we do,
present a sub-word segmentation approach to rep-
resent the non-concatenative word structure of Ara-
bic, though it only segments non-concatenative
structures and also does not limit the total vocabu-
lary size. Their work also differs in the tasks they
apply the scheme to, being word analogy, word
similarity, and LSTM language modeling. In this
work, we present SRE, which represents both con-
catenative and non-concatenative word structures
in Arabic textual data while controlling for vocabu-
lary size, and evaluate it as applied to NMT.

3 Sub-word Segmentation Methods

In this section, we describe all sub-word segmen-
tation approaches employed in our experiments,
which include SRE, BPE, Fake-SRE, and Stem-
SRE.

3.1 SRE

SRE sub-word segmentation accounts for both the
non-concatenative and concatenative morphology
in each word. The first step to accomplish this
task is SRE Preprocessing, a method for converting
non-concatenative Semitic structures into a con-
catenative representation.

SRE Preprocessing. SRE Preprocessing re-
quires a morphological analyzer to extract the root
and template from a given word. We use the mor-
phological analyzer1 provided in the CAMeL Tools

1https://camel-tools.readthedocs.io/en/latest/
api/morphology/analyzer.html

toolkit (Obeid et al., 2020)2, using the calima-msa-
r13 database. SRE Preprocessing for a sentence
works as follows: The sentence is first split into
words using the CAMeL Tools word tokenizer3.
For each word in the sentence, the root and tem-
plate are extracted using the morphological ana-
lyzer. The word is then reformatted to be a string
consisting of the root wrapped in angle brackets,
followed by the template. For example, the word
almKTuBh (�éK. ñ�JºÖÏ @) would be reformatted to the
string ‘<KTB>alm12u3h’. If the morphological an-
alyzer detects no Semitic root or template, then the
word is left as is in the reformatting process. After-
wards, the reformatted words are concatenated into
a complete preprocessed sentence. See Figure 1 for
an example of SRE Preprocessing.

SRE Preprocessing is then used in two separate
pipelines: (1) Training a special BPE model called
SRE BPE and (2) SRE sub-word segmentation it-
self.

Training SRE BPE. SRE BPE is a special Sen-
tencePiece (Kudo and Richardson, 2018)4 BPE
model trained on a dataset of SRE Preprocessed
sentences (see Section 3.2 for more details on the
BPE implementation). Prior to training this BPE
model, a cache of roots and templates, called Root-
Cache, was created by running the morphological
analyzer on a large dataset that included training,
validation, and test data (discussed in Appendix
A.1). All roots, wrapped in angle brackets (e.g.,
‘<KTB>’), and template stems (e.g., ‘12u3’) from
RootCache are provided as user_defined_symbols
to the SentencePiece module. For vocabulary items
provided as user_defined_symbols, the Sentence-
Piece module always extracts these as one piece.

SRE Sub-word Segmentation. To segment a
sentence into sub-words, SRE Preprocessing is ap-
plied first, after which the sentence is segmented
with the SRE BPE model just described. See Fig-
ure 2 for an example of SRE Sub-word Segmenta-
tion.

SRE Sub-word "De-segmentation". To re-
verse the sub-word segmentation on model hy-
potheses, each output sequence is first detokenized
with the SRE BPE model. Afterwards, the segment
is split into words. For each word in the sequence,
each radical of the root wrapped in angle brack-

2https://camel-tools.readthedocs.io/en/
latest/

3https://camel-tools.readthedocs.io/en/latest/
api/tokenizers/word.html

4https://github.com/google/sentencepiece

28

https://camel-tools.readthedocs.io/en/latest/api/morphology/analyzer.html
https://camel-tools.readthedocs.io/en/latest/api/morphology/analyzer.html
https://camel-tools.readthedocs.io/en/latest/
https://camel-tools.readthedocs.io/en/latest/
https://camel-tools.readthedocs.io/en/latest/api/tokenizers/word.html
https://camel-tools.readthedocs.io/en/latest/api/tokenizers/word.html
https://github.com/google/sentencepiece

Figure 1: SRE Preprocessing example. Radicals are
bold and red. Template placeholders are bold and blue.
The final SRE Preprocessed sentence is highlighted in
yellow.

ets (if one exists) is inserted into its corresponding
placeholder in the template to create the recon-
structed word. The reconstructed words are then
concatenated to create the final output. Figure 3
provides an example of this “de-segmentation” pro-
cess.

While SRE, due to the complexity of the morpho-
logical analyzer and SRE Preprocessing, is com-
putationally slower than BPE, it more accurately
represents the non-concatenative components of
Semitic words in ways impossible to other tokeniz-
ers.

We created two SRE sub-word segmentation
models, SRE-8k and SRE-20k. Both had 3,956 root
tokens and 305 template stem tokens, which were
retrieved from RootCache. The SentencePiece-
based SRE BPE models inside SRE-8k and SRE-
20k were both trained on 500,480 Arabic sentences,
with vocabulary sizes set to 8,000 and 20,000, re-
spectively, which included unknown, beginning-of-
sequence, and end-of-sequence tokens by default.
We then added a pad token, making the final vocab-
ulary sizes 8,001 and 20,001.

3.2 BPE

We use the following implementation for the BPE
models described later in this section as well as the
SRE BPE models wrapped inside all versions of
SRE (see Sections 3.1, 3.3, 3.4, and Appendices F
and G).

We use the SentencePiece implementation of

Figure 2: SRE Sub-word Segmentation example. Radi-
cals are bold and red. Template placeholders are bold
and blue. The SRE Preprocessed sentence is highlighted
in yellow. Final tokens are in the green box.

SENTENCE: "w’RSLt RSa’L" (É
KA�P �IÊ�P

@ð)

GLOSS: "And she sent messages"

Method Preprocessing
SRE "<RSL>w’123t <RSL>12a’3"
Fake-SRE "<’LT>w1rs23 <SA’>r123l"

Table 2: SRE Preprocessing compared to Fake-SRE Pre-
processing. In the sentence at the top, the true roots are
represented with bold capital letters. SRE extracts the
true roots; however, Fake-SRE does not, and therefore,
the different sets of letters it selects as "roots" are shown
in bold capital letters in the second row. The apostrophe
(’) is used as transliteration for letters

@ and
ø.

BPE with 1.0 character coverage. As mentioned in
Section 3.1, the SentencePiece module will always
extract vocabulary items added to user_defined_-
symbols as one piece. We added the character ‘ ’,
which SentencePiece uses to represent whitespace,
to user_defined_symbols, therefore compelling seg-
mentation on whitespace in all BPE and SRE tok-
enizers in this work.

Further details of SRE BPE models are described
as needed in their respective sections.

As for BPE models, we created the following:
two English with vocab sizes of 8,001 and 20,001,
BPE-en-8k and BPE-en-20k; and two Arabic of the
same sizes, BPE-ar-8k and BPE-ar-20k. These four
models were each trained on 500,480 sentences that
had not undergone SRE Preprocessing.

29

Figure 3: SRE Sub-word "De-segmentation" example.
Radicals are bold and red. Template placeholders are
bold and blue. Final postprocessed segment is in the
blue box.

3.3 Fake-SRE

To confirm that the NMT models make meaning-
ful generalizations of root and template stem to-
kens, we designed two variations of SRE to serve
as quasi-ablations, the first being Fake-SRE. In
Fake-SRE, sets of non-continuous characters in
each word are selected to be the “root” and the
“template stem”, even though they generally are not
the real linguistic root and template stem. The in-
tuition behind this is that if non-linguistic root and
template stem tokens are presented to the model,
then the model will be compelled to rely on non-
linguistic patterns and memorization to learn word
forms. If a model performs better with tokeniza-
tion based on the real linguistic root and template
tokens than with tokenization based on the false
ones, then it suggests it is indeed leveraging the
non-concatenative linguistic patterns rather than
simply memorizing word forms.

To accomplish this, we created FakeRootCache,
which associates each word in the data with a non-
lingustic "root" and "template stem". We describe

its creation in Appendix D. The SRE method from
Section 3.1 is then applied, but using instead the
false root and template parses in FakeRootCache.
We show an example of how SRE and Fake-SRE
Preprocessing compare in Table 2, demonstrating
that SRE can represent the semantic relationship be-
tween the words w’RSLt (and she sent) and RSa’L
(messages) with the root token <RSL>, whereas
Fake-SRE cannot, since it selects different letters
to serve as roots.

We created the tokenizer Fake-SRE-20k, which
contained 14,282 root tokens and 2,413 template
stem tokens. Because so many tokens were needed
for roots and template stems, we created it with
total vocabulary size of 20,001. The results of
using Fake-SRE compared to SRE are discussed in
Section 4.3 below.

3.4 Stem-SRE
The second quasi-ablation is conducted with Stem-
SRE, where rather than performing segmentation
on roots and template stems, segmentation is per-
formed on whole stems, which again are the contin-
uous subsequences extending from the first radical
to the last radical. In short, instead of represent-
ing each stem as two tokens, a root and a template
stem, each stem is represented by a single token.
The BPE algorithm then determines prefixes and
suffixes. The reasoning behind this quasi-ablation
is if NMT performs better with SRE than with
Stem-SRE, it suggests that NMT models are in-
deed able to leverage the knowledge encoded in the
non-concatenative morphemes (i.e., the root and
template stem). We describe the details of Stem-
SRE in Appendix E.

We created one of these tokenizers, called Stem-
SRE-20k. This model contains 10,984 stem tokens,
and for the sake of comparability with Fake-SRE-
20k, has a total vocabulary size of 20,001. The
results of using Stem-SRE compared to SRE are
discussed in Section 4.3 below.

3.5 Additional Sub-word Segmentation
Methods

Appendix F addresses SRE-MF, where SRE is ap-
plied to only the least frequent word forms. Ap-
pendix G addresses In-Situ-SRE, where we experi-
mented with an alternative token order.

4 Experiments and Results

All NMT models in this work use the architecture
of BartForConditionalGeneration (Lewis et al.,

30

2020)5, available from the transformers6 Python
library. We set the number of encoder and decoder
layers each to 6, and the number of encoder and de-
coder attention heads each to 8. The max length for
generation was set to 1,024. All other architectural
configurations were kept at their default values. All
models were trained to convergence, early stopping
with a patience of 10.

We use four divisions of our training data in
our experiments, each containing 10M sentence
pairs with no overlap, referred to as the Trial 1,
Trial 2, Trial 3, and Trial 4 versions of the training
set. We validate on 997 sentences, and evaluate
general translation quality on a test set of 1,009
sentences with BLEU (Papineni et al., 2002) and
chrF (Popović, 2015), calculated with SacreBLEU
(Post, 2018)7. The creation of our datasets and
sources are described in detail in Appendix A.

4.1 General Translation Quality

To assess whether tokenization with SRE yields
improvements in overall translation quality, two
English-to-Arabic NMT models were trained,
en2ar-SRE and en2ar-BPE, which differ in the to-
kenization methods used on the source and target
data. These were trained with a batch size of 512,
validating on intervals of 625 batches, and apply-
ing a linear warm-up for 10,240 steps with a max
learning rate of 2e-5. The model initialization and
data loader were seeded with 0, as is the case in all
experiments in this work.

en2ar-SRE was trained tokenizing the English
source sentences with BPE-en-8k and the Arabic
target sentences with SRE-8k.

en2ar-BPE was trained tokenizing the English
source sentences with BPE-en-8k and the Arabic
target sentences with BPE-ar-8k.

BLEU and chrF scores over 4 trials are reported
in Table 3. Each trial used a separate version of the
training set, though using the same validation and
test set. Across all trials, en2ar-SRE has greater
scores than en2ar-BPE, with an average lead of
1.15 BLEU. Paired approximate randomization
(Riezler and Maxwell, 2005) was calculated with
SacreBLEU, revealing that the en2ar-SRE BLEU
scores were significantly different in three of the

5https://huggingface.co/docs/transformers/en/
model_doc/bart - Again, we use ONLY the architecture and
NOT the pretrained weights.

6https://huggingface.co/docs/transformers/en/
index

7https://github.com/mjpost/sacrebleu

four trials. These results suggest a small improve-
ment in translation quality as a result of using SRE
tokenization.

To corroborate this finding, we conducted a hu-
man evaluation of these models. Three native Ara-
bic speakers, referred to as Evaluators 1, 2, and
3, examined the same set of 100 random source
sentences of the test set and the translations from
Trial 1 of en2ar-SRE and en2ar-BPE. For each sen-
tence, they had access to both the source sentence
and reference translation, and were presented the
en2ar-SRE and en2ar-BPE hypotheses in a random
order. They then scored the better hypothesis with
a score of 1, and the worse with a score of 0. If they
thought the two hypotheses were equal in quality,
they could give 0s to both or 1s to both. The sums
of the scores (in essence, the number of translations
out of 100 sentences with a score of 1) for each
system from each evaluator are reported in Table 4,
along with the number of times each system gener-
ated a translation with a score that was better and
the same as the other system.

Evaluators 1 and 2, who both teach Arabic as
a second language, prefer en2ar-SRE with "Bet-
ter" margins of 9 and 21, respectively. Evaluator
2 is also more discriminating, giving tying scores
far less often than Evaluator 1 and rating 41 en2ar-
SRE translations as better, whereas Evaluator 2 only
rates 16 as better. However, they ultimately agree
in their preference for translations generated by a
system trained with SRE tokenization. On the other
hand, Evaluator 3, who is a graduate student in lin-
guistics, shows a slight preference for en2ar-BPE,
though with less significant margin of 3. Given the
years of experience of Evaluators 1 and 2 as Ara-
bic language educators, more confidence should
be placed in their scores as they are likely more
alert to subtle differences between translations. It
is therefore reasonable to conclude that tokenizing
with SRE leads to a small increase in translation
quality.

We conducted a single trial of similar experi-
ments in low-resource scenarios, described in Ap-
pendix C, where translation models trained with
SRE do not hold a lead according to automated
metrics over those trained with BPE. It may be that
a significantly greater number of roots and template
stems are needed to provide benefit to translation
quality.

SRE represents a sentence with more sub-words
than BPE, which only represents infrequent words
as a series of sub-words. We considered whether

31

https://huggingface.co/docs/transformers/en/model_doc/bart
https://huggingface.co/docs/transformers/en/model_doc/bart
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/transformers/en/index
https://github.com/mjpost/sacrebleu

Trial 1 Trial 2 Trial 3 Trial 4 Avg.
Model BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF
en2ar-BPE 26.93 58.86 27.23 58.80 25.76 58.58 25.64 57.14 26.39 58.35
en2ar-SRE 27.92∗ 58.96 28.02 59.39∗ 27.50∗ 58.72 26.72∗ 58.03∗ 27.54 58.78

Table 3: BLEU and chrF scores for en2ar-BPE and en2ar-SRE over 4 trials. * indicates that the en2ar-SRE score is
statistically significantly different than the baseline en2ar-BPE score with a p-value < 0.05.

Evaluator 1 Evaluator 2 Evaluator 3 Avg.
Model Sum Bet Tie Sum Bet Tie Sum Bet Tie Sum Bet Tie
en2ar-BPE 23 7 77 40 20 39 84 10 83 49 12.33 66.33
en2ar-SRE 32 16 77 61 41 39 81 7 83 58 21.33 66.33

Table 4: Human rank scores for the Trial 1 translations of 100 sentences. Sum represents the number of the system’s
translations scored with 1. Bet (Better) represents the number of times the system’s translations scored 1 when the
other system’s scored 0. Tie represents the number of times the system’s translations score (0 or 1) was the same as
the other system’s.

this complicates that translation task for NMT mod-
els and conducted an experiment using a variation
of SRE (SRE-MF, described in Appendix F) that
keeps the most frequent words as single tokens,
rather than as series of sub-words. We found this
made insignificant impact on BLEU. While not
segmenting frequent word forms into sub-words
arguably simplifies the task, allowing the model
to generalize about their meanings with 1 embed-
ding rather than 2 or more, the segmentation of
these frequent word forms provides more instances
of roots and template stems which may allow the
model to make better representations of less fre-
quent word forms where transparency into the mor-
phological components may be helpful. Possible
benefits of segmenting versus not segmenting fre-
quent word forms may be competing with each
other, and hence, similar scores result from the
tradeoff, though this would need to be investigated
further.

4.2 Dubious Word Stems

While a given root may be inserted into many tem-
plates, not all roots can be inserted into all tem-
plates and form valid words. We wanted to en-
sure that NMT models trained with SRE were not
generating dubious word stems by generating an
invalid combination of a root and template stem.
We therefore ran the four trials of the en2ar-SRE
and en2ar-BPE translation models from Section
4.1 on the test set as well as an extra test set of
9,669 sentences (described in Appendix A.2), since
more generated sentences will better tell us how
robust an NMT model is against generating dubi-

ous word stems. For each generated sentence, the
sentence was split into words using the CAMeL
Tools word tokenizer. We then checked if each
word existed in an Arabic dictionary (described
in Appendix A.3), distinguishing between "Arabic
words", which contain at least one Arabic character,
"and non-Arabic words". This distinction is impor-
tant because many out-of-dictionary words are are
written in Latin letters, like some proper nouns. Ta-
ble 10 of Appendix H.1 reports the raw number
of Arabic out-of-dictionary words and non-Arabic
out-of-dictionary words generated. We observed no
patterns between the number of out-of-dictionary
words generated by en2ar-SRE and en2ar-BPE.

We examined a portion of the out-of-dictionary
words generated for the test set by en2ar-SRE and
noticed that many of them were transliterations of
proper nouns, whether done well or not, and likely
did not contain a Semitic root. We ran SRE Pre-
processing on all of the Arabic out-of-dictionary
words generated for the test set by Trial 1 of en2ar-
SRE, and noticed that out of 83, only 4 have a
Semitic root. We manually reviewed these 4 with
Evaluator 1 and discovered that all are actually
valid word forms that happen to not be in the Ara-
bic dictionary. We repeated this process for the
hypotheses on the extra test set. Of 264 Arabic
out-of-dictionary words, 36 have a Semitic root.
Of the 36, 30 are valid words, 4 have valid stems
with invalid affixes, and 2 have dubious stems.

We conducted this evaluation with Evaluator
1 again on the en2ar-SRE Trial 2 hypotheses of
the extra test set, in which, of 30 Arabic out-of-
dictionary words with Semitic roots, 3 are invalid

32

Model BLEU chrF
en2ar-SRE-20k 27.62 59.12
en2ar-BPE-20k 28.03 59.42
en2ar-Fake-SRE-20k 24.12∗ 56.69∗

en2ar-Stem-SRE-20k 25.67∗ 58.06∗

Table 5: BLEU and chrF scores for en2ar-SRE-20k,
en2ar-BPE-20k, en2ar-Fake-SRE-20k, and en2ar-Stem-
SRE-20k. * indicates that the scores are statistically
significantly different than those of en2ar-SRE-20k.

words due to invalid affixes, and none are invalid
due to dubious stems. All of the counts can be seen
in Table 11 of Appendix H.2.

We conclude that NMT models trained with SRE
rarely generate invalid root + template stem combi-
nations.

4.3 Fake-SRE and Stem-SRE

In this section, we present two quasi-ablations to
answer the following questions: (1) Can we con-
firm that NMT models generalize about root and
template stem meanings, or do they just memorize
word pieces? (2) Is there benefit for an NMT model
to see both root and template stem, or would seg-
mentation based on stems (without decomposing
them into roots and template stems) perform just as
well or better? To find out, we compare SRE, BPE,
Fake-SRE, and Stem-SRE. Because the Fake-SRE
and Stem-SRE tokenizers were created with vocab-
ularies of 20,001, we used versions of the SRE and
BPE tokenizers of the same size for the sake of
comparability.

When training all the following NMT models,
English source sentences were tokenized with BPE-
en-20k, while Arabic target sentences were tok-
enized as follows: The SRE-20k tokenizer was
used for en2ar-SRE-20k, BPE-ar-20k was used
for en2ar-BPE-20k, Fake-SRE-20k was used for
en2ar-Fake-SRE-20k, and Stem-SRE-20k was used
for en2ar-Stem-SRE-20k.

These models were trained on the Trial 1 train-
ing set with the same hyperaparameters and con-
figurations as en2ar-SRE and en2ar-BPE, besides
tokenizers and vocabulary size. Table 5 reports the
BLEU and chrF scores.

We observe that we cannot perform random
root and template stem tokenization and get the
same performance, demonstrated by en2ar-Fake-
SRE-20k, which was trained on tokens based on
non-linguistic root and template stems, and which
scores more than 3 BLEU less than the model

trained with SRE tokenization, en2ar-SRE-20k. To-
kenization based on linguistic stems using en2ar-
Stem-SRE-20k also yields worse translations than
tokenization based on stems decomposed into roots
and templates using en2ar-SRE-20k. This suggests
there is benefit for NMT models to embed the root
and template stems separately and generalize about
the meanings and functions of each.

We note as well that in this scenario with larger
vocabularies, that the gap between BPE and SRE
performances observed in Section 4.1 is closed.
The apparent performance gain for increasing the
vocabulary size for BPE-based NMT models does
not seem to apply to SRE-based NMT models. We
suspect that this might be because the number of
root and template stem tokens, which are compo-
nents of most words, in the SRE models is fixed,
regardless of the total vocabulary size. The addi-
tional tokens in a SRE model with a larger vocabu-
lary may be affecting mainly the handful of words
that do not have Semitic roots. Future work would
need to determine if this is indeed a flaw of SRE
and if it can be remedied, perhaps by adjusting the
number of root and template stem tokens.

5 Conclusions

BLEU and chrF scores of translation models
trained with SRE tokenization on average have a
lead of 1.15 BLEU over those trained with BPE,
indicating that SRE tokenization yields better trans-
lations, a claim supported by the human evaluators,
who tend to prefer the outputs of the model trained
with SRE tokenization. This gap in performance,
however, is closed when vocabulary sizes are in-
creased.

Of the Arabic out-of-dictionary words with
Semitic roots generated by SRE translation models,
manual review revealed that most were actually
valid word forms. In 9,669 sentences generated
by a model trained with SRE, only 2 words were
composed of a dubious root + template stem com-
bination in Trial 1, and 0 in Trial 2. This indicates
that the SRE method only rarely generates dubious
word stems.

Additionally, tokenization based on false roots
and template stems performs worse than models
trained with SRE, suggesting there is value in us-
ing morphologically-based tokenization schemes
over more random templatic schemes. Tokeniza-
tion based on whole stems also does not perform as
well as tokenization schemes that decompose the

33

stem into a root and template stem, indicating that
NMT models are indeed able to learn and leverage
knowledge from Semitic templatic morphology.

6 Future Work

Future work can corroborate these findings with
other Semitic languages, perhaps employing un-
supervised approaches in the root and template
extraction. Its impact on translation into English
or between Semitic languages, as well as on other
downstream NLP tasks, are other avenues to ex-
plore.

Additional directions may also explore the im-
pact of changing SRE vocabulary sizes on trans-
lation performance, experimenting both with the
number of root and template stem tokens as well
as the number of tokens determined by the BPE
algorithm.

Future work should also investigate whether
there are indeed competing benefits to segment-
ing versus not segmenting frequent word forms,
and if so, how to optimize the tradeoff.

More comparisons of SRE to BPE would also
be valuable. This includes evaluations on speed
which will provide important baselines for devel-
oping SRE optimizations. This also includes more
detailed qualitative comparisons of the word forms
generated by SRE and BPE-based NMT models
and their affects on human comprehension and
translation adequacy.

Finally, we know SRE-based NMT models
rarely generate dubious word stems, but whether
they are able to hypothesize valid word stems, i.e.
valid root + template stem combinations, that were
not seen in the training data is to be determined.

Limitations

Templates in Arabic include diacritics written be-
low and above letters, most of which indicate short
vowels. In the greater part of most documents,
these diacritics are omitted. Without diacritics,
many surface forms can represent multiple utter-
ances, though readers of Arabic are almost always
able to disambiguate contextually. When clarity
may be needed, writers may include diacritics, but
the usage is inconsistent. Naturally, this means that
a single surface template in writing may refer to
many underlying templates used in speech, mean-
ing that the ideal NMT model would associate each
surface template with all functions of the underly-
ing templates that it represents. For simplicity, and

to maximize generalization of surface templates,
we opted in this work to remove all written dia-
critics. However, an NMT model that uses SRE
tokenization in a production environment will need
to anticipate inputs that include diacritics, so SRE
should be developed to handle them.

To support the claim about the impact of SRE on
translation quality, we conducted a human evalua-
tion. Though all evaluators were native speakers of
Arabic and knew some English, they were mainly
volunteers with some variance in their backgrounds.
It is hard to say the impact that has on their evalu-
ations, but we reasonably posit that the two evalu-
ators who teach Arabic as a second language are
better evaluators than the one who is a graduate
student. Additionally, because none of the evalua-
tors are experts in translation specifically, we opted
for a simple ranking evaluation as opposed to an
in-depth MQM 8 evaluation which would provide
a more detailed and qualitative examination of the
translations.

In this work, we evaluated many variations of
SRE. Because of time and resource constraints, we
opted to only train models that translate into Arabic,
but the impact of SRE on translation from Arabic
should be evaluated in the future as well.

Acknowledgments

We thank Ammon Shurtz for the helpful feedback
he offered on various occasions, as well as mem-
bers of the BYU MATRIX Lab, who developed
the parallel data cleaning pipeline (Appendix B.1).
We also express appreciation to Taoufik Ouzine for
his consultations as well as the other native Arabic-
speaking evaluators for their vital contribution.

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for arabic. In Proceedings of the 2016 con-
ference of the North American chapter of the associ-
ation for computational linguistics: Demonstrations,
pages 11–16.

Mohamed Alkaoud and Mairaj Syed. 2020. On the im-
portance of tokenization in arabic embedding models.
In Proceedings of the fifth Arabic natural language
processing workshop, pages 119–129.

Abdulrahman Almuhareb, Waleed Alsanie, and Abdul-
mohsen Al-Thubaity. 2019. Arabic word segmenta-
tion with long short-term memory neural networks
and word embedding. IEEE Access, 7:12879–12887.
8https://themqm.org/

34

https://themqm.org/

Manel Aloui, Hasna Chouikhi, Ghaith Chaabane,
Haithem Kchaou, and Chehir Dhaouadi. 2024.
101 billion arabic words dataset. Preprint,
arXiv:2405.01590.

Zaid Alyafeai, Maged S Al-shaibani, Mustafa Ghaleb,
and Irfan Ahmad. 2023. Evaluating various tokeniz-
ers for arabic text classification. Neural Processing
Letters, 55(3):2911–2933.

Chantal Amrhein and Rico Sennrich. 2021. How suit-
able are subword segmentation strategies for translat-
ing non-concatenative morphology? In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 689–705, Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Aditi Chaudhary, Chunting Zhou, Lori Levin, Graham
Neubig, David R. Mortensen, and Jaime Carbonell.
2018. Adapting word embeddings to new languages
with morphological and phonological subword repre-
sentations. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3285–3295, Brussels, Belgium. Association
for Computational Linguistics.

Anne N. De Roeck and Waleed Al-Fares. 2000. A
morphologically sensitive clustering algorithm for
identifying Arabic roots. In Proceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics, pages 199–206, Hong Kong. Association
for Computational Linguistics.

Ahmed El-Kishky, Xingyu Fu, Aseel Addawood, Nahil
Sobh, Clare Voss, and Jiawei Han. 2019. Constrained
sequence-to-sequence Semitic root extraction for en-
riching word embeddings. In Proceedings of the
Fourth Arabic Natural Language Processing Work-
shop, pages 88–96, Florence, Italy. Association for
Computational Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, Naman Goyal, Tom Birch, Vitaliy
Liptchinsky, Sergey Edunov, Michael Auli, and Ar-
mand Joulin. 2021. Beyond english-centric multilin-
gual machine translation. Journal of Machine Learn-
ing Research, 22(107):1–48.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal, 12(2):23–38.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Francisco Guzmán, Houda Bouamor, Ramy Baly, and
Nizar Habash. 2016. Machine translation evaluation
for Arabic using morphologically-enriched embed-
dings. In Proceedings of COLING 2016, the 26th

International Conference on Computational Linguis-
tics: Technical Papers, pages 1398–1408, Osaka,
Japan. The COLING 2016 Organizing Committee.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. Two
new evaluation datasets for low-resource machine
translation: Nepali-english and sinhala-english.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash. 2020.
CAMeL tools: An open source python toolkit for
Arabic natural language processing. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 7022–7032, Marseille, France. Eu-
ropean Language Resources Association.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A fast, comprehensive tool
for morphological analysis and disambiguation of
Arabic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 1094–1101, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the

35

https://arxiv.org/abs/2405.01590
https://doi.org/10.18653/v1/2021.findings-emnlp.60
https://doi.org/10.18653/v1/2021.findings-emnlp.60
https://doi.org/10.18653/v1/2021.findings-emnlp.60
https://doi.org/10.18653/v1/D18-1366
https://doi.org/10.18653/v1/D18-1366
https://doi.org/10.18653/v1/D18-1366
https://doi.org/10.3115/1075218.1075244
https://doi.org/10.3115/1075218.1075244
https://doi.org/10.3115/1075218.1075244
https://doi.org/10.18653/v1/W19-4610
https://doi.org/10.18653/v1/W19-4610
https://doi.org/10.18653/v1/W19-4610
http://jmlr.org/papers/v22/20-1307.html
http://jmlr.org/papers/v22/20-1307.html
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://aclanthology.org/C16-1132/
https://aclanthology.org/C16-1132/
https://aclanthology.org/C16-1132/
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.lrec-1.868/
https://aclanthology.org/2020.lrec-1.868/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/L14-1479/
https://aclanthology.org/L14-1479/
https://aclanthology.org/L14-1479/
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049

Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Stefan Riezler and John T. Maxwell. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization, pages
57–64, Ann Arbor, Michigan. Association for Com-
putational Linguistics.

Tarek Sakakini, Suma Bhat, and Pramod Viswanath.
2017. Fixing the infix: Unsupervised discovery
of root-and-pattern morphology. arXiv preprint
arXiv:1702.02211.

Rana Aref Salama, Abdou Youssef, and Aly Fahmy.
2018. Morphological word embedding for arabic.
Procedia computer science, 142:83–93.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Edouard Grave, and Armand Joulin. 2020. Ccmatrix:
Mining billions of high-quality parallel sentences on
the web. Preprint, arXiv:1911.04944.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Pamela Shapiro and Kevin Duh. 2018. Morphological
word embeddings for Arabic neural machine trans-
lation in low-resource settings. In Proceedings of
the Second Workshop on Subword/Character LEvel
Models, pages 1–11, New Orleans. Association for
Computational Linguistics.

Kazem Taghva, Rania Elkhoury, and Jeffrey Coombs.
2005. Arabic stemming without a root dictionary.
In International Conference on Information Technol-
ogy: Coding and Computing (ITCC’05)-Volume II,
volume 1, pages 152–157. IEEE.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia Gonzalez, Prangthip Hansanti, and
20 others. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and

Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

A Data

A.1 Standard Data

This section addresses the training, validation, and
test sets. Each of the 4 versions of the training
set consists of 10 million English-Arabic parallel
sentences retrieved from the CCMatrix parallel cor-
pus (Schwenk et al., 2020; Fan et al., 2021) avail-
able on Opus (Tiedemann, 2012)9. The English-
Modern Standard Arabic portions of the FLORES-
200 (Team et al., 2022; Goyal et al., 2022; Guzmán
et al., 2019) dev and devtest sets were used respec-
tively for validation and test sets. An extensive
parallel data cleaning pipeline was applied to the
CCMatrix training data. Additionally, all Arabic di-
acritics were removed from the training, validation,
and test sets. While diacritics in Arabic, including
short vowels, are components of a word’s template,
they are usually omitted in writing since most of the
information they convey is gleaned from context.
Since their usage is inconsistent, for simplicity, we
decided to remove all of them for these experi-
ments. Details of data cleaning, diacritic removal,
and additional preprocessing are described in detail
in Appendix B.

A.2 Extra Test Set

We felt that the 1,009 sentence pairs from the test
set were too few to get a good picture of how often
NMT models generate dubious word stems (see
Section 4.2). We therefore retrieved 9,669 CC-
Matrix sentence pairs not included in any of the
4 versions of the training data to serve as addi-
tional testing data for this purpose. These data
were cleaned in the same manner as the CCMatrix
training data and are referred to as the extra test
set. The extra test set was never used to evaluate
general translation quality with BLEU and chrF
metrics.

A.3 Arabic Dictionary

To determine whether translation models trained
with SRE tokenization generate dubious word
stems, a dictionary of Arabic words is needed. This
dictionary was created by downloading a portion
of the 101 Billion Arabic Words Dataset (Aloui

9https://opus.nlpl.eu/

36

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://aclanthology.org/W05-0908/
https://aclanthology.org/W05-0908/
https://aclanthology.org/W05-0908/
https://arxiv.org/abs/1911.04944
https://arxiv.org/abs/1911.04944
https://arxiv.org/abs/1911.04944
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/W18-1201
https://doi.org/10.18653/v1/W18-1201
https://doi.org/10.18653/v1/W18-1201
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://aclanthology.org/L12-1246/
https://aclanthology.org/L12-1246/
https://opus.nlpl.eu/

et al., 2024)10, and splitting the text on white space
and then removing punctuation11 from each word.
Words that contained a numeral or a Latin letter
were not included. The final unique set of these
words serve as the Arabic dictionary, which con-
tains ~5 million unique word forms.

B Data Cleaning and Preprocessing

B.1 Data cleaning
To clean the CCMatrix training data, a parallel
data cleaning pipeline was applied. This pipeline
follows the guidelines of the GILT Leaders Fo-
rum’s Best Practices in Translation Memory Man-
agement12, and performs the following steps:

1. Remove pairs containing empty source or tar-
get segments.

2. Remove pairs when the source segment ex-
actly or nearly matches the target segment.

3. Remove duplicate source-target pairs.
4. Remove pairs with segments containing

mostly non-alphabetic characters.
5. Remove pairs with segments containing ab-

normally long sequences of characters with-
out spaces, including segments that are only
URLs.

6. Remove pairs containing segments with un-
balanced brackets.

7. Remove pairs containing fewer than 3 words
in the English source segment.

8. Remove pairs with segments containing a
higher number of characters than 5 standard
deviations above the mean for that language
(sentences that are too long).

9. Remove pairs in which the ratio of the lengths
of the source and target segments exceeds a
certain cutoff.

10. Normalize escaped Unicode characters.
11. Validate and normalize character encodings

for each language.
12. Normalize whitespace
13. Shorten sequences of excessively repeated

punctuation.
14. Normalize quotation marks.
15. Normalize HTML entities.
16. Remove all markup tags.

10https://huggingface.co/datasets/ClusterlabAi/
101_billion_arabic_words_dataset

11This was done by replacing punctuation characters with
whitespaces and then normalizing all series of whitespace to
a single space and then removing trailing and leading whites-
pace.

12https://github.com/GILT-Forum/
TM-Mgmt-Best-Practices/blob/master/
best-practices.md

Hyperparam. 50K 100K 300K 500K
Val. interval 97 195 585 625
Warm-up 97 195 585 976

Table 6: Hyperparameters (number of training steps
between validations and the number of warm-up steps)
that are different than those described in Section 4.1.
The columns correspond to translation models trained
with SRE and BPE tokenization on a training set of the
indicated size.

B.2 Diacritic Removal and Other
Preprocessing

Arabic diacritics in the Arabic portions of the
FLORES-200 and cleaned CCMatrix data were
removed using the CAMeL Tools toolkit.

A few sentence pairs were removed from the
FLORES-200 data and the Trial 1 version of the
CCMatrix training data because they were invalid
with an implementation we created of the Semitic
root-based sub-word segmentation scheme pro-
posed by El-Kishky et al. (2019), which we had
originally planned to explore further, but eventually
opted not to for the sake of constraining this work.
Instances of these pairs were few and removal of
them does not impact the conclusions of this paper.

C Low-Resource Experiments

We conducted the experiments similar to those de-
scribed in Section 4.1 using BPE-en-8k, BPE-ar-8k,
and SRE-8k tokenizers, but in low-resource scenar-
ios. NMT models were trained on subsets of the
Trial 1 version of the training set sized at 500K,
300K, 100K, and 50K. The resulting low-resource
translation models (of each training set size) are
described as follows:

*-en2ar-SRE models were trained tokenizing
the English source sentences with BPE-en-8k and
the Arabic target sentences with SRE-8k.

*-en2ar-BPE models were trained tokenizing
the English source sentences with BPE-en-8k and
the Arabic target sentences with BPE-ar-8k.

We used the same tokenizers as those mentioned
in Section 4.1. We also trained these models with
same hyperparameters except for the ones men-
tioned in Table 6. We refer to these models as
50k-en2ar-SRE, 50k-en2ar-BPE, 100k-en2ar-SRE,
etc., and report BLEU and chrF scores for one trial
in Table 7. In low-resource scenarios, SRE does
not hold a lead over BPE, although the differences
may not be significant.

37

https://huggingface.co/datasets/ClusterlabAi/101_billion_arabic_words_dataset
https://huggingface.co/datasets/ClusterlabAi/101_billion_arabic_words_dataset
https://github.com/GILT-Forum/TM-Mgmt-Best-Practices/blob/master/best-practices.md
https://github.com/GILT-Forum/TM-Mgmt-Best-Practices/blob/master/best-practices.md
https://github.com/GILT-Forum/TM-Mgmt-Best-Practices/blob/master/best-practices.md

Model BLEU chrF
50k-en2ar-SRE 2.33 28.35
50k-en2ar-BPE 2.42 26.97
100k-en2ar-SRE 5.56 34.51
100k-en2ar-BPE 5.80 34.37
300k-en2ar-SRE 11.77 41.57
300k-en2ar-BPE 13.09 42.41
500k-en2ar-SRE 14.72 44.94
500k-en2ar-BPE 14.65 45.29

Table 7: BLEU and chrF scores for low-resource trans-
lation models trained with SRE and BPE.

D FakeRootCache

To create FakeRootCache, 10,000 sentences were
retrieved from the training set. For each unique
word in the 10,000 sentences, every series of 3
letters that could serve as a possible “root” was
retrieved. For example, the possible "roots" for the
word mktub (H. ñ�JºÓ) are M-K-T, M-K-U, M-K-B,
M-T-U, M-T-B, M-U-B, K-T-U, K-T-B, K-U-B,
T-U-B. If the word had only a length of 2, every
possible 1-letter "root" was retrieved instead. No
"roots" were retrieved from words of length 1. Ev-
erything not in a given “root” served as the corre-
sponding “template”. For example, if extracting the
"root" M-T-B from mktub, the corresponding "tem-
plate" would be 1k2u3. A list of valid fake "roots",
which were the 28,000 most common possible fake
"roots" based on raw frequency in the 10,000 sen-
tences, was then created, as well as a list of valid
fake "template stems", which were the 2,500 most
frequent possible fake "template stems".

Afterwards, for each word in RootCache, all pos-
sible parses using the valid fake "roots" and valid
fake "template stems" were determined and one
was selected at random. If no parse was possi-
ble, then the word was treated as if it had no root
and template. Choosing parses from the lists of
valid fake "roots" and "template stems" was im-
portant to restrict the size of the final vocabulary,
which otherwise easily explodes. For each word,
the selected parse, including the fake "root" with
its "template" and "template stem", was cached in
FakeRootCache.

E Stem-SRE

We describe the training of the Stem-SRE tokenizer,
followed by the Stem-SRE sub-word segmentation
and "de-segmentation" processes.

Training Stem-SRE. To train this model, a

Model BLEU chrF
en2ar-SRE 27.92 58.96
en2ar-BPE 26.93∗ 58.86
en2ar-SRE-MF-3.4k 27.33 59.61∗
en2ar-SRE-MF-2.4k 27.84 59.07

Table 8: BLEU and chrF scores for en2ar-SRE, en2ar-
BPE, en2ar-SRE-MF-3.4k, and en2ar-SRE-MF-2.4k.
Note that the scores for en2ar-BPE and en2ar-SRE are
from Trial 1 and also appear in Table 3. * indicates that
the scores are statistically significantly different than
those of en2ar-SRE.

dataset of Arabic sentences is first preprocessed
so that for each word that contains a Semitic
root (detected with CAMeL Tools), the stem is
simply wrapped in angle brackets. For example,
the word almKTuBh (�éK. ñ�JºÖÏ @) is preprocessed as

‘alm<KTuB>h’. A BPE model called Stem-SRE
BPE is then trained in the manner described in
Section 3.2 on a set of preprocessed data. Before
training, stem tokens for all stems in RootCache,
also wrapped in angle brackets (e.g., ‘<KTuB>’),
are added to the user_defined_symbols.

Stem-SRE Segmentation. To segment a se-
quence with Stem-SRE, the sequence is first pre-
processed: words with Semitic roots are detected
with CAMeL Tools, and then, for each word with
a root, the stem (or subsequence ranging from the
first radical to the last radical) is wrapped in an-
gle brackets. The Stem-SRE BPE model then tok-
enizes the preprocessed sequence.

Stem-SRE Sub-word “De-segmentation”. To
reverse the segmentation on the model outputs,
each sequence is first detokenized with the Stem-
SRE BPE model, and then all angle brackets in the
sequence are simply removed. This yields the final
sentence. The results of using Stem-SRE compared
to SRE are discussed in Section 4.3 above.

F SRE-MF

We describe SRE-MF, where MF refers to the
“most frequent” words. SRE-MF works much like
SRE except that it does not segment the most fre-
quently occurring words into sub-words. The SRE
method generally represents a sentence with far
more sub-words than BPE does. On one trial of
predictions on the test set, the SRE method repre-
sented each output sentence with 81.8 tokens on
average, whereas the BPE method did with 53.8
tokens. This is due to BPE only representing infre-
quent word forms as a series of multiple sub-words.

38

The SRE method, on the other hand, always, where
possible, splits a word into at least a root token
and a template stem token, and then affix tokens
as needed. We considered the possibility that this
may complicate the translation task for NMT mod-
els. For this reason, we developed SRE-MF where
the most frequent word forms are not split into
sub-words.

To create an SRE-MF tokenizer, the n most fre-
quent word forms (without punctuation) are se-
lected from the tokenizer training data. For these
words, SRE Preprocessing is not performed, and
they are kept as is in the tokenizer training data.
These words are then added to the user_defined_-
symbols along with the root and template stem to-
kens from RootCache. The total number of tokens
needed to represent special tokens, whitespace,
roots, and template stems is 4,266, which leaves
3,735 for everything else. A portion n of these
leftover tokens are needed to represent the most fre-
quent whole words. There are about 6,000 whole
words in the tokenizer training data that occur in the
BPE-ar-8k tokenizer’s vocabulary of 8,001, which
suggests, as far as it is possible, that it is worth
trying to nearly, though not entirely, max out the
SRE-8k vocabulary with whole words, leaving a
relatively small portion to represent affixes and ev-
erything else as determined by the BPE algorithm.
We therefore decided to experiment with two val-
ues of n that accomplish this, selecting 3,418 and
2,433 of the most frequent word forms to add, re-
spectively, to the vocabularies of two SRE-MF sub-
word segmentation models: SRE-MF-3.4k-8k and
SRE-MF-2.4k-8k. Both models had a vocab size
of 8,001 and contained 3,956 root tokens and 305
template stem tokens. We used these tokenizers to
train the following NMT models:

en2ar-SRE-MF-3.4k was trained tokenizing En-
glish source sentences with BPE-en-8k and the Ara-
bic target sentences with SRE-MF-3.4k-8k, which
does not segment ~3.4K of the most frequent words
into sub-word tokens.

en2ar-SRE-MF-2.4k was trained tokenizing En-
glish source sentences with BPE-en-8k and the Ara-
bic target sentences with SRE-MF-2.4k-8k, which
does not segment ~2.4K of the most frequent words
into sub-word tokens.

The scores for these models, trained on the Trial
1 training set, are reported in Table 8 along with
that of en2ar-BPE and en2ar-SRE for comparison,
where it is observed that BLEU scores for en2ar-
SRE-MF-3.4k and en2ar-MF-2.4k are narrowly un-

Model BLEU chrF
en2ar-SRE 27.92 58.96
en2ar-BPE 26.93∗ 58.86
en2ar-In-Situ-SRE 27.66 59.24

Table 9: BLEU and chrF scores for en2ar-SRE, en2ar-
BPE, and en2ar-In-Situ-SRE translation models. Note
that the results for en2ar-BPE and en2ar-SRE are from
Trial 1 and also appear in Table 3. * indicates that the
scores are statistically significantly different than those
of en2ar-SRE.

der that of en2ar-SRE. This suggests that adding
frequent whole words to an SRE vocabulary likely
does not have a significant effect on translation
quality, though this may need further investigation
given that en2ar-SRE-MF-3.4k yields a significant
increase in chrF.

G In-Situ-SRE

In SRE, words are represented first with a root to-
ken, followed by 0 or more prefix tokens, followed
by the template stem token, followed 0 or more
suffix tokens. Given that roots are tied to the stem,
rather than affixes, it is arguable that the best order
linguistically should be first prefix tokens, followed
by the root token, followed by the template stem
token, followed by the suffix tokens. We created
a modified SRE scheme based on this token order,
and called it In-Situ-SRE, as the root remains in
situ, i.e., in the location of the stem. For example,
the word almKTuBh would be SRE Preprocessed
as ‘alm<KTB>12u3h’ and split into tokens ‘alm’,
‘<KTB>’, ‘12u3’, and ‘h’. We created an In-Situ-
SRE tokenizer, which contained 3,956 root tokens
and 305 template stem tokens, and a total vocab
size of 8,001 called In-Situ-SRE-8k.

We trained a single NMT model called en2ar-
In-Situ-SRE on the Trial 1 training set, tokenizing
English source sentences with BPE-en-8k and the
Arabic target sentences with In-Situ-SRE-8k. Ta-
ble 9 reports its scores together with that of en2ar-
SRE and en2ar-BPE. We observe there is negligible
difference in performance based on BLEU and chrF
scores between the SRE and In-Situ-SRE methods,
suggesting this alternative token order may have no
meaningful impact on translation quality.

39

Arabic Out-of-Dictionary Words
Trial 1 Trial 2 Trial 3 Trial 4 Avg.

Set en2ar-
SRE

en2ar-
BPE

en2ar-
SRE

en2ar-
BPE

en2ar-
SRE

en2ar-
BPE

en2ar-
SRE

en2ar-
BPE

en2ar-
SRE

en2ar-
BPE

test 83 93 96 90 106 110 99 103 96 99
ext. 264 287 421 350 771 1,881 492 439 487 739

Non-Arabic Out-of-Dictionary Words
Trial 1 Trial 2 Trial 3 Trial 4 Avg.

Set en2ar-
SRE

en2ar-
BPE

en2ar-
SRE

en2ar-
BPE

en2ar-
SRE

en2ar-
BPE

en2ar-
SRE

en2ar-
BPE

en2ar-
SRE

en2ar-
BPE

test 376 326 162 227 133 160 88 134 190 212
ext. 3,048 2,816 2,148 2,281 2,042 2,911 3,172 2,105 2,603 2,528

Table 10: Arabic and non-Arabic out-of-dictionary words generated by en2ar-SRE and en2ar-BPE over four trials,
when run on the test (1,009 sentences) and extra (ext.) test (9,669 sentences) sets. Averages have been rounded to
the nearest whole number.

Trial 1 Trial 2
Set Total w/Sem Val ValStm InvStm Total w/Sem Val ValStm InvStm
test 83 4 4 0 0 96 4 4 0 0
ext. 264 36 30 4 2 421 30 27 3 0

Table 11: Total is the number of Arabic out-of-dictionary words and w/Sem is the number of those Arabic
out-of-dictionary words with a Semitic root. Of those Arabic out-of-dictionary words with Semitic roots, Val is
the number that are valid words, ValStm is the number that have valid stems but invalid affixes, and InvStm is the
number that have invalid stems. Counts are provided for Trial 1 and 2 predictions of en2ar-SRE for the test set and
extra (ext.) test set.

40

H Out-of-Dictionary Words

H.1 Out-of-Dictionary Words

Table 10 shows the number of Arabic out-of-
dictionary words and non-Arabic out-of-dictionary
words for all four trials of en2ar-SRE and en2ar-
BPE as described in Section 4.2. We observed
no patterns between the number of Arabic or non-
Arabic out-of-dictionary words generated by en2ar-
SRE and en2ar-BPE. We do count fewer Arabic
out-of-dictionary words generated by en2ar-SRE
than those generated by en2ar-BPE in Trial 3, but
we also suspect a lot of long nonsense hallucina-
tions are occurring in Trial 3, explaining perhaps
why so many out-of-dictionary words occured.

The ratio of the average number of output tokens
to input tokens per sentence for en2ar-SRE and
en2ar-BPE for the test set ranges from 1.47 to 1.51
and 0.98 to 1.01, respectively, across the four trials.
Such consistency, noted in the narrow ranges, was
not observed for the results of the extra test set. For
en2ar-SRE, the ratios for Trials 1 and 2 were 1.63
and 1.64, but were 1.93 and 1.95 for Trials 3 and 4.
This means that Trials 3 and 4 were on average gen-
erating much longer sentences, suggesting possibly
they were hallucinating a lot.

It may be that Trial 3 en2ar-SRE’s hallucinations
included more out-of-dictionary words than that of
Trial 4, hence the high number of out-of-dictionary
words in Trial 3. We noticed that Trial 3 en2ar-
SRE’s final postprocessed outputs for the extra test
set included more sentences containing template
placeholders (which in practice were unique char-
acters that did not exist in the original data, rather
than numbers as was used in the demonstrations
in this paper) than that of any of the other trials.
This ideally should not happen after postprocess-
ing of the outputs, but does occur, for instance,
when a hallucination contains template stem to-
kens but without root tokens to fill the placeholders.
Naturally, this results in out-of-dictionary words,
and may explain in part why Trial 3 has more out-
of-dictionary words than Trial 4, despite having
similar ratios. Additionally, we found that Trial 3’s
outputs on the extra test set also contained more
sentences with pound ("#") symbols than the other
trials. These occur naturally in data, often in so-
cial media hashtags, but they also result sometimes
in the middle of words in the final postprocessed
output when certain root tokens are paired with in-
compatible templates. The word-splitting function
we used will split words on punctuation characters,

including "#", so this may also contribute to the
high number of out-of-dictionary words counted
in Trial 3. (We note that no instances of "#" or
placeholders occur in the final postprocessed out-
put of the standard test set for any of the trials of
en2ar-SRE and en2ar-BPE.)

For en2ar-BPE on the extra test set, the ratios
for Trials 1, 2, and 4 were 1.13, 1.27, and 1.26,
whereas the ratio for Trial 3 was 1.93, indicating
the latter was generating much longer sentences
than the previous three, perhaps because it had this
tendency to hallucinate. This could explain the high
number of out-of-dictionary word forms generated
by Trial 3 of en2ar-BPE. As to why some trials
may be hallucinating more than others, an analysis
of the training data may be needed.

This all to say, because we have reason to believe
Trial 3 contains a lot of hallucination, we refrain
from drawing conclusions on whether one system
tends to generate more or fewer out-of-dictionary
words than another.

H.2 Out-of-Dictionary Words With Semitic
Roots

Table 11 shows the results of the manual review of
Arabic out-of-dictionary words with Semitic roots
and the judgements we made together with Evalu-
ator 1. We reviewed the Arabic out-of-dictionary
words from the en2ar-SRE Trial 1 and Trial 2 hy-
potheses of the test and extra test sets. Of those Ara-
bic out-of-dictionary words with Semitic roots, we
counted the number that are actually valid words.
Of those that are invalid words, we counted the
number that have valid stems with invalid affixes
and the number that have invalid stems.

41

