@inproceedings{hawasly-etal-2025-arabicweb,
title = "{A}rabic{W}eb-Edu: Educational Quality Data for {A}rabic {LLM} Training",
author = "Hawasly, Majd and
Mohiuddin, Tasnim and
Mubarak, Hamdy and
Boughorbel, Sabri",
editor = "Darwish, Kareem and
Ali, Ahmed and
Abu Farha, Ibrahim and
Touileb, Samia and
Zitouni, Imed and
Abdelali, Ahmed and
Al-Ghamdi, Sharefah and
Alkhereyf, Sakhar and
Zaghouani, Wajdi and
Khalifa, Salam and
AlKhamissi, Badr and
Almatham, Rawan and
Hamed, Injy and
Alyafeai, Zaid and
Alowisheq, Areeb and
Inoue, Go and
Mrini, Khalil and
Alshammari, Waad",
booktitle = "Proceedings of The Third Arabic Natural Language Processing Conference",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.arabicnlp-main.36/",
pages = "436--447",
ISBN = "979-8-89176-352-4",
abstract = "The quality of training data plays a critical role in the performance of large language models (LLMs). This is especially true for low-resource languages where high-quality content is relatively scarce. Inspired by the success of FineWeb-Edu for English, we construct a native Arabic educational-quality dataset using similar methodological principles. We begin by sampling 1 million Arabic web documents from Common Crawl and labeling them into six quality classes (0{--}5) with Qwen-2.5-72B-Instruct model using a classification prompt adapted from FineWeb-Edu. These labeled examples are used to train a robust classifier capable of distinguishing educational content from general web text. We train a classification head on top of a multilingual 300M encoder model, then use this classifier to filter a large Arabic web corpus, discarding documents with low educational value. To evaluate the impact of this curation, we pretrain from scratch two bilingual English-Arabic 7B LLMs on 800 billion tokens using the filtered and unfiltered data and compare their performance across a suite of benchmarks. Our results show a significant improvement when using the filtered educational dataset, validating the effectiveness of quality filtering as a component in a balanced data mixture for Arabic LLM development. This work addresses the scarcity of high-quality Arabic training data and offers a scalable methodology for curating educational quality content in low-resource languages."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hawasly-etal-2025-arabicweb">
<titleInfo>
<title>ArabicWeb-Edu: Educational Quality Data for Arabic LLM Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Majd</namePart>
<namePart type="family">Hawasly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tasnim</namePart>
<namePart type="family">Mohiuddin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamdy</namePart>
<namePart type="family">Mubarak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabri</namePart>
<namePart type="family">Boughorbel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Third Arabic Natural Language Processing Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Ali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Abu Farha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samia</namePart>
<namePart type="family">Touileb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharefah</namePart>
<namePart type="family">Al-Ghamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakhar</namePart>
<namePart type="family">Alkhereyf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Badr</namePart>
<namePart type="family">AlKhamissi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rawan</namePart>
<namePart type="family">Almatham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Injy</namePart>
<namePart type="family">Hamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zaid</namePart>
<namePart type="family">Alyafeai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Areeb</namePart>
<namePart type="family">Alowisheq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Go</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalil</namePart>
<namePart type="family">Mrini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Waad</namePart>
<namePart type="family">Alshammari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-352-4</identifier>
</relatedItem>
<abstract>The quality of training data plays a critical role in the performance of large language models (LLMs). This is especially true for low-resource languages where high-quality content is relatively scarce. Inspired by the success of FineWeb-Edu for English, we construct a native Arabic educational-quality dataset using similar methodological principles. We begin by sampling 1 million Arabic web documents from Common Crawl and labeling them into six quality classes (0–5) with Qwen-2.5-72B-Instruct model using a classification prompt adapted from FineWeb-Edu. These labeled examples are used to train a robust classifier capable of distinguishing educational content from general web text. We train a classification head on top of a multilingual 300M encoder model, then use this classifier to filter a large Arabic web corpus, discarding documents with low educational value. To evaluate the impact of this curation, we pretrain from scratch two bilingual English-Arabic 7B LLMs on 800 billion tokens using the filtered and unfiltered data and compare their performance across a suite of benchmarks. Our results show a significant improvement when using the filtered educational dataset, validating the effectiveness of quality filtering as a component in a balanced data mixture for Arabic LLM development. This work addresses the scarcity of high-quality Arabic training data and offers a scalable methodology for curating educational quality content in low-resource languages.</abstract>
<identifier type="citekey">hawasly-etal-2025-arabicweb</identifier>
<location>
<url>https://aclanthology.org/2025.arabicnlp-main.36/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>436</start>
<end>447</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ArabicWeb-Edu: Educational Quality Data for Arabic LLM Training
%A Hawasly, Majd
%A Mohiuddin, Tasnim
%A Mubarak, Hamdy
%A Boughorbel, Sabri
%Y Darwish, Kareem
%Y Ali, Ahmed
%Y Abu Farha, Ibrahim
%Y Touileb, Samia
%Y Zitouni, Imed
%Y Abdelali, Ahmed
%Y Al-Ghamdi, Sharefah
%Y Alkhereyf, Sakhar
%Y Zaghouani, Wajdi
%Y Khalifa, Salam
%Y AlKhamissi, Badr
%Y Almatham, Rawan
%Y Hamed, Injy
%Y Alyafeai, Zaid
%Y Alowisheq, Areeb
%Y Inoue, Go
%Y Mrini, Khalil
%Y Alshammari, Waad
%S Proceedings of The Third Arabic Natural Language Processing Conference
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-352-4
%F hawasly-etal-2025-arabicweb
%X The quality of training data plays a critical role in the performance of large language models (LLMs). This is especially true for low-resource languages where high-quality content is relatively scarce. Inspired by the success of FineWeb-Edu for English, we construct a native Arabic educational-quality dataset using similar methodological principles. We begin by sampling 1 million Arabic web documents from Common Crawl and labeling them into six quality classes (0–5) with Qwen-2.5-72B-Instruct model using a classification prompt adapted from FineWeb-Edu. These labeled examples are used to train a robust classifier capable of distinguishing educational content from general web text. We train a classification head on top of a multilingual 300M encoder model, then use this classifier to filter a large Arabic web corpus, discarding documents with low educational value. To evaluate the impact of this curation, we pretrain from scratch two bilingual English-Arabic 7B LLMs on 800 billion tokens using the filtered and unfiltered data and compare their performance across a suite of benchmarks. Our results show a significant improvement when using the filtered educational dataset, validating the effectiveness of quality filtering as a component in a balanced data mixture for Arabic LLM development. This work addresses the scarcity of high-quality Arabic training data and offers a scalable methodology for curating educational quality content in low-resource languages.
%U https://aclanthology.org/2025.arabicnlp-main.36/
%P 436-447
Markdown (Informal)
[ArabicWeb-Edu: Educational Quality Data for Arabic LLM Training](https://aclanthology.org/2025.arabicnlp-main.36/) (Hawasly et al., ArabicNLP 2025)
ACL