@inproceedings{wang-etal-2025-sea3l,
title = "$\mathbf{A-SEA}^3\mathbf{L}$-{QA}: A Fully Automated Self-Evolving, Adversarial Workflow for {A}rabic Long-Context Question-Answer Generation",
author = "Wang, Kesen and
Toibazar, Daulet and
Moreno Mengibar, Pedro J",
editor = "Darwish, Kareem and
Ali, Ahmed and
Abu Farha, Ibrahim and
Touileb, Samia and
Zitouni, Imed and
Abdelali, Ahmed and
Al-Ghamdi, Sharefah and
Alkhereyf, Sakhar and
Zaghouani, Wajdi and
Khalifa, Salam and
AlKhamissi, Badr and
Almatham, Rawan and
Hamed, Injy and
Alyafeai, Zaid and
Alowisheq, Areeb and
Inoue, Go and
Mrini, Khalil and
Alshammari, Waad",
booktitle = "Proceedings of The Third Arabic Natural Language Processing Conference",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.arabicnlp-main.9/",
pages = "107--116",
ISBN = "979-8-89176-352-4",
abstract = "We present an end-to-end, self-evolving adversarial workflow for long-context Question-Answer (QA) Generation in Arabic. By orchestrating multiple specialized LVLMs: a question generator, an evaluator, and a swarm of answer generators, our system iteratively refines its own performance without any human intervention. Starting from raw, multi-page Arabic documents across diverse domains, the question generator produces fine-grained, context-aware queries to be tackled by the answer generator swarm, and the evaluator assesses and feeds back quality metrics. This closed-loop cycle enables continuous learning: low-confidence outputs trigger automated re-generation and model updates, progressively enhancing question difficulty and relevance. Moreover, we set the quality metrics as a tunable hyperparameter, enabling question generation at controllable and customizable difficulty levels. We release \textit{ \textbf{AraLongBench}}, a large-scale Arabic benchmark of single- and multi-page challenges spanning hundreds of pages, and demonstrate that our self-evolving workflow substantially outperform static pipelines, markedly boosting the long-context comprehension capabilities of leading Arabic Large Vision Language Models (LVLMs). Lastly, we also meticulously architect a fully automated agentic workflow for long-context Arabic document collection."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-sea3l">
<titleInfo>
<title>\mathbfA-SEAยณ\mathbfL-QA: A Fully Automated Self-Evolving, Adversarial Workflow for Arabic Long-Context Question-Answer Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kesen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daulet</namePart>
<namePart type="family">Toibazar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pedro</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Moreno Mengibar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Third Arabic Natural Language Processing Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Ali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Abu Farha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samia</namePart>
<namePart type="family">Touileb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharefah</namePart>
<namePart type="family">Al-Ghamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakhar</namePart>
<namePart type="family">Alkhereyf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Badr</namePart>
<namePart type="family">AlKhamissi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rawan</namePart>
<namePart type="family">Almatham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Injy</namePart>
<namePart type="family">Hamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zaid</namePart>
<namePart type="family">Alyafeai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Areeb</namePart>
<namePart type="family">Alowisheq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Go</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalil</namePart>
<namePart type="family">Mrini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Waad</namePart>
<namePart type="family">Alshammari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-352-4</identifier>
</relatedItem>
<abstract>We present an end-to-end, self-evolving adversarial workflow for long-context Question-Answer (QA) Generation in Arabic. By orchestrating multiple specialized LVLMs: a question generator, an evaluator, and a swarm of answer generators, our system iteratively refines its own performance without any human intervention. Starting from raw, multi-page Arabic documents across diverse domains, the question generator produces fine-grained, context-aware queries to be tackled by the answer generator swarm, and the evaluator assesses and feeds back quality metrics. This closed-loop cycle enables continuous learning: low-confidence outputs trigger automated re-generation and model updates, progressively enhancing question difficulty and relevance. Moreover, we set the quality metrics as a tunable hyperparameter, enabling question generation at controllable and customizable difficulty levels. We release AraLongBench, a large-scale Arabic benchmark of single- and multi-page challenges spanning hundreds of pages, and demonstrate that our self-evolving workflow substantially outperform static pipelines, markedly boosting the long-context comprehension capabilities of leading Arabic Large Vision Language Models (LVLMs). Lastly, we also meticulously architect a fully automated agentic workflow for long-context Arabic document collection.</abstract>
<identifier type="citekey">wang-etal-2025-sea3l</identifier>
<location>
<url>https://aclanthology.org/2025.arabicnlp-main.9/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>107</start>
<end>116</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T \mathbfA-SEAยณ\mathbfL-QA: A Fully Automated Self-Evolving, Adversarial Workflow for Arabic Long-Context Question-Answer Generation
%A Wang, Kesen
%A Toibazar, Daulet
%A Moreno Mengibar, Pedro J.
%Y Darwish, Kareem
%Y Ali, Ahmed
%Y Abu Farha, Ibrahim
%Y Touileb, Samia
%Y Zitouni, Imed
%Y Abdelali, Ahmed
%Y Al-Ghamdi, Sharefah
%Y Alkhereyf, Sakhar
%Y Zaghouani, Wajdi
%Y Khalifa, Salam
%Y AlKhamissi, Badr
%Y Almatham, Rawan
%Y Hamed, Injy
%Y Alyafeai, Zaid
%Y Alowisheq, Areeb
%Y Inoue, Go
%Y Mrini, Khalil
%Y Alshammari, Waad
%S Proceedings of The Third Arabic Natural Language Processing Conference
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-352-4
%F wang-etal-2025-sea3l
%X We present an end-to-end, self-evolving adversarial workflow for long-context Question-Answer (QA) Generation in Arabic. By orchestrating multiple specialized LVLMs: a question generator, an evaluator, and a swarm of answer generators, our system iteratively refines its own performance without any human intervention. Starting from raw, multi-page Arabic documents across diverse domains, the question generator produces fine-grained, context-aware queries to be tackled by the answer generator swarm, and the evaluator assesses and feeds back quality metrics. This closed-loop cycle enables continuous learning: low-confidence outputs trigger automated re-generation and model updates, progressively enhancing question difficulty and relevance. Moreover, we set the quality metrics as a tunable hyperparameter, enabling question generation at controllable and customizable difficulty levels. We release AraLongBench, a large-scale Arabic benchmark of single- and multi-page challenges spanning hundreds of pages, and demonstrate that our self-evolving workflow substantially outperform static pipelines, markedly boosting the long-context comprehension capabilities of leading Arabic Large Vision Language Models (LVLMs). Lastly, we also meticulously architect a fully automated agentic workflow for long-context Arabic document collection.
%U https://aclanthology.org/2025.arabicnlp-main.9/
%P 107-116
Markdown (Informal)
[A-SEA3๐-QA: A Fully Automated Self-Evolving, Adversarial Workflow for Arabic Long-Context Question-Answer Generation](https://aclanthology.org/2025.arabicnlp-main.9/) (Wang et al., ArabicNLP 2025)
ACL