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Abstract

We participated in NADI 2025 shared tasks
on Arabic Dialect Identification (ADI) and
Automatic Speech Recognition (ASR) across
eight Arabic dialects. For ADI, we employ
an enhanced ECAPA-TDNN with VoxLin-
gual(7 initialization, featuring self-attention
classification head, progressive unfreezing, ad-
vanced augmentation, and test-time augmenta-
tion. This approach ranked third with 61.6%
accuracy and 0.3068 macro cost. For ASR,
we implement a zero-shot cascaded system us-
ing Whisper Large-v3 and MARBERT with
extreme parameter efficiency (0.0004% train-
able), ranking seventh with 104.895 WER and
84.693 CER. Our results validate complemen-
tary paradigms: direct audio processing for
competitive dialect classification versus founda-
tion model robustness for cross-dialectal tran-
scription.

1 Introduction

Arabic is a pluricentric language with a rich con-
tinuum of regional and social varieties. This
diversity—spanning Egyptian, Levantine, Gulf,
Maghrebi, and other dialect groupings alongside
Modern Standard Arabic (MSA)—poses unique
challenges for speech technologies (Rahman et al.,
2024). Despite steady progress in speech process-
ing, reliable recognition and identification of Ara-
bic dialects from speech remains difficult due to
limited labeled resources, frequent code-switching
with MSA and other languages, and substantial
phonetic and lexical variation (Biadsy et al., 2009).
Earlier shared tasks on spoken dialect identifica-
tion helped define the problem space and catalyze
benchmarking (Ali et al., 2017, 2019) while recent
large-scale models that jointly learn ASR and lan-
guage identification—such as Whisper (Tang et al.,
2022; Radford et al., 2022) and MMS (Pratap et al.,
2023) have reset expectations for zero-/few-shot
performance. Still, their effectiveness on mul-
tidialectal Arabic, especially under domain shift

and fine-grained dialect labels, is far from settled
(Aboelela and Mansour, 2025).

The NADI 2025 shared task (Talafha et al.,
2025) addresses two complementary problems:
fine-grained dialect identification from single ut-
terances and robust ASR across dialects using
the Casablanca dataset. Building on prior Ara-
bic shared tasks and benchmarks (e.g., MGB-3
(Ali et al., 2017), MGB-2 (Ali et al., 2019)), we
adopt two complementary system designs: (1)
an adaptation-heavy ECAPA-TDNN (Desplanques
et al., 2020a) pipeline for dialect classification
and (2) a zero-shot Whisper Large baseline for
ASR. Our design choices emphasize reproducibil-
ity and computational practicality while explor-
ing methods that improve dialect discrimination
and transcription robustness. Our proposed system
model using Whisper and MMS dataset demon-
strates the power of large-scale multilingual models.
community-driven effort to advance multidialec-
tal Arabic speech recognition, while Speechbrain
(Ravanelli et al., 2021a), VoxLingualO7 (Valk and
Alumie, 2021) and ECAPA-TDNN (Desplanques
et al., 2020a) provide crucial multilingual and ar-
chitectural foundations.

Our contributions are threefold: (i) a practi-
cal and reproducible Arabic ASR that is based
on ECAPA TDNN that features the self-attention
mechanism; (ii) an empirical study of the use
of OpenAl Whisper Large v3 in Casablanca for
dialect-specific transcription; and (iii) a transpar-
ent analysis of errors and per-dialect behavior to
inform future multidialectal modeling.

2 Background

NADI subtasks uses Casablanca audio corpus cov-
ering eight target dialects (Algerian, Egyptian, Jor-
danian, Mauritanian, Moroccan, Palestinian, Emi-
rati, Yemeni)(Talatha et al., 2024). Each input
is a single-channel WAV file carrying one utter-
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ance; ADI expects a single dialect label output
and ASR expects a text transcription (MSA or di-
alectal Arabic depending on the speaker). Table
1 presents the NADI 2025 Arabic dialect dataset
comprising 25,600 audio samples across 8 Arabic
dialects. The dataset is well-balanced with each di-
alect containing exactly 3,200 samples, split nearly
evenly between training (12,900) and validation
(12,700) sets. Audio recordings are sampled at
16 kHz with durations ranging from 1.04 to 15.12
seconds (mean: 4.25s, median: 3.56s, std: 2.79s).
An additional 6,268 unlabeled test samples are pro-
vided for evaluation.

Figure 1 illustrates the audio characteristics anal-
ysis of the dataset. The left panel shows the distri-
bution of audio durations, revealing a right-skewed
distribution with most samples concentrated be-
tween 2-4 seconds, and the mean (4.3s) slightly
higher than the median (3.6s) due to longer out-
liers. Dialects exhibit similar interquartile ranges
and median values around 3-4 seconds. Both vi-
sualizations confirm the dataset’s consistency and
balance, making it suitable for robust Arabic dialect
identification model training and evaluation.

Dialect Train Val
Algeria 1,610 1,590
Egypt 1,603 1,597
Jordan 1,604 1,596
Mauritania 1,617 1,583
Morocco 1,608 1,592
Palestine 1,631 1,569
UAE 1,602 1,598
Yemen 1,625 1,575
Total 12,900 12,700

Dataset Overview

Dialects: 8 Total: 25,600 Test: 6,268
Sampling rate: 16 kHz

Audio Duration Statistics (seconds)

Mean: 4.25 Median: 3.56  Std: 2.79
Range: 1.04 - 15.12

Table 1: Dialectal distribution of NADI dataset

Task Challenges: Prior Arabic speech work
demonstrates recurring challenges: dialectal vari-
ation, scarcity of labeled data for many dialects,
and domain mismatch between broadcast and in-
the-wild audio (Ali et al., 2017; Althobaiti, 2020).
Recent multilingual foundation models (Whisper
(Radford et al., 2022), MMS (Pratap et al., 2023))
show strong zero-shot generalization, while archi-
tectures such as ECAPA-TDNN have been effec-
tive for representation extraction in speaker and
language tasks (Desplanques et al., 2020b). For im-

plementation and tooling we relied on the Speech-
Brain toolkit (Ravanelli et al., 2021b).

3 System Overview

We implemented two systems consistent with the
memorized process described earlier. Below we
summarize the main design choices and compo-
nents for each subtask.

3.1 Subtask 1: Dialect Identification
(ECAPA-TDNN pipeline)

Base architecture: ECAPA-TDNN pre-trained
and described in prior work (Desplanques et al.,
2020b). We adapt ECAPA as a robust embedding
extractor and add a classification pathway on top.

Classification head: Custom multi-layer MLP
with Swish activation, BatchNorm, dropout, and a
feature-wise self-attention module. The attention
reweights ECAPA feature vectors:

a= J(Wg . SWiSh(Wlh + bl) + bg) ,
. )
h=a@®h,

Training schedule:

e Phase 1: Freeze ECAPA backbone; train clas-
sifier head (2,500 steps).

* Phase 2: Unfreeze top ECAPA layers;
fine-tune with discriminative learning rates

(Mencoder = 1 X 1076777classiﬁer =5 X 1075)-

Loss & regularization: Combined loss £ =
0.3Lsocal + 0.7LcE (focal v = 2.5), label smooth-
ing, gradient clipping, and cosine-annealing LR
with warmup.

Augmentation & inference: Advanced aug-
mentation pipeline (noise, pitch/time perturbations,
reverb, volume, frequency/time masking) during
training. At inference we applied Test-Time Aug-
mentation (TTA) with 5-10 variants per utterance
and averaged softmax outputs; temperature scaling
was used for calibration.

3.2 Subtask 2: Automatic Speech Recognition
(MARBERT-Whisper pipeline)

We employ OpenAl Whisper
Large-v3 (via Hugging Face
pipeline("automatic-speech-recognition”))
as our baseline (Radford et al., 2022). Our ap-
proach implements a cascaded architecture
for Arabic Dialect Identification (ADI), com-
bining ASR with text classification through
parameter-efficient transfer learning.
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Audio Characteristics Analysis

Distribution of Audio Durations Audio Duration by Dialect
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Figure 1: Statistical distribution of audio duration in NADI dataset
Given an input audio signal x € R” of length T, Component Task 1: ADI Task 2: ASR
the system performs sequential transformations: Framework SpeechBrain HF Transformers
Whisper Large
1. ASR: Whisper Large-v3 for speech-to-text. Pretrained ECAPA-TDNN + MARBERT
Optimizer AdamW AdamW
s, Batch size 32 8 (train), 4 (val)
2. Encodlpg. MARBERT for contextual text Precision FP16 FPL6
embeddings. Augmentation Audio perturb. None
Learning rate Se-5 2e-5
3. Classification: Trainable linear layer for di- Trainable params ~ Enhanced classifier 6,152 (0.0004%)
alect prediction Max steps 25,000 3,000
p . Hardware 8 GB+ GPU 8 GB+ GPU

The speech-to-text step uses a frozen Whisper
model Pypisper:

2

t= (I)whisper (X§ owhisper) )

where ¢ is the transcript and Oyhpisper are frozen
pretrained parameters.

The transcript ¢ is processed by the frozen MAR-
BERT encoder ®\ARBERT:

3

h = ®yvarBerT(t; OMARBERT)

where h € R78 is the [CLS] token embedding.
A trainable classifier maps h to dialect probabil-
ities:
y = softmax(Wh + b), ()]

where W € R3¥76® and b € R® are the only
trainable parameters.

Audio is resampled to 16 kHz mono, truncated
at 30s, and zero-padded. Text is tokenized with
MARBERT (max length 512, dynamic padding).
Training uses batch-mode transcript processing;
inference is sequential with error handling.

This cascaded design achieves O(T logT') com-
plexity for ASR and O(L?) for encoding, with min-
imal overhead due to selective parameter updates.

Table 2: Training configurations for ADI and ASR tasks

4 Experimental Setup

All experiments used the organizer-provided splits
(Table 1). Implementations used SpeechBrain for
ECAPA-based pipelines and Hugging Face Trans-
formers for Whisper. Important implementation
details are summarized in Table 2.

Metrics and evaluation. For ADI we report
accuracy and the macro-averaged cost metric pro-
vided by the organizers. For ASR we report aver-
age WER and CER using the Codabench evaluation
script. Recent large-scale approaches and multilin-
gual systems motivate the use of zero-shot base-
lines for comparison (Pratap et al., 2023; Radford
et al., 2022).

5 Results

Table 3 summarizes official results submitted to
the organizers and used for official ranking. The
enhanced ECAPA-TDNN system achieved a com-
petition score of 0.616 (cost: 0.3068) in Task 1,
demonstrating competitive performance against the
best system which scored 0.7983 (cost: 0.1788),
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Task

ADI Acc. 0.616
ASR  Avg. WER 104.90

Metric 2 Rank

Macro Cost 0.3068 3
Avg. CER 84.69 7

Metric 1

Table 3: Performance metrics of our proposed system

validating the effectiveness of direct audio process-
ing for Arabic dialect identification.

For Task?2, the novel Whisper + MARBERT cas-
caded approach, while achieving more modest ac-
curacy, offers significant advantages in computa-
tional efficiency and interpretability, requiring only
minimal parameter training while leveraging the
power of large pre-trained models.

5.1 Ablation and analysis (validation splits)

We performed ablations during development on the
validation set. Removing the feature-wise attention
layer reduced validation discrimination between
similar dialect classes and led to decreased stabil-
ity in low-resource dialects (consistent with our
informal validation runs). Progressive unfreezing
and discriminative learning rates helped preserve
pretrained representations and improved final vali-
dation cost.

5.2 Error analysis

We analyzed common confusions on validation and
test samples (explicitly noting which split is used
where):

* Dialect confusions: Moroccan and Algerian
Arabic sound very similar in how they’re
spoken (rhythm/melody) and use similar
words/expressions. The same applies to Lev-
antine and Palestinian Arabic. When these lin-
guistic features "overlapped" (were very simi-
lar between the pairs), the Al system couldn’t
reliably distinguish between them.

* ASR errors: Whisper zero-shot produced fre-
quent errors in colloquial and code-switched
segments (e.g., mixing Arabic and French
terms), and often omitted short function words
or mis-transcribed named entities.

Example (validation): a Moroccan utterance con-
taining dialectal lexical items was misclassified as
Algerian due to shared lexical forms and similar
rhythm; manual inspection revealed low SNR and
overlapped background speech.

6 Discussion

Our NADI 2025 participation reveals several crit-
ical limitations and areas for improvement across
both tasks. For Task 1 (ADI), our enhanced
ECAPA-TDNN system achieved an accuracy of
0.616 with macro cost of 0.3068, ranking 3rd
among participants, compared to the best perform-
ing system at 0.7983, indicating substantial room
for optimization in fine-tuning strategies and fea-
ture extraction despite our sophisticated enhance-
ment techniques including self-attention mecha-
nisms, progressive unfreezing, and advanced data
augmentation.

The cascaded approach in Task 2 (ASR) exposed
fundamental limitations of speech-to-text pipelines,
achieving an average WER of 104.90 and CER of
84.69, ranking 7th in the competition. These high
error rates reflect domain mismatch between Whis-
per’s training data and the competition dataset, as
well as differences in transcription conventions and
dialectal variations that the pre-trained model was
not optimized for. Error propagation from the ASR
component directly impacts downstream classifi-
cation performance, as dialectal acoustic features
crucial for identification are lost during transcrip-
tion. This suggests that preserving prosodic and
phonetic information through direct audio process-
ing remains superior for dialect-specific tasks.

The limited training data for certain dialect
classes exacerbated class imbalance issues in Task
1, despite employing focal loss and data augmen-
tation techniques, while the extremely high error
rates in Task 2 suggest fundamental challenges in
adapting general-purpose ASR models to dialectal
Arabic. Future improvements should focus on di-
alectal data augmentation strategies, cross-lingual
transfer learning from related Arabic varieties, hy-
brid architectures that combine acoustic and lin-
guistic features for ADI, and specialized ASR mod-
els trained specifically on dialectal Arabic corpora.

7 Conclusion

In summary, our experiments presents the comple-
mentary strengths of two paradigms: fine-tuned
ECAPA-TDNN, augmented with diverse perturba-
tions and targeted architectural refinements, deliv-
ers strong dialect classification, whereas Whisper
Large serves as a capable zero-shot transcription
baseline across dialects without any task-specific
adaptation. This contrast suggests a promising
avenue in combining the adaptability of tailored
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acoustic models with the broad coverage of large,
general-purpose ASR systems.

Code Reproducibility

To ensure reproducibility of our results, all source
code, model implementations, and experimen-
tal configurations are made publicly available at
https://github.com/rafiulbiswas/NADI. The
repository includes complete implementations for
both tasks with detailed documentation and setup
instructions.
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