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Abstract

We present GEMMB3N-DR, a multimodal sys-
tem for NADI 2025 Subtask 3 (Spoken Arabic
Diacritic Restoration). GEMM3N-DR fine-
tunes the Gemma 3N LLM via Low-Rank
Adaptation (LoRA) using only the official
NADI training data, taking both audio and un-
diacritized text as input and generating fully
diacritized output. We apply data augmentation
with the nlpaug and the CATT diacritization
model. At inference time, we use a structured
Arabic instruction and 7-shot examples. Our
system achieved a Word Error Rate (WER) of
64 % and Character Error Rate (CER) of 15%
on the hidden test set, ranking in 2nd place in
the competition. We provide a detailed analysis
of model performance, including common er-
ror types such as hallucination and incomplete
outputs.

1 Introduction

Arabic diacritic restoration is the task of predict-
ing short vowels and other diacritic marks that are
omitted in standard Arabic orthography. The prob-
lem becomes more challenging in spoken domains,
especially for dialectal Arabic, where morphology
and phonetics diverge from Modern Standard Ara-
bic (MSA). This task has strong implications for
improving readability, ASR post-processing, TTS,
and educational tools.

The NADI 2025 Subtask 3 (Talaftha et al.,
2025)focuses on diacritic restoration of spoken
Arabic dialects using both audio and text. Our ap-
proach, GEMMB3N-DR, leverages the multimodal
Gemma 3N LLM, adapting it to this task with
Low-Rank Adaptation (LoRA) fine-tuning, multi-
example prompting, and audio-text fusion.

Our main contributions:

* First application of Gemma 3N to spoken Ara-
bic diacritization.

* LoRA-128 fine-tuning with nlpaug-based au-
dio augmentation.

* Use of CATT (Alasmary et al., 2024) predic-
tions as auxiliary inputs for robust training for
unlabeled samples, like augment part.

* Structured 7-shot Arabic prompts for infer-
ence, reducing WER from 79.05 to 69.05 on
devset.

2 Background

The NADI 2025 Subtask 3: Diacritic Restora-
tion of Spoken Arabic Dialects (Talatha et al.,
2025) challenges participants to restore full Arabic
diacritics given an undiacritized transcript and its
corresponding speech signal. The task is motivated
by the practical need to improve the usability of
automatic speech recognition (ASR) outputs, assist
language learners, and enhance downstream appli-
cations such as text-to-speech (TTS) synthesis.

Task Setup. Participants are given a set of audio-
transcript pairs, where transcripts are stripped of
diacritics. The goal is to produce fully diacritized
text. An example is shown in Table 1.

Input (Undiacritized) Target (Diacritized)

A Ol L Jas OB s

Table 1: Example of task input/output for NADI Subtask
3.

Text-Based Diacritization. Restoring diacritics
for written Modern Standard Arabic (MSA) is a
well-established problem. Early approaches relied
on hand-crafted morphological rules and analyzers,
as seen in systems like Madamira (Pasha et al.,
2014) and Camelira (Obeid et al., 2022). The
field has since evolved through statistical meth-
ods to modern deep learning architectures. These
include neural sequence-to-sequence models, bidi-
rectional LSTMs followed by Conditional Random
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Fields (CRF) (Al-Thubaity et al., 2020), and more
recently, specialized character-level transformers
like CATT (Alasmary et al., 2024). A signifi-
cant recent contribution is Sadeed (Aldallal et al.,
2025), a decoder-only language model specifically
pre-trained and fine-tuned on diverse Arabic cor-
pora. By focusing on high-quality diacritized data,
Sadeed demonstrates that specialized models can
perform better than general-purpose architectures
like CATT, representing a strong benchmark for
text-based diacritization.

Audio-Assisted Diacritization. In contrast, the
use of audio information to assist in diacritization
is a developing field. Text-based models experi-
ence a significant performance drop when applied
to speech transcripts due to the shift of the domain
to the informal spoken language and the prevalence
of dialectal variants (Shatnawi et al., 2023). This
inadequacy is well documented, with studies show-
ing that speech models trained on gold diacritized
data outperform those using text-restored tran-
scripts, highlighting the need for speech-specific
solutions (Aldarmaki and Ghannam, 2023).

Pioneering work by (Vergyri and Kirchhoff,
2004) first explored using acoustic information
for this task decades ago. Only very recently has
this idea been revisited with modern deep learn-
ing. Research has branched into complementary ap-
proaches: one line of work, exemplified by (Shat-
nawi et al., 2023), uses a cascaded framework
where a fine-tuned Whisper ASR model gener-
ates diacritized transcripts to enhance a text-based
restoration model. Another approach moves Be-
yond Orthography to directly recover short vow-
els and dialectal sounds. (Kheir et al., 2024) pro-
posed a novel framework utilizing discrete codes
to represent dialectal variability, showing strong
performance with limited data and introducing a
new dialectal benchmark dataset.

While these methods show promise, they repre-
sent disconnected solutions. The former is a cas-
caded, two-stage pipeline, and the latter focuses
on a specific acoustic modeling approach. Our
work unifies these directions by proposing a single,
end-to-end multimodal LLLM. Unlike cascaded
systems, our model jointly processes raw audio
and text signals to directly disambiguate homo-
graphs and dialectal variants, effectively bridging
the gap between high-quality text diacritization and
the challenges of the speech domain.

2.1 Dataset

We used the dataset from the NADI 2025 Shared
Task (Subtask 3: Automatic Speech Diacritiza-
tion) (Talaftha et al., 2025), which provides par-
allel audio-transcript pairs. We participated in the
closed track is a competition requiring participants
to use only the provided resources for a fair com-
parison. The dataset encompasses a wide range
of Arabic varieties and recording conditions, in-
cluding Dialectal (DIA), Modern Standard (MSA),
Classical (CA), and Code-Switched (CS) Arabic.

The training data is composed of two distinct
parts:

* Diacritized Data: Transcripts with fully vo-
cahzed gold standard dlacrltlcs (e g. .:\_l_l

Wu 9 uu\ uwd\ s ui)s

Gyt e S 4 et $Rie).

* Non-Diacritized (Augment) Data: Raw tran-
scripts without diacritics, contalmng dialectal

and code sw1tched content (e. g >L...o uxi

U d‘ Senior directdr.)

2.2 Dataset Statistics

The training set is composed of over 85K sentences
drawn from various constituent datasets, each rep-
resenting a specific Arabic variety. The compo-
sition of these datasets is detailed in Table 6. To
ensure consistency and quality, samples containing
fewer than three words were removed, and punctu-
ation was eliminated from all texts. The resulting
dataset consists of 57K samples for training and
1.5K for development (dev), as summarized in Ta-
ble 2. The training data is further divided into a
fully diacritized portion (train) and a partially dia-
critized portion used for augmentation (augment).

Split #Utterances Hours Avg. Dur. (s)
Train 51517 88.89 6.21
Augment 6087 14.11 8.34
Dev 1580 1.48 3.36
Test 365 0.79 7.83

Table 2: Overall statistics of the NADI 2025 Subtask 3
dataset splits after filtering.
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3 System Overview

Our diacritization system is built upon the Gemma
3N instruction-tuned language model, which we
adapt for the task of Arabic text diacritization using
a combination of data augmentation and parameter-
efficient fine-tuning. The complete pipeline, from
data preparation to final inference, is illustrated in
Figure 1 and detailed in the subsequent subsections.

3.1 Augmentation

To enhance the robustness and generalization of
our model, we employed a dual-strategy data aug-
mentation approach to effectively increase the size
of our training corpus.

* Audio Augmentation: Applied a diverse set
of audio transformations (pitch shift, noise
addition, cropping, speed alteration) using
nlpaug to enhance acoustic variability, effec-
tively doubling the training data.

» Text Diacritization: Utilized the CATT
model to generate pseudo-labels for non-
diacritized text from augmented audio.

3.2 Fine-Tuning

We adapted the pre-trained Gemma 3N model to
the diacritization task using LoRA (Hu et al.,
2022).

¢ Base Model: gemma-3n-E4B-it
¢ PEFT Method: LoRA

* Target Modules: Applied to the key projec-
tion matrices within the transformer architec-
ture, specifically targeting both the standard
attention mechanisms and audio-specific lay-
ers. The targeted modules include:

— Attention Projections: g_proj,
k_proj, v_proj, o_proj.
— Feed-Forward Projections:

gate_proj, up_proj, down_proj.
— Audio-Specific Projections: post,

linear_start, linear_end,

embedding_projection.

* Hyperparameters: Rank (r): 128, Alpha
(a): 16, Dropout: 0.0

* Training Setup: We used the SFTTrainer
(Supervised Fine-Tuning Trainer).

* Checkpoint: The best-performing model was
selected from checkpoint 16500 for final eval-
uation.

3.3 Inference

At inference time, the model diacritizes raw, non-
diacritized Arabic text and audio using a structured
prompt-based approach.

* Prompting: A fixed 7-shot examples
prompt is used at inference time, consisting
of instructions and example pairs.

* Decoding Parameters: Temperature =
0.001, Top-p = 1.0 , Max New Tokens = 256.

* Non-Arabic Word Preservation: Non-
Arabic words remain unmodified, maintaining
the original sentence structure and ensuring
the integrity of code-switched content.

4 Experimental Setup

Our investigation is divided into three primary
phases: (1) establishing a baseline performance
without any fine-tuning, (2) evaluating parameter-
efficient fine-tuning using LoRA, and (3) exploring
the effect of increasing the few-shot examples dur-
ing inference time. All models were evaluated and
reported in word error rate (WER% and CER%),
where a lower score indicates better performance.

4.1 Baseline Without Fine-tuning

The initial phase establishes a performance baseline
for the pre-trained Gemm3n model under two input
conditions: using both text and audio data, and
using text data alone.

4.2 Fine-tuning With LoRA Parameters

The second phase explores parameter-efficient fine-
tuning using LoRA. We experimented with two
distinct configurations: a standard LoRA setup
with a rank of 8, trained for 5,000 steps, and a
more powerful setup combining a high LoRA rank
(128) with the 7 few-shot examples identified in the
next phase. This aims to quantify the gains from
combining advanced fine-tuning techniques with
effective prompting.

4.3 Best Fine-tuning Model With Few-Shot
Examples At Inference Time

In the Final phase, we investigated the impact of
increasing the few-shot examples during inference
time on the model (denoted as Gemm3n_F) with a
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varying number of few-shot examples. The model
was evaluated on the development (dev) set, specif-
ically with 3 and 7 examples, to determine if an
increased number of few-shot examples improves
generalization. The best-performing model check-
point (at step 16500) was selected for final evalua-
tion to ensure optimal results.

4.3.1 Training Fine-tuning Prompt

We used the following prompt format for training:
System Prompt:

>KJ‘ S7s Jye A vw LsyJ e w‘
auJ\.Lﬁ‘)lKj_a Lo{dj'.nj&.; f%‘ Jj‘j
JEll Jo e 2553l
User Prompt:

SAs uu.: 4.\4_9\.’;1
sl lis das O
RN ECAN NI IR@-i]
+ Audio Input

+Text Input without diacritic
Assistant Response:

Label Text without diacritic

Cjﬁ Yj ukﬁf

4.3.2 Inference Time

We have used similar prompt used in training
finetuning with n examples as a few shots.we
created a method to determine if the word is non
arabic and perserving the position

System Prompt'

ujj;x H'd J*m wx CJ,\ 444).&.11
)

User Prompt:

Gy Al e U K oSl Casl il
A k) e )

1y Je

Lyl Jl ez Ll

Layadl u’;‘ Az a5 .. nexamples

_=J! : Text Input without diacritic
+Audio Input

5 Results and Discussion

The results from our comprehensive experiments
are presented below, revealing clear trends re-
garding the impact of input modalities, few-shot
prompting, and parameter-efficient fine-tuning with
LoRA.

5.1 Baseline Performance Without
Fine-tuning

The initial baseline performance of the pre-trained
Gemma model is summarized in Table 3. Contrary
to the expectation that multimodal input would en-
hance performance, the model performed signifi-
cantly better when processing text-only inputs. The
Word Error Rate (WER) for text-only inputs was
71%, a substantial 13 percentage point improve-
ment over the 84% WER achieved with combined
text and audio inputs. This result suggests that the
pre-trained model may not be effectively leverag-
ing the audio modality; the audio features might be
introducing noise or the model’s fusion mechanism
may be suboptimal for this specific task in a zero-
shot setting. It’s shown from the table 3 result that
the audio representations don’t align cleanly with
the text task. The model treats irrelevant variations
(background noise, accents, prosody) as meaning-
ful, reducing performance. Text-only models are
more robust because they avoid this noisy modality.

Model WER% CER% Input Modality
Gemm3n 84 34 Text + Audio
Gemm3n 71 23 Text Only

Table 3: WER and CER on the test set performance
with different input modalities without any fine-tuning.

5.2 Impact of LoORA Rank on Performance

Our experiments with LoRA yielded the most sig-
nificant performance gains, as detailed in Table 4.
Applying a standard LoRA configuration (rank==8)
for 5,000 steps provided a marginal improvement,
reducing the test WER to 82% from the multimodal
baseline of 84%. The most effective strategy over-
all was the combination of a high-capacity LoRA
fine-tuning (rank=128) and the 7 few-shot exam-
ples are identified in Section 5.3. This configura-
tion achieved a test WER of 64%. This represents
a dramatic 20 percentage point improvement over
the original multimodal baseline.
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Model and LoRA rank WER% CER%
Gemm3n_F rank=8 82 35
Gemm3n_F rank=128 + 7-shots 64 15

Table 4: Test set WER and CER after fine-tuning with
different LoRA configurations.

5.3 Impact of Few-Shot Examples During
Inference

We investigated the impact of providing a varying
number of few-shot examples at inference time to
the best finetuned model (Gemm3n_F). The results,
presented in Table 5, show a clear positive correla-
tion between the number of examples and model
performance. Using 7 examples during inference
yielded a development set WER of 69.05%, out-
performing the configuration with only 3 examples,
which achieved a WER of 73.21%. This demon-
strates that the model can effectively decrease the
hallucination and improve its generalization on the
development set.

Model Few-shots WER% CER%
Gemm3n_F 3 73.21 23.22
Gemm3n_F 7 69.05 20.84

Table 5: Deve set WER and CER for the best finetuned
model (Gemm3n_F, checkpoint 16500) with a vary-
ing number of few-shot examples provided at inference
time.

5.4 Analysis of Common Error Types

A qualitative analysis of the predictions from the
best-performing model (Gemm3n_F) reveals two
primary and distinct error patterns, as illustrated in
Table 7 and Table 8.

Table 7 demonstrates the first error type:
character-level hallucination and modification.
Here, the model does not merely add diacritics but
incorrectly alters the base characters themselves

(e.g., generating instead of the reference rKJ)
This suggests the model s phoneme-to-grapheme
conversion is error-prone, leading to changes in the
core lexical items, which is a critical failure mode
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for a transcription task.

Conversely, Table 8 highlights the second error
type: inconsistent diacritization due to data sparsity.
For words or syntactic structures likely underrepre-
sented in the training data, the model defaults toa

safe,,undlacrltlzed output (e.g., EX ‘ instead of
g_,\.ﬁ ‘) This indicates a failure in generalization
and a lack of confidence on unfamiliar patterns.

Our experiments, particularly the improvement
from 73.2% to 69.05% WER on the development
set by incorporating more diverse few-shot ex-
amples, point towards effective strategies to mit-
igate the observed errors. The performance gain
achieved by using examples from different dialects
and domains (e.g., formal MSA, Egyptian Arabic,
Moroccan Arabic) is significant. This approach
directly addresses the error of inconsistent diacriti-
zation by providing the model with a richer, more
representative context of the task during inference.
It acts as a dynamic, in-context learning signal that
guides the model towards the desired output style
and complexity.

6 Conclusion

In conclusion, our experiments demonstrate that
while the pre-trained model struggles with raw mul-
timodal inputs, its performance can be significantly
enhanced through a dual approach: (1) parameter-
efficient fine-tuning with a high-rank LoRA to
adapt the model to the task, and (2) leveraging
few-shot examples during inference to provide con-
textual guidance.

For reproducibility, the implementation and code
are available! at Unicorn at NADI 2025 Subtask
3.
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A Appendix
1.1 Figures

NADI Data

v

Augmentation
(nlpaug + CATT)

v

LoRA fine-tuning
(rank=128)

L 2

Inference
(7-shot prompt +
text skip non arabic)

L

Diacritized Output

& J

Figure 1: End-to-end pipeline for the diacritization sys-
tem.

1.2 Tables
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Dataset Type Diacritized # Sentences

MDASPC Multi-dialectal True 60,677
(Almeman et al., 2013)

TunSwitch Dialectal, CS True 5,212
(Abdallah et al., 2023)

CIAITTS Classical (CA) True 9,500
(Kulkarni et al., 2023)

ArVoice MSA True 2,507
(Toyin et al., 2025)

Subtotal True 77,896
ArzEn Dialectal, CS False 3,344
(Hamed et al., 2020)

Mixat Dialectal, CS False 3,721
(Al Ali and Aldarmaki, 2024)

Subtotal False 7,065
Total 84,961

Table 6: Breakdown of the constituent datasets within
the NADI 2025 original training set.

Reference Prediction
oS ool sl 58 0K ol sl 5
Ganll o odf g 38 Glal 2ol e 3a

Table 7: Comparison of Model gemm3n_F 7 shots hal-
lucination output compared to Reference by modifying
the input text

Reference Prediction
s 82 Rl g latdls

-

<
-

<

o x| b

— 0\

Table 8: Comparison of Model gemm3n_F 7 shots Out-
put against Reference (Undiacritized Samples)
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