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Abstract

We present ADAPT-MTU HATI’s submission
to PalmX 2025, targeting Arabic cultural ques-
tion answering through large language model
(LLM) adaptation. We apply full fine-tuning
on NileChat-3B for general cultural compre-
hension, and parameter-efficient LoRA-based
tuning on ALLaM-7B for Islamic knowledge
reasoning. Our models achieved first place in
the General Culture subtask and third place in
the Islamic Culture subtask. This paper outlines
our methodology and results, demonstrating
the effectiveness of aligning LLM fine-tuning
strategies with cultural knowledge domains.

1 Introduction

Language is not merely a tool for communica-
tion—it embodies the cultural, historical, and re-
ligious identities of its speakers. In Arabic, this
interplay is particularly intricate: expressions are
shaped by centuries of regional diversity, theologi-
cal tradition, and social customs (Habash, 2010; Zi-
touni, 2011; Farghaly and Shaalan, 2009; Darwish
et al., 2021). As large language models (LLMs)
become increasingly central to NLP applications
(Antoun et al., 2020; Touvron et al., 2023; Huang
et al., 2024b), a pressing question arises—can these
models truly reason over culturally embedded con-
tent, especially in linguistically rich and context-
dependent settings such as Arabic?

The PaLMX 2025 shared task (Alwajih et al.,
2025) ! directly addresses this challenge through
two subtasks. Subtask 1 focuses on Arabic cul-
tural comprehension, evaluating LLMs on multiple-
choice questions (MCQs) covering general cultural
knowledge like geography, customs, historical fig-
ures, dialectal expressions, and more.

Subtask 2 targets Islamic knowledge reasoning,
assessing understanding of Quranic principles, Ha-
dith, and theology. Both subtasks require models
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to go beyond surface-level fluency and demonstrate
genuine cultural and contextual alignment.

Our team submitted systems to both subtasks,
building tailored solutions to address their unique
requirements. For Subtask 1, we fine-tuned
NileChat-3B (Mekki et al., 2025), a culturally
grounded decoder-only model adapted for North
African Arabic under the Language—Heritage—Val-
ues (LHV) framework. For Subtask 2, we employed
ALLaM-7B-Instruct (Bari et al., 2024), an Arabic
instruction-tuned model, and applied parameter-
efficient fine-tuning using LoRA (Brown et al.,
2020) with 8-bit quantization (Dettmers et al.,
2023) to reduce memory usage without sacrificing
accuracy.

On the official leaderboard, our systems ranked
first in Subtask 1 with prompt-aligned full fine-
tuning for cultural QA, and third in Subtask 2,
where efficient adaptation highlighted the strength
of lightweight tuning in resource-constrained set-
tings.

This paper presents our unified approach to both
subtasks. Section 2 summarizes related work, Sec-
tion 3 details our methodology and training setups,
Section 4 discusses results and analysis, and Sec-
tion 5 concludes with reflections on cultural model-
ing in Arabic LLMs.

2 Related work

Research on embedding Islamic cultural knowledge
into NLP systems is still emerging, though select ini-
tiatives have begun to address this need (Saadaoui
et al., 2024). The Qur’an QA Shared Task (Malhas
et al., 2022, 2023)%3 introduced the Qur’anic Read-
ing Comprehension Dataset (QRCD), composed of
approximately 1,093 question-passage pairs derived
from the Holy Qur’an in Modern Standard Arabic.
Participating systems, including AraBERT-based

https:/ /sites.google.com /view/quran-qa-2022
Shttps:/ /sites.google.com/view /quran-qa-2023
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models, achieved modest Exact Match (EM) scores
below 35%, highlighting the challenge of reasoning
over sacred religious text (Mostafa and Mohamed,
2022).

Following this, Hajj-FQA (Aleid and Azmi,
2025) was released in 2025 as the first Arabic
dataset targeting pilgrimage-related fatwa questions,
offering realistic legal and religious Q&A reflective
of common Hajj scenarios (Alyemny et al., 2023).
The Hadith-QA corpus expands Islamic QA fur-
ther by focusing on Prophetic narrations, while
IslamicPCQA provides a rich Persian multi-hop
benchmark (12,282 QA pairs) over Islamic ency-
clopedic content, illustrating cross-lingual interest
in knowledge reasoning even beyond Arabic con-
texts (Ghafouri et al., 2023). Recent work has also
introduced large-scale QA resources for deep reli-
gious understanding, (Qamar et al., 2024) presented
a 73,000-question dataset spanning Quranic Tafsir
and Ahadith, enriched with contextual explanations
and interpretations to support nuanced QA system
development.

Additionally, the CAMeL cultural bias bench-
mark evaluates Arabic LLMs’ performance on cul-
turally sensitive prompts, confirming consistent is-
sues with Western-centric bias and cultural mis-
alignment in language models (Naous et al., 2024).
In recent years, several Arabic and Arabic-English
LLMs have been introduced — including FANAR
(Team et al., 2025), JAIS (Sengupta et al., 2023),
AceGPT (Huang et al., 2024a), and ALLaM (Bari
et al., 2024).In parallel, Arabic cultural and di-
alectal (Hossain et al., 2025; de Francony et al.,
2019) evaluation benchmarks such as CAMELE-
VAL (Qian et al., 2024) and ARADICE (Mousi et al.,
2024) have foregrounded the importance of cul-
tural alignment, dialect robustness, and domain
sensitivity in LLM evaluation—factors directly rel-
evant to legal-religious reasoning While these mod-
els demonstrate impressive general reasoning and
instruction-following ability, independent evalua-
tions reveal that they still inherit cultural biases and
struggle with nuanced religious and historical con-
tent. For example, (Mohammed et al., 2025) show
that even GPT-4 can produce factually incorrect
or inconsistent responses to Islamic content due to
misinterpreting context, lacking grounding in au-
thoritative sources, and being sensitive to minor
wording changes. Similarly, (Alnefaie et al., 2023)
report that GPT-4 struggles with Quranic questions,
largely because of challenges in classical Arabic,
semantic ambiguity, and contextual interpretation.

Despite the advances, structured MCQ-style
benchmarks focused specifically on Islamic cul-
tural literacy in Arabic remain rare. PalmX2025
addresses this gap directly, framing cultural under-
standing explicitly as a multiple-choice reasoning
format — making it one of the first shared tasks to
assess not just fluency but deep cultural and theo-
logical accuracy.

3 Dataset Composition

3.1 Subtask 1: Arabic Cultural
Comprehension

This dataset contains culturally grounded MCQs
in Modern Standard Arabic on customs, history,
geography, arts, cuisine, and dialects, each with four
options (A-D) and one correct answer. It includes
2,000 training, 500 development, and 2,000 blind
test questions.

3.2 Subtask 2: Islamic Knowledge Reasoning

This dataset contains MCQs on Islamic practices,
theology, Quranic knowledge, jurisprudence, and
historical context, following the same format as
Subtask 1. For training, we combined 600 Subtask
2 MCQs with 2,000 from Subtask 1 to leverage
shared linguistic patterns and reasoning structures.
It includes 300 development and 1,000 blind test
questions.

4 Methodology

4.1 Subtask 1: Full Fine-Tuning of
NileChat-3B

For Subtask 1, which focuses on Arabic cultural
comprehension, we employ NileChat-3B (Mekki
et al., 2025)*, a 3-billion-parameter decoder-only
language model built upon Qwen-2.5. NileChat-3B
has been instruction-tuned on Egyptian and Moroc-
can Arabic under the Language—Heritage—Values
(LHV) framework, enabling it to capture cultur-
ally nuanced responses across Arabic dialects. The
model natively supports both Arabic script and Ara-
bizi, making it well-suited for culturally grounded
language tasks.

4.1.1 Input Formatting and Tokenization

To ensure strict compatibility with the shared task’s
evaluation pipeline, each training example is for-
matted using the official multiple-choice question
(MCQ) template provided by the organizers. The

*https://huggingface.co/UBC-NLP /NileChat-3B
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input consists of a question followed by four answer
options prefixed with “A.” through “D.”, and con-
cludes with the Arabic keyword used to prompt the
model’s autoregressive completion:

{question text}

A. {option A}
B. {option B}
C. {option C}
D. {option D}

HESJeN

This formatting aligns precisely with the eval-
uation script, which expects the model to autore-
gressively generate a single-letter label (e.g., “A”)
immediately following : ! &I

Tokenization is performed using the model’s as-
sociated AutoTokenizer, with inputs truncated or
padded to a maximum length of 512 tokens. As the
tokenizer does not define a dedicated padding to-
ken, we explicitly assign the end-of-sequence token
(eos__token) as the pad__token to ensure consis-
tency in attention masking and loss computation
across batches.

4.1.2 Training Configuration

Fine-tuning is conducted on a single NVIDIA A100
(40GB) GPU using Hugging Face’s Trainer with
BF16 precision for 3 epochs, batch size 1, and gra-
dient accumulation of 16 (effective batch size 16).
Inputs are truncated or padded to 512 tokens, with
full-sequence supervision achieved by copying in-
put_ ids into labels and masking padding tokens
with -100. This implements standard causal lan-
guage modeling (CLM), training the model to pre-
dict each token from preceding context, including
question and answer. We use AdamW (LR 2e-5,
no weight decay, without warm-up steps), evaluat-
ing and checkpointing at each epoch, and selecting
the best model by validation loss. Preprocessing
via datasets.map() removes irrelevant columns to
reduce memory use and prevent data leakage.

4.2 Subtask 2: LoRA-Based Fine-Tuning of
ALLaM-7B

For Subtask 2, which centers on Islamic cul-
tural and legal knowledge reasoning, we adopt
ALLaM-7B-Instruct-preview(Bari et al., 2024)°,
a 7-billion-parameter Arabic instruction-tuned lan-
guage model developed to handle Modern Stan-

https://huggingface.co/ ALLaM-Al/
ALLaM-7B-Instruct-preview

dard Arabic (MSA), Arabic dialects, and cultur-
ally grounded textual inputs. Due to its scale and
resource requirements, we fine-tune ALLaM-7B
using Low-Rank Adaptation (LoRA)(Hu et al.,
2021), a parameter-efficient approach that signifi-
cantly reduces memory consumption and training
time while preserving task-specific adaptation ca-
pabilities.

4.2.1 Input Formatting and Tokenization

To encourage more structured reasoning during
training while maintaining compatibility with the
evaluation protocol, we introduced an augmented
version of this prompt for fine-tuning:

{question text}

A. {option A}
B. {option B}
C. {option C}
D. {option D}
16 a2 §las ;:u Les
:(D 51 C 5T B 51 A) tonomadl) Bl L O3 L (ol
ol

While the evaluation prompt does not contain
these (e.g.,:55k2 §5hs K& Les) reasoning cues,
prior work in prompt engineering has shown that
such instructions during fine-tuning can enhance
a model’s internal reasoning processes without
impairing its ability to follow simpler formats at
inference(Wei et al., 2022; Kojima et al., 2023).
We applied full-sequence causal language model-
ing (CLM) supervision by duplicating input_ids
into labels and used a custom collator for dynamic
padding.

4.2.2 LoRA Configuration

To efficiently fine-tune ALLaM-7B, we employ
Low-Rank Adaptation (LoRA) using Hugging
Face’s peft library. Only low-rank matrices in-
jected into the attention projection layers are up-
dated, while the base model remains frozen. Specif-
ically, we target the q_proj and v__ proj modules
with a LoRA rank of 16, scaling factor (alpha) of 32,
and dropout of 0.05.The task is set to CLM, updat-
ing under 1% of parameters for efficient adaptation
on limited hardware.

4.2.3 Quantization and Memory Optimization

To further reduce GPU memory usage, ALLaM-
7B is loaded in 8-bit precision via bitsandbytes
and trained in FP16 mixed precision for efficiency.
GPU cache clearing and checkpoint pruning control
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memory usage, with all experiments run on a single
NVIDIA RTX 4090 (24GB VRAM).

4.2.4 Training Configuration

Fine-tuning is performed using Hugging Face’s
Trainer with gradient checkpointing for memory
efficiency. Training runs for 5 epochs with a per-
device batch size of 8 and gradient accumulation
over 4 steps (effective batch size 32), using a maxi-
mum sequence length of 256 tokens. Optimization
employs AdamW (default 3), a learning rate of 3e—
5 with cosine decay, 100 warmup steps, and weight
decay 0.01. A custom data collator applies dynamic
padding and masks padded tokens with -100 to en-
sure loss is computed only on valid token positions.

4.2.5 Adapter Merging and Deployment

Following fine-tuning, LoRA adapters are merged
into the base model resulting in a self-contained
checkpoint. The merged model is uploaded to Hug-
ging Face for submission.

4.3 Evaluation Protocol

All final test results were computed by the organiz-
ers using the official evaluation script ® on a held-out
blind test set. We submitted our fine-tuned mod-
els via Hugging Face, and accuracy was reported
based on the organizers’ execution of the shared
evaluation pipeline.

5 Results

We report results for both subtasks on development
and blind test sets (Table 1). Development scores
were computed locally with the official evaluation
script, while blind test scores were obtained through
centralized evaluation by the organizers on a held-
out set.

Table 1: Model Accuracy (%) on Development and Test
Sets for Both Subtasks

Task Dev Set (%) Test Set(Blind)
(%o)

Subtask 1 78.60 72.15

Subtask 2 75.60 82.52

In Subtask 1, which targets general Arabic cul-
tural awareness, our model achieved 78.60% accu-
racy on the development set, with a slight drop to
72.15% on the blind test set, likely due to domain
shift or question-style variation. For instance, in

Shttps://palmx.dInlp.ai/

the development set, it misclassified a question on
the main environmental factor affecting the distribu-
tion of the Kuhl’s free-tailed bat in southwest Saudi
Arabia (correct:rUa'::\i U o & 3] 4 \L)) despite pre-
dicting heat adaptation, while correctly answering
a question on the precise academic trajectory of
Dr. Nidal Shamoun in Syria.

Conversely, the Subtask 2 model, which targets
domain-specific reasoning in Islamic knowledge,
demonstrated strong generalization capacity. De-
spite a slightly lower dev set performance (75.60%),
it achieved a significant improvement on the test set,
reaching 82.52%. For example, in one development
set question on why a man’s testimony equals that
of two women, the correct answer was “(B + C)
Ol=22” (“both B and C are correct”); our system
selected option B (“ Jo JI e ,fT SU.\ ol —
“forgetfulness is greater in women than in men”),
which is partially correct but incomplete. In con-
trast, it correctly answered a question on what is
opened for a believer who engages in fasbih (@yj -

“glorification of God”), selecting “a4| | ,j” (“the
gates of Paradise”).

These results underscore the methodological
rigor of our approach in capturing culturally
grounded linguistic patterns under minimal super-
vision. The coherence between development and
test set performance attests to the generalizability
and stability of our fine-tuning strategy across eval-
uation regimes.

6 Conclusion and Future Work

We introduced culturally aligned LLM adaptation
strategies that achieved top rankings at PalmX 2025.
The combination of full fine-tuning and lightweight
LoRA techniques enabled scalable and effective
performance across subtasks. In future work, we
aim to incorporate retrieval-augmented generation
and test robustness on dialectal and low-resource
Arabic varieties. Despite these promising results,
our approach has limitations. Full fine-tuning is
computationally expensive and may not generalise
well across domains. Additionally, both datasets are
limited in scope, which may affect transferability to
unseen topics. Lastly, performance remains sensi-
tive to prompt formatting and initialisation choices,
which can impact reproducibility.
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A Additional Results

In this appendix, we provide detailed dev set
results for both subtasks, comparing baseline
(zero-shot) and fine-tuned variants of Fanar-9B-
Instruct, NileChat-3B, and ALLaM-7B models.
These results illustrate the consistent improvements
achieved through fine-tuning, with larger models
generally benefiting more from adaptation.

Table 2: Dev set accuracy of baseline and fine-tuned
models for subtask 1.

Model Fine-tune  Dev Acc.(%)
Fanar-1-9B-

Instruct (zero-shot) 69.80
Fanar-1-9B-

Instruct (fine-tuned) 75.40
NileChat-3B  (zero-shot) 70.00
NileChat-3B  (fine-tuned) 78.60

For Subtask 1 (cultural QA), Fanar-1-9B-Instruct
improves from 69.80% in zero-shot to 75.40% after
fine-tuning, while NileChat-3B achieves the highest
dev accuracy of 78.60% after fine-tuning.

Table 3: Dev set accuracy of baseline and fine-tuned
models for subtask 2.

Model Fine-tuning Dev Acc.(%)
NileChat-3B  (fine-tuned) 71.67
ALLaM-7B (zero-shot) 68
ALLaM-7B (PEFT) 75.60

For Subtask 2 (Islamic knowledge reasoning),
NileChat-3B with fine-tuning reaches 71.67%,
while ALLaM-7B shows stronger performance, im-
proving from 68.00% zero-shot to 75.60% after
PEFT-based adaptation.
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