@inproceedings{zaghouani-etal-2025-mahed,
title = "{MAHED} Shared Task: Multimodal Detection of Hope and Hate Emotions in {A}rabic Content",
author = "Zaghouani, Wajdi and
Biswas, Md. Rafiul and
Bessghaier, Mabrouka and
Ibrahim, Shimaa and
Mikros, George and
Hasnat, Abul and
Alam, Firoj",
editor = "Darwish, Kareem and
Ali, Ahmed and
Abu Farha, Ibrahim and
Touileb, Samia and
Zitouni, Imed and
Abdelali, Ahmed and
Al-Ghamdi, Sharefah and
Alkhereyf, Sakhar and
Zaghouani, Wajdi and
Khalifa, Salam and
AlKhamissi, Badr and
Almatham, Rawan and
Hamed, Injy and
Alyafeai, Zaid and
Alowisheq, Areeb and
Inoue, Go and
Mrini, Khalil and
Alshammari, Waad",
booktitle = "Proceedings of The Third Arabic Natural Language Processing Conference: Shared Tasks",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.arabicnlp-sharedtasks.75/",
pages = "560--574",
ISBN = "979-8-89176-356-2",
abstract = "This paper presents the MAHED 2025 Shared Task on Multimodal Detection of Hope and Hate Emotions in Arabic Content, comprising three subtasks: (1) text-based classification of Arabic content into hate and hope, (2) multi-task learning for joint prediction of emotions, offensive content, and hate speech, and (3) multimodal detection of hateful content in Arabic memes. We provide three high-quality datasets totaling over 22,000 instances sourced from social media platforms, annotated by native Arabic speakers with Cohen{'}s Kappa exceeding 0.85. Our evaluation attracted 46 leaderboard submissions from participants, with systems leveraging Arabic-specific pre-trained language models (AraBERT, MARBERT), large language models (GPT-4, Gemini), and multimodal fusion architectures combining CLIP vision encoders with Arabic text models. The best-performing systems achieved macro F1-scores of 0.723 (Task 1), 0.578 (Task 2), and 0.796 (Task 3), with top teams employing ensemble methods, class-weighted training, and OCR-aware multimodal fusion. Analysis reveals persistent challenges in dialectal robustness, minority class detection for hope speech, and highlights key directions for future Arabic content moderation research."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zaghouani-etal-2025-mahed">
<titleInfo>
<title>MAHED Shared Task: Multimodal Detection of Hope and Hate Emotions in Arabic Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md.</namePart>
<namePart type="given">Rafiul</namePart>
<namePart type="family">Biswas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mabrouka</namePart>
<namePart type="family">Bessghaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shimaa</namePart>
<namePart type="family">Ibrahim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Mikros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abul</namePart>
<namePart type="family">Hasnat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Firoj</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Third Arabic Natural Language Processing Conference: Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Ali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Abu Farha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samia</namePart>
<namePart type="family">Touileb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharefah</namePart>
<namePart type="family">Al-Ghamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakhar</namePart>
<namePart type="family">Alkhereyf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Badr</namePart>
<namePart type="family">AlKhamissi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rawan</namePart>
<namePart type="family">Almatham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Injy</namePart>
<namePart type="family">Hamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zaid</namePart>
<namePart type="family">Alyafeai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Areeb</namePart>
<namePart type="family">Alowisheq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Go</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalil</namePart>
<namePart type="family">Mrini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Waad</namePart>
<namePart type="family">Alshammari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-356-2</identifier>
</relatedItem>
<abstract>This paper presents the MAHED 2025 Shared Task on Multimodal Detection of Hope and Hate Emotions in Arabic Content, comprising three subtasks: (1) text-based classification of Arabic content into hate and hope, (2) multi-task learning for joint prediction of emotions, offensive content, and hate speech, and (3) multimodal detection of hateful content in Arabic memes. We provide three high-quality datasets totaling over 22,000 instances sourced from social media platforms, annotated by native Arabic speakers with Cohen’s Kappa exceeding 0.85. Our evaluation attracted 46 leaderboard submissions from participants, with systems leveraging Arabic-specific pre-trained language models (AraBERT, MARBERT), large language models (GPT-4, Gemini), and multimodal fusion architectures combining CLIP vision encoders with Arabic text models. The best-performing systems achieved macro F1-scores of 0.723 (Task 1), 0.578 (Task 2), and 0.796 (Task 3), with top teams employing ensemble methods, class-weighted training, and OCR-aware multimodal fusion. Analysis reveals persistent challenges in dialectal robustness, minority class detection for hope speech, and highlights key directions for future Arabic content moderation research.</abstract>
<identifier type="citekey">zaghouani-etal-2025-mahed</identifier>
<location>
<url>https://aclanthology.org/2025.arabicnlp-sharedtasks.75/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>560</start>
<end>574</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MAHED Shared Task: Multimodal Detection of Hope and Hate Emotions in Arabic Content
%A Zaghouani, Wajdi
%A Biswas, Md. Rafiul
%A Bessghaier, Mabrouka
%A Ibrahim, Shimaa
%A Mikros, George
%A Hasnat, Abul
%A Alam, Firoj
%Y Darwish, Kareem
%Y Ali, Ahmed
%Y Abu Farha, Ibrahim
%Y Touileb, Samia
%Y Zitouni, Imed
%Y Abdelali, Ahmed
%Y Al-Ghamdi, Sharefah
%Y Alkhereyf, Sakhar
%Y Zaghouani, Wajdi
%Y Khalifa, Salam
%Y AlKhamissi, Badr
%Y Almatham, Rawan
%Y Hamed, Injy
%Y Alyafeai, Zaid
%Y Alowisheq, Areeb
%Y Inoue, Go
%Y Mrini, Khalil
%Y Alshammari, Waad
%S Proceedings of The Third Arabic Natural Language Processing Conference: Shared Tasks
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-356-2
%F zaghouani-etal-2025-mahed
%X This paper presents the MAHED 2025 Shared Task on Multimodal Detection of Hope and Hate Emotions in Arabic Content, comprising three subtasks: (1) text-based classification of Arabic content into hate and hope, (2) multi-task learning for joint prediction of emotions, offensive content, and hate speech, and (3) multimodal detection of hateful content in Arabic memes. We provide three high-quality datasets totaling over 22,000 instances sourced from social media platforms, annotated by native Arabic speakers with Cohen’s Kappa exceeding 0.85. Our evaluation attracted 46 leaderboard submissions from participants, with systems leveraging Arabic-specific pre-trained language models (AraBERT, MARBERT), large language models (GPT-4, Gemini), and multimodal fusion architectures combining CLIP vision encoders with Arabic text models. The best-performing systems achieved macro F1-scores of 0.723 (Task 1), 0.578 (Task 2), and 0.796 (Task 3), with top teams employing ensemble methods, class-weighted training, and OCR-aware multimodal fusion. Analysis reveals persistent challenges in dialectal robustness, minority class detection for hope speech, and highlights key directions for future Arabic content moderation research.
%U https://aclanthology.org/2025.arabicnlp-sharedtasks.75/
%P 560-574
Markdown (Informal)
[MAHED Shared Task: Multimodal Detection of Hope and Hate Emotions in Arabic Content](https://aclanthology.org/2025.arabicnlp-sharedtasks.75/) (Zaghouani et al., ArabicNLP 2025)
ACL