@inproceedings{giacchetta-etal-2025-argumentative,
title = "Argumentative Analysis of Legal Rulings: A Structured Framework Using Bobbitt{'}s Typology",
author = "Giacchetta, Carlotta and
Bernardi, Raffaella and
Montini, Barbara and
Staiano, Jacopo and
Tomasi, Serena",
editor = "Chistova, Elena and
Cimiano, Philipp and
Haddadan, Shohreh and
Lapesa, Gabriella and
Ruiz-Dolz, Ramon",
booktitle = "Proceedings of the 12th Argument mining Workshop",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.argmining-1.10/",
doi = "10.18653/v1/2025.argmining-1.10",
pages = "107--115",
ISBN = "979-8-89176-258-9",
abstract = "Legal reasoning remains one of the most complex and nuanced domains for AI, with current tools often lacking transparency and domain adaptability. While recent advances in large language models (LLMs) offer new opportunities for legal analysis, their ability to structure and interpret judicial argumentation remains unexplored. address this gap by proposing a structured framework for AI-assisted legal reasoning, centered on argumentative analysis. this work, we use GPT-4o for discourse-level and semantic analysis to identify argumentative units and classify them according to Philippe Bobbitt{'}s six constitutional modalities of legal reasoning.apply this framework to legal rulings from the Italian Court of Cassation.experimental findings indicate that LLM-based tools can effectively augment and streamline legal practice, by e.g. preprocessing the legal texts under scrutiny; still, the limited performance of the state-of-the-art generative model tested indicates significant room for progress in human-AI collaboration in the legal domain."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giacchetta-etal-2025-argumentative">
<titleInfo>
<title>Argumentative Analysis of Legal Rulings: A Structured Framework Using Bobbitt’s Typology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carlotta</namePart>
<namePart type="family">Giacchetta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raffaella</namePart>
<namePart type="family">Bernardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Montini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacopo</namePart>
<namePart type="family">Staiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Serena</namePart>
<namePart type="family">Tomasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Argument mining Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Chistova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Cimiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shohreh</namePart>
<namePart type="family">Haddadan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramon</namePart>
<namePart type="family">Ruiz-Dolz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-258-9</identifier>
</relatedItem>
<abstract>Legal reasoning remains one of the most complex and nuanced domains for AI, with current tools often lacking transparency and domain adaptability. While recent advances in large language models (LLMs) offer new opportunities for legal analysis, their ability to structure and interpret judicial argumentation remains unexplored. address this gap by proposing a structured framework for AI-assisted legal reasoning, centered on argumentative analysis. this work, we use GPT-4o for discourse-level and semantic analysis to identify argumentative units and classify them according to Philippe Bobbitt’s six constitutional modalities of legal reasoning.apply this framework to legal rulings from the Italian Court of Cassation.experimental findings indicate that LLM-based tools can effectively augment and streamline legal practice, by e.g. preprocessing the legal texts under scrutiny; still, the limited performance of the state-of-the-art generative model tested indicates significant room for progress in human-AI collaboration in the legal domain.</abstract>
<identifier type="citekey">giacchetta-etal-2025-argumentative</identifier>
<identifier type="doi">10.18653/v1/2025.argmining-1.10</identifier>
<location>
<url>https://aclanthology.org/2025.argmining-1.10/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>107</start>
<end>115</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Argumentative Analysis of Legal Rulings: A Structured Framework Using Bobbitt’s Typology
%A Giacchetta, Carlotta
%A Bernardi, Raffaella
%A Montini, Barbara
%A Staiano, Jacopo
%A Tomasi, Serena
%Y Chistova, Elena
%Y Cimiano, Philipp
%Y Haddadan, Shohreh
%Y Lapesa, Gabriella
%Y Ruiz-Dolz, Ramon
%S Proceedings of the 12th Argument mining Workshop
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-258-9
%F giacchetta-etal-2025-argumentative
%X Legal reasoning remains one of the most complex and nuanced domains for AI, with current tools often lacking transparency and domain adaptability. While recent advances in large language models (LLMs) offer new opportunities for legal analysis, their ability to structure and interpret judicial argumentation remains unexplored. address this gap by proposing a structured framework for AI-assisted legal reasoning, centered on argumentative analysis. this work, we use GPT-4o for discourse-level and semantic analysis to identify argumentative units and classify them according to Philippe Bobbitt’s six constitutional modalities of legal reasoning.apply this framework to legal rulings from the Italian Court of Cassation.experimental findings indicate that LLM-based tools can effectively augment and streamline legal practice, by e.g. preprocessing the legal texts under scrutiny; still, the limited performance of the state-of-the-art generative model tested indicates significant room for progress in human-AI collaboration in the legal domain.
%R 10.18653/v1/2025.argmining-1.10
%U https://aclanthology.org/2025.argmining-1.10/
%U https://doi.org/10.18653/v1/2025.argmining-1.10
%P 107-115
Markdown (Informal)
[Argumentative Analysis of Legal Rulings: A Structured Framework Using Bobbitt’s Typology](https://aclanthology.org/2025.argmining-1.10/) (Giacchetta et al., ArgMining 2025)
ACL