@inproceedings{gruber-etal-2025-debargvis,
title = "{D}eb{A}rg{V}is: An Interactive Visualisation Tool for Exploring Argumentative Dynamics in Debate",
author = "Gruber, Martin and
Kikteva, Zlata and
Rutter, Ignaz and
Hautli-Janisz, Annette",
editor = "Chistova, Elena and
Cimiano, Philipp and
Haddadan, Shohreh and
Lapesa, Gabriella and
Ruiz-Dolz, Ramon",
booktitle = "Proceedings of the 12th Argument mining Workshop",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.argmining-1.13/",
doi = "10.18653/v1/2025.argmining-1.13",
pages = "140--146",
ISBN = "979-8-89176-258-9",
abstract = "Television debates play a key role in shaping public opinion, however, the rapid exchange of viewpoints in these settings often makes it difficult to perceive the underlying nature of the discussion. While there exist several debate visualisation techniques, to the best of our knowledge, none of them emphasise the argumentative dynamics in particular. With DebArgVis, we present a new interactive debate visualisation tool that leverages data annotated with argumentation structures to demonstrate how speaker interactions unfold over time, enabling users to deepen their comprehension of the debate."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gruber-etal-2025-debargvis">
<titleInfo>
<title>DebArgVis: An Interactive Visualisation Tool for Exploring Argumentative Dynamics in Debate</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Gruber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zlata</namePart>
<namePart type="family">Kikteva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ignaz</namePart>
<namePart type="family">Rutter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annette</namePart>
<namePart type="family">Hautli-Janisz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Argument mining Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Chistova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Cimiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shohreh</namePart>
<namePart type="family">Haddadan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramon</namePart>
<namePart type="family">Ruiz-Dolz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-258-9</identifier>
</relatedItem>
<abstract>Television debates play a key role in shaping public opinion, however, the rapid exchange of viewpoints in these settings often makes it difficult to perceive the underlying nature of the discussion. While there exist several debate visualisation techniques, to the best of our knowledge, none of them emphasise the argumentative dynamics in particular. With DebArgVis, we present a new interactive debate visualisation tool that leverages data annotated with argumentation structures to demonstrate how speaker interactions unfold over time, enabling users to deepen their comprehension of the debate.</abstract>
<identifier type="citekey">gruber-etal-2025-debargvis</identifier>
<identifier type="doi">10.18653/v1/2025.argmining-1.13</identifier>
<location>
<url>https://aclanthology.org/2025.argmining-1.13/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>140</start>
<end>146</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DebArgVis: An Interactive Visualisation Tool for Exploring Argumentative Dynamics in Debate
%A Gruber, Martin
%A Kikteva, Zlata
%A Rutter, Ignaz
%A Hautli-Janisz, Annette
%Y Chistova, Elena
%Y Cimiano, Philipp
%Y Haddadan, Shohreh
%Y Lapesa, Gabriella
%Y Ruiz-Dolz, Ramon
%S Proceedings of the 12th Argument mining Workshop
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-258-9
%F gruber-etal-2025-debargvis
%X Television debates play a key role in shaping public opinion, however, the rapid exchange of viewpoints in these settings often makes it difficult to perceive the underlying nature of the discussion. While there exist several debate visualisation techniques, to the best of our knowledge, none of them emphasise the argumentative dynamics in particular. With DebArgVis, we present a new interactive debate visualisation tool that leverages data annotated with argumentation structures to demonstrate how speaker interactions unfold over time, enabling users to deepen their comprehension of the debate.
%R 10.18653/v1/2025.argmining-1.13
%U https://aclanthology.org/2025.argmining-1.13/
%U https://doi.org/10.18653/v1/2025.argmining-1.13
%P 140-146
Markdown (Informal)
[DebArgVis: An Interactive Visualisation Tool for Exploring Argumentative Dynamics in Debate](https://aclanthology.org/2025.argmining-1.13/) (Gruber et al., ArgMining 2025)
ACL