@inproceedings{evgrafova-etal-2025-stance,
title = "Stance-aware Definition Generation for Argumentative Texts",
author = "Evgrafova, Natalia and
De Langhe, Loic and
Hoste, V{\'e}ronique and
Lefever, Els",
editor = "Chistova, Elena and
Cimiano, Philipp and
Haddadan, Shohreh and
Lapesa, Gabriella and
Ruiz-Dolz, Ramon",
booktitle = "Proceedings of the 12th Argument mining Workshop",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.argmining-1.16/",
doi = "10.18653/v1/2025.argmining-1.16",
pages = "168--180",
ISBN = "979-8-89176-258-9",
abstract = "Definition generation models trained on dictionary data are generally expected to produce neutral and unbiased output while capturing the contextual nuances. However, previous studies have shown that generated definitions can inherit biases from both the underlying models and the input context. This paper examines the extent to which stance-related bias in argumentative data influences the generated definitions. In particular, we train a model on a slang-based dictionary to explore the feasibility of generating persuasive definitions that concisely reflect opposing parties' understandings of contested terms. Through this study, we provide new insights into bias propagation in definition generation and its implications for definition generation applications and argument mining."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="evgrafova-etal-2025-stance">
<titleInfo>
<title>Stance-aware Definition Generation for Argumentative Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Evgrafova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loic</namePart>
<namePart type="family">De Langhe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Véronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Els</namePart>
<namePart type="family">Lefever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Argument mining Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Chistova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Cimiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shohreh</namePart>
<namePart type="family">Haddadan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramon</namePart>
<namePart type="family">Ruiz-Dolz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-258-9</identifier>
</relatedItem>
<abstract>Definition generation models trained on dictionary data are generally expected to produce neutral and unbiased output while capturing the contextual nuances. However, previous studies have shown that generated definitions can inherit biases from both the underlying models and the input context. This paper examines the extent to which stance-related bias in argumentative data influences the generated definitions. In particular, we train a model on a slang-based dictionary to explore the feasibility of generating persuasive definitions that concisely reflect opposing parties’ understandings of contested terms. Through this study, we provide new insights into bias propagation in definition generation and its implications for definition generation applications and argument mining.</abstract>
<identifier type="citekey">evgrafova-etal-2025-stance</identifier>
<identifier type="doi">10.18653/v1/2025.argmining-1.16</identifier>
<location>
<url>https://aclanthology.org/2025.argmining-1.16/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>168</start>
<end>180</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stance-aware Definition Generation for Argumentative Texts
%A Evgrafova, Natalia
%A De Langhe, Loic
%A Hoste, Véronique
%A Lefever, Els
%Y Chistova, Elena
%Y Cimiano, Philipp
%Y Haddadan, Shohreh
%Y Lapesa, Gabriella
%Y Ruiz-Dolz, Ramon
%S Proceedings of the 12th Argument mining Workshop
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-258-9
%F evgrafova-etal-2025-stance
%X Definition generation models trained on dictionary data are generally expected to produce neutral and unbiased output while capturing the contextual nuances. However, previous studies have shown that generated definitions can inherit biases from both the underlying models and the input context. This paper examines the extent to which stance-related bias in argumentative data influences the generated definitions. In particular, we train a model on a slang-based dictionary to explore the feasibility of generating persuasive definitions that concisely reflect opposing parties’ understandings of contested terms. Through this study, we provide new insights into bias propagation in definition generation and its implications for definition generation applications and argument mining.
%R 10.18653/v1/2025.argmining-1.16
%U https://aclanthology.org/2025.argmining-1.16/
%U https://doi.org/10.18653/v1/2025.argmining-1.16
%P 168-180
Markdown (Informal)
[Stance-aware Definition Generation for Argumentative Texts](https://aclanthology.org/2025.argmining-1.16/) (Evgrafova et al., ArgMining 2025)
ACL