@inproceedings{kalyan-etal-2025-multimodal,
title = "Multimodal Argumentative Fallacy Classification in Political Debates",
author = "Kalyan, Warale Avinash and
Pagaria, Siddharth and
V, Chaitra and
G, Spoorthi H",
editor = "Chistova, Elena and
Cimiano, Philipp and
Haddadan, Shohreh and
Lapesa, Gabriella and
Ruiz-Dolz, Ramon",
booktitle = "Proceedings of the 12th Argument mining Workshop",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.argmining-1.37/",
doi = "10.18653/v1/2025.argmining-1.37",
pages = "374--380",
ISBN = "979-8-89176-258-9",
abstract = "Argumentative fallacy classification plays a crucial role in improving discourse quality by identifying flawed reasoning that may mislead or manipulate audiences. While traditional approaches have primarily relied on textual analysis, they often overlook paralinguistic cues such as intonation and prosody that are present in speech. In this study, we explore how multimodal analysis, in which we combine textual and audio features, can enhance fallacy classification in political debates. We develop and evaluate text-only, audio-only, and multimodal models using the MM-USED-fallacy dataset to assess the contribution of each modality. Our findings indicate that the multimodal model, which integrates linguistic and acoustic signals, outperforms unimodal systems, underscoring the potential of multimodal approaches in capturing complex argumentative structures."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kalyan-etal-2025-multimodal">
<titleInfo>
<title>Multimodal Argumentative Fallacy Classification in Political Debates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Warale</namePart>
<namePart type="given">Avinash</namePart>
<namePart type="family">Kalyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Pagaria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaitra</namePart>
<namePart type="family">V</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spoorthi</namePart>
<namePart type="given">H</namePart>
<namePart type="family">G</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Argument mining Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Chistova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Cimiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shohreh</namePart>
<namePart type="family">Haddadan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramon</namePart>
<namePart type="family">Ruiz-Dolz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-258-9</identifier>
</relatedItem>
<abstract>Argumentative fallacy classification plays a crucial role in improving discourse quality by identifying flawed reasoning that may mislead or manipulate audiences. While traditional approaches have primarily relied on textual analysis, they often overlook paralinguistic cues such as intonation and prosody that are present in speech. In this study, we explore how multimodal analysis, in which we combine textual and audio features, can enhance fallacy classification in political debates. We develop and evaluate text-only, audio-only, and multimodal models using the MM-USED-fallacy dataset to assess the contribution of each modality. Our findings indicate that the multimodal model, which integrates linguistic and acoustic signals, outperforms unimodal systems, underscoring the potential of multimodal approaches in capturing complex argumentative structures.</abstract>
<identifier type="citekey">kalyan-etal-2025-multimodal</identifier>
<identifier type="doi">10.18653/v1/2025.argmining-1.37</identifier>
<location>
<url>https://aclanthology.org/2025.argmining-1.37/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>374</start>
<end>380</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Argumentative Fallacy Classification in Political Debates
%A Kalyan, Warale Avinash
%A Pagaria, Siddharth
%A V, Chaitra
%A G, Spoorthi H.
%Y Chistova, Elena
%Y Cimiano, Philipp
%Y Haddadan, Shohreh
%Y Lapesa, Gabriella
%Y Ruiz-Dolz, Ramon
%S Proceedings of the 12th Argument mining Workshop
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-258-9
%F kalyan-etal-2025-multimodal
%X Argumentative fallacy classification plays a crucial role in improving discourse quality by identifying flawed reasoning that may mislead or manipulate audiences. While traditional approaches have primarily relied on textual analysis, they often overlook paralinguistic cues such as intonation and prosody that are present in speech. In this study, we explore how multimodal analysis, in which we combine textual and audio features, can enhance fallacy classification in political debates. We develop and evaluate text-only, audio-only, and multimodal models using the MM-USED-fallacy dataset to assess the contribution of each modality. Our findings indicate that the multimodal model, which integrates linguistic and acoustic signals, outperforms unimodal systems, underscoring the potential of multimodal approaches in capturing complex argumentative structures.
%R 10.18653/v1/2025.argmining-1.37
%U https://aclanthology.org/2025.argmining-1.37/
%U https://doi.org/10.18653/v1/2025.argmining-1.37
%P 374-380
Markdown (Informal)
[Multimodal Argumentative Fallacy Classification in Political Debates](https://aclanthology.org/2025.argmining-1.37/) (Kalyan et al., ArgMining 2025)
ACL