@inproceedings{pittiglio-2025-leveraging,
title = "Leveraging Context for Multimodal Fallacy Classification in Political Debates",
author = "Pittiglio, Alessio",
editor = "Chistova, Elena and
Cimiano, Philipp and
Haddadan, Shohreh and
Lapesa, Gabriella and
Ruiz-Dolz, Ramon",
booktitle = "Proceedings of the 12th Argument mining Workshop",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.argmining-1.39/",
doi = "10.18653/v1/2025.argmining-1.39",
pages = "388--397",
ISBN = "979-8-89176-258-9",
abstract = "In this paper, we present our submission to the MM-ArgFallacy2025 shared task, which aims to advance research in multimodal argument mining, focusing on logical fallacies in political debates. Our approach uses pretrained Transformer-based models and proposes several ways to leverage context. In the fallacy classification subtask, our models achieved macro F1-scores of 0.4444 (text), 0.3559 (audio), and 0.4403 (multimodal). Our multimodal model showed performance comparable to the text-only model, suggesting potential for improvements."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pittiglio-2025-leveraging">
<titleInfo>
<title>Leveraging Context for Multimodal Fallacy Classification in Political Debates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alessio</namePart>
<namePart type="family">Pittiglio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Argument mining Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Chistova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Cimiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shohreh</namePart>
<namePart type="family">Haddadan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramon</namePart>
<namePart type="family">Ruiz-Dolz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-258-9</identifier>
</relatedItem>
<abstract>In this paper, we present our submission to the MM-ArgFallacy2025 shared task, which aims to advance research in multimodal argument mining, focusing on logical fallacies in political debates. Our approach uses pretrained Transformer-based models and proposes several ways to leverage context. In the fallacy classification subtask, our models achieved macro F1-scores of 0.4444 (text), 0.3559 (audio), and 0.4403 (multimodal). Our multimodal model showed performance comparable to the text-only model, suggesting potential for improvements.</abstract>
<identifier type="citekey">pittiglio-2025-leveraging</identifier>
<identifier type="doi">10.18653/v1/2025.argmining-1.39</identifier>
<location>
<url>https://aclanthology.org/2025.argmining-1.39/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>388</start>
<end>397</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Context for Multimodal Fallacy Classification in Political Debates
%A Pittiglio, Alessio
%Y Chistova, Elena
%Y Cimiano, Philipp
%Y Haddadan, Shohreh
%Y Lapesa, Gabriella
%Y Ruiz-Dolz, Ramon
%S Proceedings of the 12th Argument mining Workshop
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-258-9
%F pittiglio-2025-leveraging
%X In this paper, we present our submission to the MM-ArgFallacy2025 shared task, which aims to advance research in multimodal argument mining, focusing on logical fallacies in political debates. Our approach uses pretrained Transformer-based models and proposes several ways to leverage context. In the fallacy classification subtask, our models achieved macro F1-scores of 0.4444 (text), 0.3559 (audio), and 0.4403 (multimodal). Our multimodal model showed performance comparable to the text-only model, suggesting potential for improvements.
%R 10.18653/v1/2025.argmining-1.39
%U https://aclanthology.org/2025.argmining-1.39/
%U https://doi.org/10.18653/v1/2025.argmining-1.39
%P 388-397
Markdown (Informal)
[Leveraging Context for Multimodal Fallacy Classification in Political Debates](https://aclanthology.org/2025.argmining-1.39/) (Pittiglio, ArgMining 2025)
ACL