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Abstract

We explore the conditions under which the
highest-performing entry to the BabyLLM task
in 2023, Every Layer Counts BERT or ELC-
BERT, is best-performing given more con-
strained resources than the original run, with a
particular focus on batch size. ELC-BERT’s rel-
ative success, as an instance of model engineer-
ing compared to more cognitively-motivated ar-
chitectures, could be taken as evidence that the
"lowest-hanging" fruit is to be found from non-
linguistic machine learning approaches. We
find that if we take away the advantage of train-
ing time from ELC-BERT, the advantage of
the architecture mostly disappears, but some
hyperparameter combinations nevertheless dif-
ferentiate themselves in performance.

1 Introduction

The BabyLM Challenge (Warstadt et al., 2023a;
Choshen et al., 2024; Charpentier et al., 2025)
has become a shared task-style sandbox where re-
searchers are invited to develop language models
trained under developmentally plausible data bud-
gets, simulating the linguistic input available to
human children up to the age of 13. By setting
small-scale amounts of data, either 10M or 100M
words depending on the track, and providing stan-
dardized evaluation benchmarks, it aims to promote
data-efficient modeling architectures. It also aims
to support cognitively plausible approaches to auto-
matic language acquisition. Finally, it is intended to
broaden participation in language model research
beyond large-scale industrial settings.

In this paper, we report on an expanded explo-
ration of results for the ELC-BERT model (Charp-
entier and Samuel, 2023), the winning submission
to the BabyLM Challenge 2023. This exploration
focuses on the strict-small track, using the eval-
uation conditions and tools from the 2023 edition.
Specifically, we investigate whether ELC-BERT’s

performance is primarily driven by computational
resources, with a particular focus on batch size.

One of the findings of the 2023 edition of
the shared task was that architectural innovations
tended to be more successful than approaches in-
spired by curriculum learning or cognitive princi-
ples and the ELC-BERT architecture was at the
forefront of that. ELC-BERT modifies the standard
BERT architecture by replacing uniform residual
connections with a learned weighting mechanism
so that each layer selectively combines outputs
from all preceding layers. This selective weighting
means that the model can prioritize information
from the most relevant layers, as opposed to treat-
ing all layers equally.

The approach achieved very strong performance,
which makes ELC-BERT a great candidate as a
base system going forward. However, it is also
reported to have been trained for very long time and
on a very large compute cluster. Our motivation
in this work is primarily to investigate whether
comparable performance can be achieved using
substantially less computational resources using
the ELC-BERT "tweak" to the BERT approach.

Since compute capacity is often a major limita-
tion, both in terms of access and cost, efficient train-
ing methods are of particular importance. In this
sense, it is worth noting that this year the BabyLM
shared task has introduced stricter constraints on
model training, limiting the number of epochs and
training examples (Charpentier et al., 2025). This
is a positive step toward standardizing experimental
conditions and enabling more meaningful compar-
isons across replication studies.

Like all shared task submissions, ELC-BERT
was likely developed under time constraints. We
recognize that this is not an ideal setting for a com-
prehensive hyperparameter search. Our work ad-
dresses this gap by providing a more thorough in-
vestigation.

Our main contributions can be summarized as
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follows. In scenarios with more constrained com-
putational resources:

* BLiMP scores are ultimately lower than the
original ELC-BERT result.

* MSGS scores are higher than the original
ELC-BERT result with a range of above-
baseline outcomes on GLUE.

* A batch size of 32 with gradient accumulation
of 12 (effective batch size of 384) achieves
performance comparable to, or exceeding, that
of larger batch sizes among the settings we
tested.

All told, our experiments show that while ELC-
BERT’s original success depended originally in
large part on the computational resources given
to it, there are, nevertheless, some resource-
constrained settings on which it does appear to
be able to make performance gains.

2 Related work

Across both the 2023 and 2024 editions of the
BabyLLM Challenge (Warstadt et al., 2023b; Hu
et al., 2024), the main insights remain consistent:
language models can achieve good performance
under strict data budgets, though substantial archi-
tectural innovations tend to yield greater gains than
curriculum- or cognition-inspired methods. (In this
case, "architectural innovations" are shorthand for
alterations to Transformer-based machine learning
approaches that are not directly inspired by lin-
guistic or neurocognitive insights.) Efficiency in
terms of data is the core objective of the task, but
results also suggest a strong correlation between
computational resources and performance, reveal-
ing a trade-off between data-efficiency goals and
the benefits of larger-scale training.

Following these findings and with a focus on
human-scale language modeling, Wilcox et al.
(2025) examined this trade-off in high-performing
systems from the shared task including ELC-BERT
and LTG-BERT (Samuel et al., 2023), a closely
related architecture from the same group that also
performed very well. Importantly, they capped
training at 20 epochs to control for the very long
training of the original. The original ELC-BERT
was trained for 31250 training steps and over 2000
epochs, whereas most other participants reported
training for roughly 20 epochs. Wilcox et al. report
performance comparable to the original, with only

a 2-3 point drop in accuracy for both systems. How-
ever, specific results for the strict-small track
for ELC-BERT are not provided (cf. Table A.2 in
Wilcox et al.).

Furthermore, the ELC-BERT batch size for
strict-small in both the LTG-BERT paper and
ELC-BERT paper is 32768 with 128 tokens per se-
quence, totaling approximately 4M tokens. We esti-
mate that this requires 2048 GB VRAM, equivalent
to about 26 NVIDIA A100 GPUs. The batch size
for the submitted ELC-BERT for strict-small
is 8096, which we estimate requires about 6 A100
GPUs. In constrast, Wilcox et al. use a batch size
of 2048 (cf. Table A.3) which requires 2 A100
GPUs. Lacking these computational resources, we
investigate smaller batch sizes and use gradient ac-
cumulation as a means to approximate the bigger
sizes. This of course also has an impact on the time
that experiments run.

Within this context, we do not attempt a full repli-
cation of the experimental setup from the original
ELC-BERT paper, as our computing infrastructure
does not permit it. We focus instead on exploring
the prospects for this type of architecture in more
resource-constrained settings. These are arguably
more plausible and faithful to BabyLM’s attempt
to simulate the conditions of human language ac-
quisition in silico.

We performed a hyperparameter search within
our computational constraints, contributing to trans-
parency and supporting reproducibility. In this pa-
per, we focus on batch size as representing one of
the main resource bottlenecks of the ELC-BERT
approach. We also contribute to the investigation
of whether the original performance is obtained pri-
marily from the "Every Layer Counts" architecture
innovation or from the availability of substantial
computational resources used to train ELC-BERT.

3 Setup

Most experiments in Table 2 were run on a single
node of our computing cluster equipped with four
NVIDIA Tesla A100 HGX GPUs (80 GB RAM
each) and experiments with batches larger than 506
were run on 2 A100fat GPUs. Fine-tuning was
performed on two GeForce RTX 3090 GPUs (24
GB RAM each). Pre-training used the hyperparam-
eters specified in Charpentier and Samuel (2023),
reproduced in Table 1. For fine-tuning, all hyperpa-
rameters from the official evaluation scripts' were

Ihttps://github.com/babylm/evaluation-pipeline-2023
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Submitted
Hyperparameter model
Number of parameters 24M

Number of layers 12

Hidden size is 384
FF intermediate size 1024
Vocabulary size 6 144
Attention heads 6
Hidden dropout 0.1
Attention dropout 0.1
Training steps 31250
Batch size 8096
Initial Sequence length 128
Warmup ratio 1.6%
Initial learning rate 0.005
Final learning rate 0.005
Learning rate scheduler cosine
Weight decay 0.4
Layer norm € le-7
Optimizer LAMB
LAMB € le-6
LAMB 5 0.9
LAMB j, 0.98
Gradient clipping 2.0
Gradient accumulation 1

Table 1: Pre-training hyperparameters for ELC-BERT
model trained on the STRICT-SMALL track reported
in Charpentier and Samuel (2023)

left unchanged?.

4 Results and Discussion

Several observations can be made from Table 2.
First, BLiMP scores, which focus on fine-grained
grammatical knowledge, tend to be much lower
in our replications compared to the original ELC-
BERT results, even when training for the same
number of steps. In contrast, although GLUE
scores are also in general lower, the gap is not
as wide. MSGS scores, however, always improve.
Importantly, we note that GLUE and MSGS are
obtained after a fine-tuning stage for which the de-
fault hyperparameters from the BabyLM evaluation
set-up were used.

*In private communication with the original authors, we
discovered that they were using an AMD-based architecture.
On further investigation, we discovered that there are signifi-
cant differences in the implementation of synchronization and
gradient accumulation between AMD and NVIDIA that may
have an effect on results.

A second observation concerns batch size and
gradient accumulation. Runs using a batch size
of 32 with gradient accumulation of 12 (effective
batch size 384) achieves performance on GLUE
and MSGS that matches or exceeds that of much
larger batch sizes, while requiring significantly
fewer computational resources. However, BLiIMP
performance seems insensitive to this and does not
increase.

Training duration also emerges as an important
factor. The original ELC-BERT was trained for
over 2000 epochs, a scale of computation probably
beyond what most academic teams can access. By
comparison, our most efficient runs complete in
minutes to a few hours, making them feasible for
small groups or even individual researchers. This
gap raises the question of how much infrastructure
is required to remain competitive in modern NLP
research and stresses the importance of computa-
tional budgets as well as data budgets.

Due to limitations in our computing infrastruc-
ture, we were unable to replicate the original batch
size of 8096 and more than 2000 epochs. It re-
mains an open question whether extended train-
ing can lead to convergence on different optima in
the parameter space, given that language modeling
does not converge toward a single optimal decision
boundary.

5 Conclusions

We have evaluated the performance of ELC-BERT
on a constrained setup and across several batch
sizes, obtaining results that differ greatly from
those reported in the original system description
in a manner that suggests that the computational
resources are, perhaps unsurprisingly, key to high
performance even in data-constrained conditions.
This is nevertheless significant because it could
have been the case that the architectural innovation
of ELC-BERT would have an much bigger influ-
ence on the outcome even under an environment of
restricted computation.

In the BabyLLM task, there is a healthy emphasis
on comprehensive reporting of experimental con-
ditions, including hyperparameters, training setup,
and hardware specifications. Participants in the
shared task complete a form where this information
is reported. Future work in this area could involve
incorporating such information into the benchmark
itself, which could strengthen transparency and
comparability across submissions.

157



Pre-training

Fine-tuning

Batch Training Gradient Epochs Time BLiMP BLiMP GLUE MSGS
size steps accum. suppl.
Original
8096 31250 1 >2000 - 80.00 67.00 73.7 29.4
32 15625 1 4 21m 51.03 47.08 5593  46.94
32 31250 1 7 44m 50.18 46.89 57.89  43.67
32 15625 12 41 2h39m 50.53 50.70 63.20 43.71
256 15625 1 27 1h7m 44.85 50.59 63.23  43.62
256 31250 1 53 19h57m 50.37 47.07 65.46  39.62
256 125000 1 218 8h31m 44.85 50.59 65.46  39.62
256 250000 1 437 17h4m 44.17 49.49 65.46  39.62
256 15625 12 333 5d10h5m 47.72 49.41 63.66  39.31
512 15625 1 55 1h49m 50.04 46.94 62.38  43.17
512 31250 1 109 3h37m 52.22 45.65 63.80  43.15
253 31250 32 1479  5d22h29m 46.95 49.88 63.72 3931
506 31250 16 1736 3d18h42m 49.03 49.36 63.64  39.31

Table 2: ELC-BERT re-runs with varying batch sizes. Reported scores are average accuracies.

The shared task is still young, and beyond the
work of Wilcox et al., there are very few analyses
of this kind. We believe that such investigations are
important for understanding both the reproducibil-
ity aspects and the broader implications of results
in this setting.

A note on reproducibility The reproducibility
crisis has been a subject of discussion for several
years in addition to the usual pressures of the aca-
demic publishing cycle® (Baker, 2016), and com-
putational linguistics and NLP are no exception.
Despite its central role in scientific progress, repro-
ducibility remains a persistent challenge in NLP
research (Belz, 2022). In response, since 2020,
reproducibility checklists are a requirement at sub-
mission time (Dodge et al., 2019; Magnusson et al.,
2023), and initiatives such as ReproNLP, a shared
task on reproducibility, have emerged (Belz et al.,
2025). Nonetheless, the practical difficulties of re-
producing scientific work are something that nearly
every researcher eventually encounters.

In a shared task such as BabyLM, there is a
risk that the whole task "overfits" on the most
successful-seeming approaches on a year-to-year
basis, in an environment in which the problem

3https ://www.nature.com/articles/
d41586-024-04253-w

space is still not well defined (i.e., what even is
an appropriate measure of human acquisition real-
ism in language modeling?). Therefore, we argue
that both replications and hyperparameter searches
are core tasks in the BabyLM context, especially
since the latter ensures that a result is placed in its
proper theoretical context.

Limitations

Our computing infrastructure does not permit a di-
rect replication of the original ELC-BERT training
conditions. This limitation means that our work
does not address reproducibility in the strict sense.
Instead, it evaluates whether the original findings
hold when training is conducted under scaled-down
computational settings, and our conclusions should
be interpreted within this narrower scope. Further-
more, no learning rate adjustments were made in
conjunction with the smaller batch sizes, which
may introduce bias into the results.
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