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Abstract

Training  vision-language  models on
cognitively-plausible amounts of data re-
quires rethinking how models integrate
multimodal information. Within the constraints
of the Vision track for the BabyLM Challenge
2025, we propose a lightweight decoder-based
architecture with (1) token-wise dynamic
gating for adaptive fusion of linguistic and
visual cues, (2) feature modulation and channel
attention to maximise the utility of limited
visual information and (3) auxiliary contrastive
objectives for visual grounding. Evaluation on
five benchmarks (BLiMP, BLiMP Supplement,
EWoK, Winoground and VQA) shows compet-
itive or superior performance to multimodal
baselines. More notably, our dynamic gate
discovers interpretable patterns without explicit
supervision, favouring visual cues for content
words and linguistic cues for function words.
While we identify limitations in the Challenge
constraints, such as the information bottleneck
created by global image embeddings and
training instability from the dataset split, our
findings establish dynamic gating as a powerful
tool for efficient multimodal learning, offering
both interpretability and performance even
under severe constraints.
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1 Introduction

Large language models have achieved impressive
capabilities, yet their learning process markedly

differs from naturalistic human language learning.

Children learn their first language from just tens of
millions of words (Warstadt et al., 2023; Gilkerson
et al., 2017) with minimal supervision, whereas
state-of-the-art language models require three to
four magnitudes more data (Warstadt et al., 2023).
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Figure 1: Simplified dual-stream architecture. The text
processing stream (top) embeds text input tokens and
feeds them through an N-layer transformer decoder,
which applies masked self-attention, cross-attention to
image features and a dynamic gating module to fuse
representations. The image processing stream (bottom)
projects a DINOv2 global token into the same space
and processes it with an M -layer transformer encoder.
The image processing stream, cross-attention and gating
modules are skipped for text-only samples.
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Furthermore, human language learning is inher-
ently a multimodal process. Usually, visual ex-
periences play a crucial role in the acquisition of
early language and its expansion in the first years
of life (Rose et al., 2009; Morgenstern, 2014, 2023;
Karadoller et al., 2024). This cognitive reality mo-
tivates our work in the BabyLM Challenge Vision
track (Charpentier et al., 2025), where we develop
a framework inspired by human selective attention
that learns when and how to leverage visual cues
during language processing without explicit super-
vision.

Our proposed solution is a decoder-based vision-
language model for which we introduce three key
innovations. First, we implement a dynamic gat-
ing mechanism that learns to selectively weight
visual versus linguistic cues for each token based
on context. Second, we explore several feature
enhancement techniques in order to maximise
the utility of limited visual information. Third,
we investigate the impact of contrastive learning
auxiliary objective functions that operate at both
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the sentence and word levels under low-resource
constraints.

In this work, we aim to answer several key ques-
tions:

1. Q: Can dynamic gating mechanisms be re-

purposed to learn meaningful vision-language
fusion patterns without explicit supervision?
(Subsection 3.3)
A: Yes, statistical analysis of our dynamic
gate’s outputs shows a strong correlation be-
tween branch selection and parts-of-speech,
as well as a weak correlation between branch
selection and concreteness and imageability
scores. (Section 5)

2. Q: If so, which linguistic phenomena do our
models prioritise visual information for, and
does this align with human word grounding?
A: We find that for parts-of-speech which
are open-class and tend to be more grounded
(adjective, noun, proper noun, verb) (Haley
et al., 2025), the dynamic gate assigns more
weight to visual signals than for function
words (conjunction, punctuation, symbols,
auxiliary verbs, particles) which tend to be
less grounded (Haley et al., 2025). (Section
5)

3. Q: Is the setup of the Vision track optimal

for multimodal learning? In particular, can
architectural mechanisms compensate for the
limited visual information provided by global
image embeddings? (Subsection 3.4)
A: In our framework, global image embed-
dings create an information bottleneck that
feature enhancements cannot fully address
(Subsection 4.2). Moreover, we find that
the split between text-only and image-caption
data causes training instability and identify
misalignments between the training data and
multiple evaluation benchmarks. (Section 6)

4. Q: Do contrastive learning auxiliary objec-
tives help or hinder small vision-language
models under significant data constraints?
(Subsection 3.5)

A: Contrastive learning objectives prove coun-
terproductive without sufficient scale for our
selected benchmarks. (Subsection 4.3)

Performance analysis on five BabyLM Chal-
lenge benchmarks (BLiMP (Warstadt et al., 2020),
BLiMP Supplement (Warstadt et al., 2025), EWoK

(Ivanova et al., 2024), Winoground (Thrush et al.,
2022) and VQA (Goyal et al., 2017)) reveals task-
specific benefits of our proposed framework, with
our base model achieving competitive or superior
performance compared to the multimodal baselines
of the 2025 Challenge.

Overall, this work contributes to the broader goal
of taking inspiration from human learning for the
development of language models, not just in terms
of data, but also in their underlying mechanisms.
While the results of dynamic gating show that archi-
tectural design can lead to meaningful patterns, our
findings also reveal which constraints (visual rep-
resentation, data curriculum, training datasets and
evaluation benchmarks) must be addressed next in
order to further improve vision-language models
based on human learning.

2 Background

2.1 Vision-Language Models

Vision-language models (VLMs) combine an im-
age encoder and (optionally) a text encoder with
a multimodal fusion module to learn joint repre-
sentations for tasks such as captioning, retrieval,
and visual question-answering. Although specific
VLM architectures vary, most share a vision en-
coder projecting images into embedding features
aligned with language model embeddings, often
implemented as a Vision Transformer (ViT) patch
encoder pre-trained on rich visual datasets (Doso-
vitskiy et al., 2021), and a text encoder. While
early VLMs (e.g., CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021)) use both vision and text
encoders trained jointly using contrastive learning
to align visual and textual representation in a shared
latent space (Li et al., 2025), more recent models
such as LLaVA (Liu et al., 2023) no longer employ
a separate text encoder, but simply use a visual
encoder with a text decoder.

2.1.1 GIT and Flamingo Baselines

The baselines used in the Vision track are the
Flamingo (Alayrac et al., 2022) and the Genera-
tive Image-to-text Transformer (GIT) (Wang et al.,
2022) vision-language models.

The GIT (Wang et al., 2022) architecture con-
sists of an image encoder and a text decoder. The
image encoder is pre-trained using a contrastive
learning objective, and outputs visual features that
are linearly projected and concatenated with em-
bedded text tokens to form the input to the decoder.
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The entire model is trained using next token predic-
tion, where each token is predicted based on both
the preceding text tokens and the visual features.

Flamingo (Alayrac et al., 2022) is a decoder-
based multimodal model that interleaves text de-
coder layers with gated cross-attention dense
blocks that incorporate visual input. An image
encoder extracts visual features, which a Perceiver
Resampler module (Jaegle et al., 2021) compresses
into a fixed number of tokens per image. These
serve as keys and queries in the gated cross-
attention dense layers inserted between language
model blocks, where a tahn-gated learnable scalar
scales each cross-attention and feed-forward sub-
layer to control the flow of visual information. The
model is trained with next token prediction.

Last year’s submissions to the BabyLM Chal-
lenge Vision track did not beat the Flamingo and
GIT baselines (Hu et al., 2024). AlKhamissi et al.
(2024) proposed a self-synthesis strategy for train-
ing a BabyLLaMA (Timiryasov and Tastet, 2023)
model, comprising four phases ranging from ba-
sic language skills to cognitive tasks. Saha et al.
(2024) evaluated the effect of curriculum learning
on GIT and Flamingo, concluding that benefits
were architecture-, training- and task-dependent.
Klerings et al. (2024) investigated the role of visual
data in language learning for the GIT architecture,
finding that visual training data improves model
performance on multimodal benchmarks but has
no effect on text-only benchmarks. Moreover, they
analysed task-specific neuron usage and concluded
that their models are highly modular, with visual
inputs influencing which components the model
uses to process the same text input.

We hypothesise that the GIT and Flamingo mod-
els, originally proposed for large-scale training,
lack explicit cognitive motivation and may under-
perform when scaled down, prompting the im-
plementation of our architecture. We point out
that our dynamic gating approach contrasts with
Flamingo’s gated cross-attention dense blocks as
follows: firstly, Flamingo applies uniform layer-
wise gating parameters across all tokens, whereas
our dynamic gate adapts based on individual tokens.
Secondly, our model consistently injects visual fea-
tures at every decoding layer, while Flamingo intro-
duces visual information every few layers, which
could limit the model’s ability to learn a stable
textual representation.

It is worth noting that the 2024 Challenge did not
impose a limit on the number of training epochs,

and that the 2024 Flamingo and GIT baselines were
trained on 20 epochs worth of text-only data and
potentially up to 80 epochs worth of image-caption
data. Similarly, the 2025 baselines were trained us-
ing a 1:4 ratio between text-only and image-caption
data, while respecting the 10-epoch training limit.

2.2 Token-Level Integration of Visual and
Linguistic Information

In this work, we ask whether dynamically weight-
ing different modalities can be used to improve next
token selection in autoregressive models. Wang
et al. (2018) and Kiela et al. (2018) asked a similar
question about how to dynamically weight linguis-
tic and visual input based on word type. However,
their goal was to create static word embeddings re-
lying on weak supervision. In contrast, we propose
using dynamic gating as an unsupervised mecha-
nism during autoregressive generation, where the
model decides at each step which modality should
produce the next token.

It has been shown in cognitive science research
that concrete and abstract words are differentiated
in human processing (Binder et al., 2005). Wang
et al. (2010) found that abstract words primarily
activate language-related brain regions, whereas
concrete words engage perceptual brain areas. Fur-
ther work showed that functional Magnetic Res-
onance Imaging patterns for concrete nouns can
be decoded by both linguistic and visual represen-
tations (Anderson et al., 2017), but that abstract
nouns are only decodable via linguistic representa-
tions (Wang et al., 2018).

An advantage has been reported for words
judged to be more concrete than those judged to
be more abstract in the learning of distributed se-
mantic representations (Bruni et al., 2014; Hill and
Korhonen, 2014). This means that language models
are likely to perform better on benchmarks contain-
ing more concrete words (Pezzelle et al., 2021).
As Kiela et al. (2018) observe, there are complex
interactions between concreteness and other fac-
tors such as word frequency and word class. We
examine concreteness and word class separately in
this work and leave the study of their interaction,
along with word frequency, for future work.

3 Method

3.1 Overview

We present a multimodal framework for the
BabyLM Vision track that learns language from
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both ungrounded and visually-grounded text data.
We assume that the training data and number of
training epochs are fixed according to the con-
straints of the BabyLLM Challenge 2025, while
the architecture and training regime are variables
which we aim to optimise. Specifically, we de-
velop a dual-stream transformer architecture
with three key innovations that aim to mirror hu-
man language processing and improve model per-
formance under Challenge constraints:

1. Cognitive alignment through dynamic gat-
ing: Unlike standard vision-language models
that use uniform fusion strategies, we imple-
ment a token-wise dynamic gating mechanism
with four variants exploring different granu-
larities and decision levels. This mechanism
learns to adaptively weight visual versus lin-
guistic information for each token, drawing
inspiration from how humans selectively inte-
grate multimodal information.

2. Maximising limited visual information:
Given the constraint of using only a global im-
age embedding during training, we implement
multiple strategies to compensate for limited
visual information. These include modula-
tion techniques that dynamically transform
features based on cross-modal context, and
channel attention to identify salient aspects
within the limited visual representation.

3. Visual grounding via auxiliary objective
functions: we explore two auxiliary objective
functions to enhance visual grounding in our
framework: (1) a contrastive learning objec-
tive (Radford et al., 2021) which aligns entire
captions with images at the sentence level, and
(2) LexiContrastive Grounding (Zhuang et al.,
2024), which performs word-level alignment
between individual tokens and images. These
auxiliary objectives aim to improve language
learning by creating stronger associations be-
tween linguistic and visual representations.

3.2 Base Architecture

At the core of our framework, we design an au-
toregressive dual stream transformer drawing in-
spiration from the architecture of state-of-the-art
vision-language models such as LLaVA (Liu et al.,
2023) and QWen-VL (Bai et al., 2023). A sim-
plified illustration of our architecture is shown in
Figure 1.

The architecture consists of four main compo-
nents: (1) a text processing stream that uses
standard decoder layers with learned embeddings
and positional encodings to process both text-only
data and image captions; (2) an image processing
stream that takes DINOv2 embeddings as input,
projects them into the model’s hidden space and re-
fines them with additional transformer encoder lay-
ers for empirical performance, future patch-token
compatibility and computational efficiency (details
in Appendix I); (3) a multimodal decoder inte-
grates text and image features using three sequen-
tial mechanisms: masked self-attention applied to
the text features, followed by cross-attention fusion
between text and image features (when available),
and dynamic gating that adaptively determines how
much to rely on visual versus linguistic information
for each token; (4) an output projection layer that
maps the decoder outputs back to the vocabulary
space for next token prediction.

3.3 Dynamic Gating

While dynamic gating in multimodal Al has primar-
ily focused on classification tasks, demonstrating
improved robustness and computational efficiency
(Xue and Marculescu, 2023; Wang and Wang,
2024; Xie and Zhang, 2020), we ask whether this
idea can be repurposed as a cognitively-motivated
mechanism for token selection in multimodal au-
toregressive models.

Our approach is hypothesis-driven. Dynamic
gating has proven effective in other multimodal
settings, and large vision-language models appear
to exhibit implicit gating capabilities through at-
tention patterns learned at scale. We therefore
ask: does introducing an explicit token-wise gat-
ing mechanism help smaller, data-efficient models
achieve similar selective integration more reliably?

Our hypothesis is therefore as follows: just as
human language processing selectively integrates
visual information, for example, relying heavily on
visual inputs for concrete, perceptual words (e.g.,
“dog", “red") while defaulting to linguistic knowl-
edge for abstract terms (e.g., “therefore”, “impos-
sible"), a token-wise dynamic gating mechanism
could teach a model to make similar fine-grained
fusion decisions. By conditioning each gate on
both the current text hidden state and the cross-
attention features, the model can learn to amplify
the vision input when it truly informs the next word
and ignore it when it does not.

We implement four variants of a dynamic gating
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mechanism, varying along two axes: (1) granu-
larity, whether the gate is computed per feature or
per token, and (2) soft vs hard, whether the gate
outputs continuous weights or discrete decisions.
The granularity axis investigates whether differ-
ent tokens require different subsets of visual fea-
tures (e.g., colour features for “red", spatial features
for “above") or whether coarse per-token gating is
sufficient. The soft vs hard gating axis examines
whether binary selection or continuous weighting
of features yields more interpretable fusion patterns
and better performance.

More specifically, the four gating variants com-
pute gating weights g to dynamically fuse text and
cross-attention representations via

hfused =g o htext + (1 - g) © hcrossAttn (1)

and differ in whether g operates per feature or per
token and makes continuous or discrete selections.
The technical implementation details for the four
gating variants are available in Appendix A.

3.4 Feature Representation

The BabyLLM Challenge provides the images in the
training data as single global embeddings. While
computationally efficient, this approach limits the
spatial visual information available to the model.
Traditional vision-language models benefit from
patch token representations that preserve spatial
information and enable fine-grained visual ground-
ing (Dosovitskiy et al., 2021). Therefore, the next
aspects we investigate in this work are methods of
maximising the utility of the global image tokens
provided in the Challenge.

We explore two complementary modulation tech-
niques, FiLM (Perez et al., 2018) and Dylntra
(Gao et al., 2019), which dynamically reshape
one set of features based on another, as well as
a global channel-attention enhancement. These
approaches target different aspects of the represen-
tation bottleneck: modulation techniques address
cross-modal feature interaction, while channel at-
tention addresses intra-modal feature refinement.

While the dynamic gating mechanism deter-
mines how much information to incorporate from
each modality, FiLM and Dylntra determine how
that information should be transformed, and a chan-
nel attention mechanism determines what is mean-
ingful within the image features.

We evaluate these methods at several integration
points within our architecture to determine which

approach most effectively compensates for the lack
of spatial visual information.

The technical details of our implementations are
available in Appendix B.

3.5 Auxiliary Objective Functions

As previous work in vision-language models sug-
gests (Lu et al., 2020), a multi-task objective can
improve model performance. In this work, we ex-
plore training our models using two auxiliary func-
tions, Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021) and LexiContrastive
Grounding (LCG) (Zhuang et al., 2024). Both func-
tions aim to ground textual representations in vi-
sual concepts through contrastive learning, creat-
ing a shared embedding space where semantically
related image-text pairs are positioned closer to-
gether. However, they operate at different levels of
granularity: CLIP aligns entire captions with their
corresponding images at the sentence level, while
LCG performs alignment at the word level between
individual tokens and images.

Recent research shows that visual grounding at
both sentence and word levels can improve word ac-
quisition in low-data regimes (Zhuang et al., 2023).
A CLIP objective could capture global associations
that support contextual understanding, while an
LCG objective might reflect fine-grained grounded
learning. However, as we discuss in the results sec-
tion (Section 4.3), the effectiveness of these aux-
iliary objectives significantly depends on various
factors, including the visual representation format,
batch size and training data.

The technical details of each auxiliary objective
function are available in Section C.

4 Results

To evaluate our framework, we select five of the
benchmarks proposed in the BabyLLM Challenge:
BLiMP (Warstadt et al., 2020) and BLiMP Supple-
ment for grammar, EWoK (Ivanova et al., 2024)
for world knowledge, Winoground (Thrush et al.,
2022) for vision-linguistic compositional reason-
ing and VQA (Goyal et al., 2017) for image-based
question answering. For the first four we used the
2025 evaluation pipelinel, while for VQA we used
the 2024 repositoryz. A detailed description of
each benchmark is available in Appendix D.

1https://github.com/babylm/
evaluation-pipeline-2025

https://github.com/babylm/
evaluation-pipeline-2024
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Model BLiMP BLiMP EWoK Winoground VQA*
Supplement
Baselines 2025
Flamingo (BabyLM Challenge 2025) 70.9 65.1 51 54.8 43.31
GIT (BabyLM Challenge 2025) 722 66.4 51.8 56.2 49.82
Baselines 2024
Flamingo (BabyLM Challenge 2024) 70.9 65.0 52.7 51.6 52.3
GIT (BabyLM Challenge 2024) 65.2 62.7 52.4 55.5 54.1
BabyLLaMA (AlKhamissi et al., 2024) 72.9 542 50.2 50.9 42.0
Flamingog; T+C (Saha et al., 2024) 60.13 53.28 50.71 50.80 40.85
GIT¢. T+C (Saha et al., 2024) 64.05 51.24 50.98 55.23 43.98
GIT 1/0.25 (Klerings et al., 2024) 71.2 64.6 52.5 56.2 52.2
GIT 1/0.125 (Klerings et al., 2024) 66.3 61.7 523 57.0 52.6
Our framework
Base, soft gate per feature 74.33 56.36 50.81 51.61 50.02
Architectural features
Soft gate per token 73.86 55.43 51.56 52.14 48.39
Hard gate per feature 74.10 54.16 51.20 50.13 45.62
Hard gate per token 74.19 54.59 51.16 50.80 45.51
No gate 74.70 55.75 50.77 51.34 50.58
FiLM on text 74.32 55.10 50.61 53.49 46.04
FiLM on cross-attention 74.95 56.36 51.62 52.68 49.66
FiLM on image 73.80 54.59 51.06 50.13 17.92
Dylntra on text 74 56.97 51.73 51.47 47.16
Dylntra on cross-attention 73.68 56.68 51.57 53.22 48.87
Dylntra on image 74.69 56.57 51.28 50.00 45.61
Channel attention 74.24 54.23 51.15 51.15 49.15
Auxiliary objective functions
NTP + CLIP 72.28 54.35 51.45 51.47 47.72
NTP + LCG 70.27 56.91 49.74 50.00 36.62

Table 1: Performance of our base model and variants on five BabyLM Challenge benchmarks. Scores for our models
and 2025 baselines are computed using the 2025 evaluation pipeline (BLiMP, BLiIMP-S, EWoK, Winoground) and
2024 pipeline (VQA). Green shading indicates performance above the 2025 baselines.

For all architectural features and training strate-
gies we define, we conduct experiments in the form
of ablation studies in order to evaluate each poten-
tial improvement in isolation. A summary of all
the experiments we define is available in Table 6.
We train all our models in the same conditions (as
described in Table 5) using the same model hy-
perparameters (summarised in Table 4), with the
exception of the auxiliary objective function, for
which we increase the batch size from 64 to 128 as
a larger batch size is recommended for contrastive
learning (Chen et al., 2020).

Our key observations from the complete set of
results (Table 1) are summarised below.

4.1 Baselines

Our framework achieves a higher score on
BLiMP (almost 4% higher than Flamingo and
over 2% higher than GIT) and competitive
scores for EWoK, Winoground and VQA. We
suggest that our base model outperforms Flamingo
and GIT on BLiMP due to architectural differences.
These include the clear separation between the text
and image streams and consistent fusion in our base

model. In our proposed architecture, the first de-
coder layer’s self-attention module processes only
textual input, whereas GIT concatenates the image
token(s) with the text input before they are fed into
the model, which could introduce noise when ex-
tracting linguistic signals. Our model consistently
integrates visual features at each decoding layer,
whereas Flamingo incorporates visual information
only at intermittent layers, which could affect the
model’s ability to learn a robust textual representa-
tion.

The lower performance of our model on BLiMP
Supplement is due to differences in training data.
As shown in Appendix F, the image—caption
dataset supports this benchmark far better than the
text-only dataset. This favours Flamingo and GIT,
trained with a 1:4 text-only/image—caption ratio
versus our 1:1 ratio. Winoground shows a simi-
lar trend, with baselines benefiting from more im-
age—caption training epochs.

4.2 Performance of Architectural Features

The dynamic gating modules maintain the per-
formance of our base model without gating on
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BLiMP and BLiMP Supplement, bring modest
benefits for Winoground and show mixed re-
sults on VQA. As shown in Table 1, our dynamic
gating modules do not have a significant effect on
the model’s performance on BLiMP and BLiMP
Supplement, which is the desired outcome for the
text-only benchmarks. There is very little varia-
tion in the EWoK scores across the models, which
we attribute to a mismatch between training and
evaluation data and further discuss in Section 7.

The soft gate and hard gate per token models
outperform the no gate model on Winoground. We
hypothesise that the gating mechanism in these
models produces slightly cleaner, more discrimi-
native joint representations between images and
text, which in turn yields a small but consistent
improvement.

We observe limited performance benefits of the
gating modules on VQA, with the hard gate models
achieving a lower score (~ 5% lower) compared
to the no gate variant. We hypothesise that the
hard gates may have learned to allow for stronger
image signals than is optimal for VQA, especially
since the image-captioning training set contains
few constructions similar to VQA (see Section 7).

Modulation and channel attention achieve
mixed results over the five benchmarks, under-
scoring that the global image embedding rep-
resents a performance bottleneck. Across the
seven variants we implement, no single feature
representation technique uniformly improves all
five benchmarks (Table 1). FiLM applied to tex-
tual representation and cross-attention, along with
Dylntra applied to cross-attention, shows modest
improvements on Winoground (+1.88%, +1.07%,
and +1.61% respectively) by potentially creating
more separable joint representations.

With varied impact, all techniques decrease the
performance of our base model on VQA. Never-
theless, the cross-attention modulation and our at-
tention seem to preserve most of the linguistic and
visual signals needed for VQA, while also bringing
slight improvements on Winoground. The results
collectively demonstrate that feature modulation
and channel attention techniques designed for rich
representations show limited and task-specific ben-
efits when applied to severely compressed represen-
tations. While certain combinations can enhance
performance on specific benchmarks, they cannot
overcome the information bottleneck caused by us-
ing only a global image embedding.

4.3 Performance of Auxiliary Objectives

A pure next token prediction objective function
achieves the best scores for our base model over-
all. There are multiple potential causes for these
results. First, the BLIMP benchmarks rely solely
on linguistic information, therefore any auxiliary
objective that competes with next token prediction
can dilute the model’s focus on linguistic signals.
This is reflected in the BLIMP score differences of
2.05% and 4.06% with the CLIP and LCG auxiliary
functions, respectively.

Second, the CLIP objective was designed for a
larger batch size than we could use with our com-
putational budget and more data than the available
samples in the image-caption dataset, which may
have led to a limited impact. Third, the global im-
age embeddings provide limited visual information,
which seems to be insufficient to enable the con-
trastive auxiliary objectives to make fine-grained
visual-linguistic alignments.

Fourth, the alternation between text-only and
image-caption epochs may cause training instabil-
ity, since the auxiliary functions are only used dur-
ing the image-caption epochs. Therefore, with a
10-epoch budget and the limited global image em-
beddings, there is no evident benefit of using con-
trastive learning auxiliary objectives for the bench-
marks we selected.

From a cognitive perspective, these negative re-
sults may align better with theories of human lan-
guage acquisition. Children do not learn language
through explicit contrastive mechanisms where
they simultaneously process what words do and do
not mean across hundreds of examples, but rather in
rich, multimodal contexts where meaning emerges
from use rather than from explicit positive or nega-
tive examples. These results support our focus on
architectural innovations, such as dynamic gating,
which better capture the adaptive nature of human
cognitive processing during language learning.

S Interpretability

Figure 2 illustrates our model’s gate value for
next token prediction, aggregated per part-of-
speech (PoS). The model is evaluated on held-out
sentences from the Localized Narratives dataset,
amounting to 1,034 tokens. The parts-of-speech
for each sentence were extracted using the spaCy
English tagger (en_core_web_sm) (Honnibal et al.,
2020). The gate value plotted is the mean over the
gate values per feature. A lower score means the
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Figure 2: Our base model’s aggregated gate values per
part-of-speech for next token prediction, based on the
Localized Narratives dataset. The parts-of-speech for
each sentence were extracted using the spaCy English
tagger (Honnibal et al., 2020). Lower values on the
y-axis mean that the model attended less to the pure
linguistic signals and more to the fused image-text rep-
resentation when predicting the next token.

model attended less to the pure linguistic signals
and more to the fused image-text representation
when predicting the next token.

There is an interpretable correlation between
gate selection and part-of-speech. For the parts-
of-speech which are open-class and generally more
grounded (adjective, noun, proper noun, verb) (Ha-
ley et al., 2025), the model attends more to the im-
age signals (left side of the plot), while for function
words (conjunction, punctuation, symbols, auxil-
iary verbs, particles) the model attends more to
the pure text. Furthermore, the model shows in-
creased visual grounding for numerals, determin-
ers and adpositions, suggesting they leverage vi-
sual information for counting and quantity (“two",
“three"), uniqueness (“a" vs “the"), spatial reference
(“this" vs “that") and spatial relationships (“on",
“in", “around"). We confirm the correlation between
gate selection and parts-of-speech by running the
Kruskal-Wallis statistical test (McKight and Najab,
2010), and obtaining (H = 154.91,p < 0.001).

We also find a statistically significant nega-
tive correlation between gate values and concrete-
ness (p = —0.139,p < 0.001) and imageability
(p = —0.153,p < 0.001) scores using the MRC
Psycholinguistic Database (Coltheart, 1981) and
Spearman’s rank correlation test.

In Table 2, we illustrate the correlation be-
tween gate selection and concreteness by aggre-
gating the gate values and defining meaningful
categories based on score distributions from the

MRC database using cutpoints at mean + 1 SD. As
shown, the correlation is weak (|p| < 0.2), and
the pattern is non-monotonic i.e., moderately ab-
stract/concrete words show higher gate rates than
the very abstract/concrete ones, suggesting that
other factors, such as part-of-speech, are more im-
portant in gating decisions. Similar results for im-
ageability are available in Appendix G.

Category Gate Selection
Mean (SD)  # words
Very Abstract (<318) 0.427 (0.141) 420

Abstract (318-438)
Concrete (438-558) 0.391 (0.155) 80
Very Concrete (>558) 0.343 (0.139) 1199

Categories defined as ;¢ + o based on the MRC database.
SD = standard deviation.

0.471 (0.136) 82

Table 2: Mean gate value per concreteness bin for our
base model (incorporating a soft gate per feature).

6 Discussion

Missing modality problem. In our experiments,
we find that the split of the training data into text-
only and image-caption datasets introduces com-
plexity and instability during training. While we at-
tempt to mitigate this by alternating epochs, the ap-
proach still yields performance oscillations (details
in Appendices F and E). The BabyLM Challenge
baselines address this problem by pairing text-only
and image-caption in the same batch. However,
this results in training the models on four times
more image-caption samples than text-only sam-
ples. Moreover, to the best of our knowledge, there
is no cognitive justification for this split.

Data Curriculum. We explore multiple data
curriculum strategies that could optimise learning
in our proposed framework. At a coarse-grained
level, we explore different orderings between text-
only and image-caption epochs. At a fine-grained
level, we explore how mixing text-only and image-
caption data within the same batch, either uni-
formly or non-uniformly, impacts the training dy-
namics and generalisation of the model. Empiri-
cal results suggest that alternating between image-
caption and text-only epochs is the best strategy
for our framework for the five benchmarks we se-
lected in this work. A comprehensive discussion
and results are available in Appendix E.

Future work. Based on the results and find-
ings in this work, for the BabyLM Challenge Vi-
sion track, we make several observations for future
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work. First, the training dataset should be varied,
with high-quality text that covers a range of English
constructions. In particular, the training dataset
should cover constructions (e.g., images paired
with question-answers for VQA) and concepts (e.g.,
EWOoK) present in the evaluation benchmarks. Sec-
ond, for training stability and improved language
acquisition, it may be more beneficial to train the
model on a completely multimodal dataset, which
is one promising avenue for future work. Third,
given the limitations that the global image token
introduced in this work, future work should use
patch-token representations for the image input in
order to enable richer multimodal learning — that
which is the aim of future iterations of this frame-
work. Finally, it would be interesting to develop
benchmarks that specifically reward cognitively-
plausible mechanisms: i.e., evaluating the cogni-
tive principles guiding the model’s responses.

7 Conclusion

In this work, we show that token-wise dynamic gat-
ing enables small vision-language models to adap-
tively integrate linguistic and visual cues, yield-
ing interpretable patterns and competitive perfor-
mance under the BabyLM Challenge Vision track
constraints. Our results highlight the promise of
cognitively-inspired architectural design, while un-
derscoring the need to address limitations in visual
representation, training data and evaluation bench-
marks to realise the full potential of multimodal
learning in low-resource settings.

Limitations

Due to computational constraints, we could not use
a larger batch size, which would have benefited
the models trained with a contrastive loss objective
(Chen et al., 2020).

Two of the BabyLM Challenge benchmarks we
used in this work showed limitations in evaluating
our multimodal models, which potentially stem
from a mismatch with the training data.

Throughout our experiments, we find that EWoK
demonstrates no sensitivity to changes in architec-
ture or training strategy, with performance remain-
ing around 50% regardless of the experiment con-
ditions. We therefore investigate the frequency of
concepts tested by EWoK in the BabyLLM Chal-
lenge training data, as previous research suggests
that language models rely on frequency more than
children do in word acquisition (Chang and Bergen,

2022). A Regular Expression match for the con-
cepts tested in EWoK over the training data re-
vealed that in 37.69% of the EWoK examples, at
least one out of two concepts tested appears fewer
than 100 times in the training data, with 13% of test
examples having both concepts appearing O times.
Therefore, we conclude that the training dataset
does not properly support EWoK evaluation.

By alternating between image-caption and text-
only epoch, we also find score differences be-
tween epoch types for VQA (details in Appendix
F). Our results suggest that VQA depends signif-
icantly on the presence of question-answer and
turn-taking formats in the training dataset. This
finding aligns with observations by Laurencon et al.
(2024), who note that vision-language models typi-
cally only learn visual question answering during
fine-tuning stages, not during pre-training, unless
they are explicitly exposed to data following the
VQA format. This is particularly problematic under
the constraints of the BabyLM Challenge, where
no fine-tuning stage exists, forcing models to ac-
quire question-answering capabilities just from pre-
training data that lacks examples similar to the
VQA task.

As a general observation, training vision-
language BabyL.Ms differs from training state-of-
the-art large vision-language models, which rely
on large pre-trained components. Moreover, VLMs
can undergo multiple training stages where com-
ponents are selectively frozen or unfrozen, higher-
quality data is gradually introduced and the image
resolution is progressively increased (Laurengon
et al., 2024). With limited data and a maximum of
just 10 training epochs under the BabyLM Chal-
lenge constraints, implementing multi-stage train-
ing strategies becomes significantly more difficult.
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Figure 3: Conceptual output of different gating strate-
gies for fusing textual and cross-attention representa-
tions. Each rectangular box represents a token, with the
cells within representing dimensions. Red represents
textual features, green represents cross-attention fea-
tures and mixed colours represent fused features. Soft
gates apply continuous weights, while hard gates make
binary decisions, either per-feature (each dimension in-
dependently) or per-token (all dimensions together).

A Dynamic Gating

We define four dynamic gating variants that operate
at different granularity and decision levels: soft
gate per feature, soft gate per token, hard gate per
feature, hard gate per token.

Input and Output. All four versions of the dy-
namic gate have the same input and output. Let
hiext € REXTXdnotel po the text hidden states af-
ter self-attention and hgpossain € REXT X dmoael e
the output of the cross-attention between text and
image, where B is the batch size and 7 is the se-
quence length. Then, the input to the dynamic gate
is the concatenation of two hidden representations,
[htext; hcrossAttn] € RBXTXQdmOdEI' The OUtPUt is
represented by hgygeq € REXTXdnoael - yhich com-
bined the pure linguistic representation with the
visually-enriched representation based on the gat-
ing weights. In the case of a text-only input to the
model, the dynamic gate module is skipped, and
hiext flows directly through the residual connection.

Figure 3 illustrates the conceptual output for
each type of gate.

A.1 Soft Gate per Feature

This variant computes a continuous weight for each
feature dimension i € {0, ..., dmoqel — 1} using the
sigmoid function. Concretely, the gate vector is
computed as:

BXT Xdmodel

2

g = o(Linear [ htext; hcrossAttn ]) € [Oa 1]
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The dynamically fused representation is then
calculated as:

hfused =g O] htext + (1 - g) ) hcrossAttn (3)

We use this variant of dynamic gating in the base
model.

A.2  Soft Gate per Token

The soft gate per token calculates a single continu-
ous weight (a scalar), which we apply to all features
in the hidden representations:

]BXTXI

)

g = O-<Linear([ htext; hcrossAttn])) € [0, 1

hfused =g o htext + (1 - g) o hcrossAttn
4)

A.3 Hard Gate per Feature

Drawing inspiration from Xue and Marculescu
(2023), we extend the soft gating variants to a hard
selection mechanism using the Gumble-Softmax
reparametrisation trick (Jang et al., 2016).

The hard gate per feature variant enforces each
dimension to choose completely between linguistic
or visually-enriched representations. We first com-
pute a 2-way discrete choice for the two hidden
representations using a linear layer:

]BXTdeOdCIXQ

&)

Each pair of logits (lb,t,i,Ov lb,t,z‘,l) corresponds

to the scores for “use Ayt versus “use AcrossAtin

for feature i at position (b,t). A straightforward
hard gate would then be:

g= Lineal([ htext§ hcrossAttn ]) € [0> 1

Go1i = argmax(lygi 0, i) (6)

However, since g is a one-hot vector, it is not
differentiable. Therefore we employ a soft gate
g during training using Gumble-Softmax, similar
to Xue and Marculescu (2023), to enable back-
propagation:

- lhtii+ 2ot
i =~ L= 24 ~ Gumbel (0,1)
(7
where 7 is the Softmax temperature. We then
apply Softmax over the two classes and select the
probability corresponding to Ayt as the soft gate:

exXp Zb7 Vi
Ybtij = =T ( tfj) , ye[o,1
> k=0 €xP(lot,i k)

]BxTxdm(,dE]XQ

®)

]BXTdeodel

Gvti = Ybtio, § € [0,1 9

htused 1S then be computed as:

Ptused = § © Ngexe + (1 - g) © herossatn  (10)

During training, we anneal the Softmax tempera-
ture 7 from 1.0 to 0.1 over 80% of the training steps
of an image-caption epoch, gradually transitioning
from soft to nearly discrete selection. During infer-
ence, we convert g to a true one-hot gate g using
arg max.

A.4 Hard Gate per Token

In the per token variant of the hard gate, we col-
lapse the feature-wise gate into a single binary de-
cision. The calculations, training and inference
remain the same as in subsection A.3, yet the shape
of the parameters changes. The summary of the
calculations in this variant is as follows:

. BXTX2
[ = Lmear([ Prtext; hcrossAttn]) € R e (11)
y = GumbelSoftmax(l, 7) € R”"™* (12
gbt = Ybto € [0,1] (13)
Nfused = g o Piexe + (1 - g) O Nherossaiun (14)

where the scalar g is broadcasted over all dp,oqel
features.

B Feature Representation

B.1 Feature-wise Linear Modulation (FiLM)

To address the limited representational capacity
of a single image token, we incorporate Feature-
wise Linear Modulation (FiLM) (Perez et al.,
2018) as an intra-modal conditioning mechanism.
FiLM modulates neural network features through
a feature-wise affine transformation, enabling one
modality or context to dynamically influence an-
other. Specifically, it applies scaling and shifting
to a feature map based on a conditioning input,
and can be easily implemented in transformers as
follows:

Let hy, ,hm, € R model he hidden state
feature representations with m4 indicating the pri-
mary features and ms the conditioning features,
mi F mao. Then,

BXT'Xd

FiLM(hyy s Biny) =7 © By, + 8 (15)

where , 8 € R dmodet g scaling and shifting

parameters predicted by linear layers from h,,,,,.
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B.2 Dynamic Intra Modulation (DyIntra)

Alternatively to FILM, we explore the DyIntra mod-
ule proposed in (Gao et al., 2019), a scaling mech-
anism that modulates primary features using condi-
tioning features via a simple gating mask. DylIntra
predicts a positive-only gain for each representa-
tion, allowing it to boost its own hidden features
based on cross-modal context without shifting.

Formally, let h,p, , h, € RP*T X%t pe hidden
state feature representations, mq # mo. Then,
Dylntra computes:

BXT'% dm()del

m = o(Linear(h,,,)) € [0,1] (16)

Dylntra( by, Am,) = (1+m) © hy,,  (17)

Choosing m; and my. There are several points
in our base model where we could integrate a FiLM
or Dylntra modulation module. We evaluate and
motivate three such choices as follows:

1. m; = self-attention (output), my = image:
modulating the text self-attention output with
visual features may allow the model to adjust
how text tokens relate to each other based on
visual context;

2. mq=cross-attention (output), mo = image:
modulating cross-attention features with the
original image may refine the vision-language
fusion by emphasising features that align with
the global visual representation;

3. mq = image, my = text: modulating image
features based on textual context may allow
the model to dynamically highlight relevant
visual information for the current linguistic
processing needs.

B.3 Channel Attention

To implement channel attention for only one im-
age token, we use the Excitation formula from the
Squeeze-and-Excitation method (Hu et al., 2018)
as follows:

I
himage = 0<W2 RCLU(W1 himage)) o himagey
Wl = R(dmudel /Tdeodel) , W2 1= R(dmodEIdeodel /T)

(18)

where A4 18 the output of the image encoder
and r = 16 is the reduction ratio. We expect this
method to help the model focus on the most infor-
mative features of the visual embedding, improving
the quality of image representations.

C Auxiliary Objective Functions

C.1 Contrastive Language-Image
Pre-training (CLIP)

We incorporate the Contrastive Language-Image
Pre-training (CLIP) objective function into the
training of our base model for image-caption
epochs steps, as follows:

For each sample in a batch, we first extract
pooled representations from both image and text
modalities. For text,we compute mean pooling over
the the output of the text embedding module, which
we denote t,y1eq- For the image, we use the out-
put of the image encoder directly as its length is
1, pooted- BOth too1ed and 7pgoleq are then projected
to a shared contrastive embedding space through
specific linear projection layers. We L2-normalise
both representations before computing similarity
scores. The contrastive loss is formulated as a bidi-
rectional InfoNCE objective (Oord et al., 2018)
with learnable temperature 7. It combines text-to-
image and image-to-text matching losses, where
each direction maximises the similarity between
matched pairs while minimising similarity with all
other pairs in the batch. The final loss is computed
as Lcontrastive = %(LtZi + ['iZt)-

The complete training objective then becomes:

Liotal = Ln1P + ALcontrastive (19)
where A represents the weight of the contrastive
loss and NT'P stands for next-token prediction.

In our experiments, we initialise 7 to 0.07 and
constraint it between 0.05 and 1 during training for
stability, and set A to 1.

C.2 LexiContrastive Grounding (LCG)

LexiContrastive Grounding (LCG) (Zhuang et al.,
2024) is a training procedure that implements a
grounded language learning objective similar to
CLIP. While CLIP operates at sentence level, LCG
computes similarity scores at the word level. To cal-
culate the cross-modality contrastive learning loss,
LCG leverages the first hidden layer of a model,
which stores lexical information. The authors also
limit the attention mask applied to the first layer
to a previous two-word window in order to encode
less linguistic context. The contrastive loss is then
calculated per batch from all the token-level repre-
sentations outputted by the first layer.

For our model, we adapt and implement the LCG
during the image-caption epochs as follows:
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Let (text;, image; ) represent the image-caption
pairs in a batch, where i € {1,2,...,n} and n
is the batch size. Each caption text; contains m;
tokens: (ti71, tio, ... ati,mi)-

To obtain lexically-focused representations, we
extract the textual representation from the first
layer after the residual connection applied to self-
attention:

hy(text;) = text; + SelfAttn( LayerNorm(text;))

(20)
In our implementation, we experimented with ap-
plying a narrow two-word attention mask, however,
we noticed conflicts with the next token prediction
loss. Specifically, applying the two-word atten-
tion mask in the first layer was preventing the next
token prediction loss from decreasing. We tried
applying the two-word attention mask solely to ex-
tract the hidden representation, then switching to
the original causal mask for the rest of first layer’s
forward pass, as well as skipping the cross-modal
fusion in the first layer, but neither approach fixed
the problem. Therefore, we decided to use the
standard causal attention mask when extracting the
first layer textual hidden representation, as ablation
studies in the original research (Zhuang et al., 2024)
did not indicate a significant loss in performance
for this case.

Let hy (text;, j) € R4l be the first layer repre-
sentation of the j-th token (the j-th row of the ma-
trix) in the i-th caption and enc(image;) € R %model
represent the output of the image encoder for the
t-th image. Then, the matching score between the
j-th token in the caption k£ and image ¢ is calculated
as:

. T .
. ( Mimage ~enc(1magei)) : (Mtext “hy (texty, j ))
s(i,7,k)= =

@n
where Mimage; Miexi € Rmodei*dmosel e Jearned
projection matrices and 7 is a learnable temperature
parameter, which we clamp between [0.05, 2.0] for
training stability.

For each valid token position, we then compute
the LCG contrastive learning loss as:

S[00.3) + (. 5)]

(22)
where 1,4;q(%, ) is an indicator function for non-

n m;
Licc = Z Z Lyatia (7, 1)

i=1j=1

padded tokens, and:

s(i,5,3) s(i,4,%)

e e
(3, 7 , Uo(1,7) = ———=
1( .7) Zk 16 k.5,i) 2( ]) neg(z,])
(23)
The negative term neg(i, j) is defined as:
n .
an(Z ] (6d4) + Z Z 1thd k 0 S(Z,O,k)
=1o0=1
k#:z
(24)

The total loss combines next-token prediction with
word-level contrastive learning loss:

Liotal = Lntp + A * Lico (25)

where A is a hyperparameter controlling the
strength of visual grounding. We set A to 1 through
trial and error such that Lytp and Ly cg have the
same magnitude.

We use auxiliary functions only during the
image-caption epochs, as the image processing
stream is skipped for text-only samples.

D Evaluation Benchmarks and Training
Data

The evaluation pipeline of the BabyLM Challenge
consists of both text-only and multimodal bench-
marks. To evaluate our models, we use the follow-
ing benchmarks from the BabyLM Challenge:

* BLiMP (The Benchmark of Linguistic Mini-
mal Pairs) (Warstadt et al., 2020) evaluates the
linguistic abilities of language models through
grammatical acceptability judgements. It con-
sists of minimal pairs of sentences testing a
specific phenomenon in syntax, semantics or
morphology. Each pair contains one well-
formed sentence and one ungrammatical sen-
tence. Models are evaluated by checking
whether they assign a higher probability to
the grammatical sentence in each pair.

* BLiMP Supplement is a held-out evaluation
set introduced in the BabyLM Challenge, con-
sisting of five additional linguistic tasks.

* Elements of World Knowledge (EWoK)
(Ivanova et al., 2024) is a zero-shot benchmark
that targets specific world concepts such as so-
cial interactions, spatial relations and physical
dynamics. It uses minimal pairs of context-
target combinations, where the same target
sentence is plausible given one context but
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implausible given another. Models are evalu-
ated by checking whether they assign a higher
probability to the correct context-target pair.

* Winoground (Thrush et al., 2022) evaluates
visio-linguistic compositional reasoning in
vision-language models. The dataset consists
of hand-curated examples where models must
correctly match two images with two cap-
tions that contain identical words but in differ-
ent orders (e.g., “some plants surrounding a
lightbulb" vs “a lightbulb surrounding some
plants"). Models are evaluated by checking
whether they assign a higher probability to the
correct caption given the input image.

* VQA v2.0 (Goyal et al., 2017) is an evalua-
tion dataset containing pairs of similar images
with identical questions but different correct
answers, which forces models to ground their
responses in visual content rather than rely on
linguistic priors alone. Questions cover mul-
tiple categories, such as object recognition,
counting and spatial reasoning. Models are
evaluated based on which answer they assign
the highest probability given the input image
and question.

The BabyLM Challenge organisers provide an
image-text pre-training dataset for the Vision track,
which we use in our work. This dataset consists of
two parts: text-only data and text-image data, each
containing approximately 50 million words.

The text-only dataset is a subset of the train-
ing data proposed for the BabyLM Challenge text-
only track. The organisers argue that this dataset is
cognitively plausible, consisting of child-directed
speech (CHILDES (MacWhinney, 2000)), dia-
logue (British National Corpus (BNC) conversation
section®, Switchboard Dialog Act Corpus (Stolcke
et al., 2000)), children’s stories (Project Gutenberg
(Gerlach and Font-Clos, 2020)), movie subtitles
(OpenSubtitles (Lison and Tiedemann, 2016)) and
Wikipedia4 content.

The multimodal dataset consists of image-
caption pairs selected from the Conceptual Cap-
tions 3M dataset (Sharma et al., 2018), and the
MS-COCO (Lin et al., 2014) and Open Images
(Kuznetsova et al., 2020) subsets of the Localized
Narratives dataset (Pont-Tuset et al., 2020). The
Conceptual Captions dataset consists of millions

3h'ctp: //www.natcorp.ox.ac.uk
4ht’cps ://www.wikipedia.org

of images paired with natural language descrip-
tions automatically scraped, cleaned and filtered
from web image alt-text, while the Localized Nar-
ratives dataset contains image-caption pairs manu-
ally annotated with synchronised mouse traces that
spatially ground each word or phrase to specific
regions in the image. The images are provided in
both raw format and as visual embeddings com-
puted by a visual model using DINOv2 (Choshen
et al., 2024; Oquab et al., 2023), a state-of-the-art
unsupervised learning algorithm. We use these vi-
sual embeddings in both our training and evaluation
due to computational constraints.

E Data Curriculum

Since the training dataset consists of both text-only
data and image-caption data, each accounting for
50M words, we implement and analyse multiple
coarse-grained and fine-grained data curriculum
strategies for training.

Coarse-grained epochs: We load the text-
only and image-caption data in separate PyTorch
(Imambi et al., 2021) data loaders, where each data
loader alone is used for one epoch. For the 10
epochs constraint of the BabyLM Challenge, this
results in 10 text-only epochs and 10 image-caption
epochs. We then experiment with the following:

1. Alternating between image-caption epochs
and text-only epochs;

2. Training on all text-only epochs first, then on
the image-caption epochs;

3. Training on all image-caption epochs first,
then on the text-only epochs.

Fine-grained epochs: For the fine-grained
epochs, we define the following two training strate-
gies:

1. We load both the text-only data and the image-
caption data in the same data loader, where
we pair the text-only data with image ten-
sors filled with Os for uniformity. The cross-
modality path is still skipped in the text-only
samples. The original text data is provided in
.txt files, and we process each text line as one
sample. For the image-caption data, we pro-
cess each (image, caption) pair as one sample.
In this setting, the text-only data has twice
as many samples as the image-caption data.
Therefore, loading and shuffling them in the
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same data loader results in a non-uniform dis-
tribution between the two and more unstable
training.

2. For a uniform distribution between the image-
caption data and the text-only data, we take
inspiration from the GitHub repository5 used
to train the BabyLM 2024 Challenge base-
lines, where the authors pair each text-only in-
put with one image-caption input in the same
batch sample, resulting in uniform batches.
Therefore, in one training step, we perform
two forward passes: one using the text-only
input and one using the image-caption input.
We then sum the losses from each pass and
do one backward propagation using the total
loss. However, since there are twice as many
text-only samples than image-caption sam-
ples, this results in training the model twice
on the image-caption dataset. For 10 training
epochs, this equals 10 text-only epochs and
20 image-caption epochs.

For a fair comparison among all of the methods
we implement in this work, we alternate between
text-only epochs and image-caption epochs in our
experiments exploring architectural changes and
auxiliary objective functions. That is because the
contrastive learning objective functions compute
similarity scores between a caption and all the im-
ages in a batch. If the batch contains (many) text-
only samples, it cancels the effect of the auxiliary
losses.

Empirical results we obtain support this choice
among the data curriculum strategies we define.
Figure 4 visualises the scores of our base model
for the different data curriculum strategies evalu-
ated using the BabyLLM Challenge 2024 evaluation
pipeline .

For BLiMP, the pattern in subfigure 4a suggests
that (1) the text-only dataset supports the BLiMP
benchmark far more than the image-caption one,
and (2) these strategies result in catastrophic for-
getting for the model by the end of training.

For BLiMP Supplement, the optimal data cur-
riculum strategy is less clear, as the model’s perfor-
mance oscillates when alternating between epoch
types. Comparing the text-only epochs first and
image-caption epochs first strategies shows that the

5https://github.com/aaronmueller/babylm_
multimodal_training

Shttps://github.com/babylm/
evaluation-pipeline-2024

image-caption dataset better supports the model on
BLiMP Supplement than the text-only dataset. In-
terestingly, the model’s performance score consis-
tently decreases over checkpoints when the model
is trained using the non-uniform mixed strategy.
A possible explanation for this result is that since
there are more text-only samples in a batch than
image-caption samples, the gradient updates are
dominated by the text-only data, reducing the ef-
fect of the image-caption samples.

Similar to the other analyses in this work, chang-
ing the data curriculum strategy has no visible ef-
fect on the EWoK benchmark, underscoring that
the training data might not be well-suited for this
benchmark.

Training our base model using the uniform mixed
strategy results in a higher Winoground score, with
several checkpoints achieving over 53% on this
benchmark. However, a significant factor contribut-
ing to this result is the amount of image-caption
training data, which is double for this strategy than
for the others. Comparing the text-only epochs first
and image-caption epochs first strategies, it can be
seen that the model performs better on Winoground
when consistently trained on the image-caption
dataset. Using the non-uniform mixed strategy re-
sults in a more unstable performance and a lower
final score, possibly due to the dominance of text-
only samples in the training batches.

As shown in subfigure 4e, the alternating be-
tween text-only and image-caption epochs strategy
achieves the best performance on VQA. There is
a significant performance gap between the model
trained using alternating epochs compared to the
mixed strategies (over 5%), as well as the text-only
epochs first and image-caption epochs first strate-
gies (over 10%). The alternating epochs strategy
shows an almost consistent increase over check-
points, whereas the model’s performance in the
mixed variants remains flat, and decreases for the
text-only epochs first and image-caption epochs
first strategies. The results of the coarse-grained
strategies are likely due to the training data. The
image-caption dataset supports the visual reason-
ing component of VQA, while the text-only dataset
supports the question format by containing turn-
taking constructions and a significantly larger num-
ber of questions than the other dataset. Training
the model consistently on only one epoch type de-
prives it of one of these complementary compo-
nents. Training by alternating between epoch types
appears to strike a balance and avoid catastrophic

209


https://github.com/aaronmueller/babylm_multimodal_training
https://github.com/aaronmueller/babylm_multimodal_training
https://github.com/babylm/evaluation-pipeline-2024
https://github.com/babylm/evaluation-pipeline-2024

64 64
Alternating Epochs
62| —=— Text-only Epochs First 62
—— Image-caption Epochs First
0601 —*— Non-uniform mixed 60
5 —e— Uniform mixed 0 opechs
& 58 10 epochs 58
2 completed \
g —— A
556 / 56
o
o i
354 e s
o
g 52 52
2 — ———
50 50
48 48
100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K 1100K 1107K
Checkpoint
(b) BLiMP Supplement scores.
64 64
Alternating Epochs
62{ —=— Text-only Epochs First 62
—— Image-caption Epochs First
60| —e— Non-uniform mixed 60
—e— Uniform mixed
o
558 58
o
]
Tse 56
3
°
2 10 epochs
Bas 54
£ _— completed
H —_—
52 ) sl —y |52
— :"—_‘ 2 —
e ..
50 7 e ~i e 50
48 48

100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K 1100K 1107K
Checkpoint

(d) Winoground scores.

10 epochs
76 St M] —t—{76
74 f;—d——S—' el 74
» = ~
¢ »
—
72 /- /’74/ ——— 72
— K
o
5 70
870
w
o
68
=
5 68
@
66
66 p
Alternating Epochs
—a— Text-only Epochs First 64
64 —— Image-caption Epochs First
—&— Non-uniform mixed 62
62 r —e— Uniform mixed
A/ I ) — 60
100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K 1100K 1107K
Checkpoint
(a) BLiMP scores.
64 64
Alternating Epochs
62{ —=— Text-only Epochs First 62
—— Image-caption Epochs First
60{ —*— Non-uniform mixed 60
—e— Uniform mixed
58 58
4
o
& 56 56
X
o
254 54
10 epochs
10 h
50 50
48 48
100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K 1100K 1107K
Checkpoint
(c) EWoK scores.
Al ting Epoch:
55 ernating Epochs

—=— Text-only Epochs First

—— Image-caption Epochs First
—e— Non-uniform mixed

50{ —e— Uniform mixed

10 epochs 55
completed

50

10 epochs
completed

g L A
»-
@4 o 4\ Z'/ \ 45
RN —
< »
o & \ -
> 40 ./ \7“& 40
/ w eSS
o - e .
35 \/ 35
=
30 30
100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K 1100K 1107K
Checkpoint
(e) VQA scores.

Figure 4: The performance of our base model on BLiMP, BLiMP Supplement, EWoK, Winoground and VQA for
different data curriculum strategies, evaluated using the BabyLM Challenge 2024 evaluation pipeline. The uniform
mixed strategy follows a different definition than the others, where the number of steps in an epoch equals the
number of text-only samples. This results in ~700K training steps for 10 epochs, which are marked in the graphs by
the blue dashed line. The end of 10 epochs for the other data curriculum strategies is marked by the black dashed

line at step ~1107K.

forgetting. The results of the uniform mixed strat-
egy are slightly surprising given that the Flamingo
and GIT baselines achieve higher VQA scores us-
ing this approach, however, the difference could
stem from using a lower learning rate and a differ-
ent text-only to image-caption data ratio.

F Training Dynamics

In figure 5, we visualise the performance of our
base model, evaluated every 50,000 steps on the
five benchmarks using the BabyLLM Challenge
2024 evaluation pipeline, when alternating between
text-only and image-caption epochs. The brown
dotted lines indicate that the checkpoint was saved
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Figure 5: The performance of our base model every 50,000 steps on the BLiIMP, BLIMP Supplement, EWoK,
Winoground and VQA benchmarks. The brown doted lines indicate that the checkpoint was saved during a text-only
epoch, while the green dashed lines indicate that the checkpoint was saved during an image-caption epoch.

during a text-only epoch, while the green dashed
lines indicate that the checkpoint was saved during
an image-caption epoch. For BLIMP Supplement
and VQA, an interesting pattern emerges: the per-
formance scores significantly oscillate based on the
type of data on which the model was last trained.

The data that the model was last trained on can
be regarded as a fine-tuning step. Thus, we make
the following observations:

The base model achieves better performance
on BLiMP Supplement during image-caption
epochs. As shown in subfigure 5a, our base model
obtains higher scores on BLIMP Supplement, a
text-only benchmark evaluating grammar, at check-
points saved during image-caption epochs com-
pared to text-only epochs. We investigate the break-
down of the BLIMP Supplement scores and notice

that the score difference for different epoch types
stems from two subtasks, subject-auxiliary inver-
sion and turn-taking. For these subtasks, the per-
formance of our base model fluctuates by even
~10% between checkpoints. We thus investigate
the log probability scores of our base model for
each subtask example at checkpoints 500,000 (text-
only epoch) and 550,000 (image-caption epoch),
for which the former model is incorrect and the
latter is correct. These two checkpoints present the
highest difference in BLiMP Supplement scores
(7.54%). We make the following observations:

1. For the subject-auxiliary inversion, 68.2% of
the examples for which the model at check-
point 500,000 (text-only epoch) is incorrect
and the model at checkpoint 550,000 (image-
caption epoch) is correct have the correct sen-
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tence of the pair starting with “Is" followed by
a noun phrase. For example, pairs such as (“Is
the host expecting an award-winning director
that hasn’t finished dressing yet?", “Hasn’t the
host is expecting an award-winning director
that finished dressing yet?"). This contrasts
with the distribution of the task, where 31.1%
of the pairs have the correct sentence starting
with “Is" followed by a noun phrase. We theo-
rise that the Localized Narratives dataset sup-
ports the model at checkpoint 550,000 (image-
caption epoch) in choosing the "Is" followed
by noun phrase sentences with higher prob-
ability, which happen to be the correct sen-
tences in these pairs. That is because there
are 706,251 constructions of the form “there
is" followed by a noun phrase in the Local-
ized Narratives dataset. We hypothesise that
as a result, our model learns that the pattern
“is" followed by a noun phrase is more likely
during the image-caption epochs.

2. For the turn taking subtask, even if the model
at checkpoint 550,000 (image-caption epoch)
chooses the correct sentence more often, it
does so with little confidence. For most exam-
ples for which checkpoint 550,000 (image-
caption epoch) is correct and checkpoint
500,000 (text-only epoch) is not, the log prob-
ability difference between the correct and in-
correct sentence of the former checkpoint is
less than 2 points. To put this in context, the
log probability scores range between -89 and
-156, for which 2 points represent 0.013% to
0.0225%. There is no noticeable pattern in the
training data that can motivate the model’s bet-
ter performance during image-caption epochs
on the the turn taking subtask. We conclude
that this behaviour requires further investiga-
tion which we leave for future work.

The base model achieves better performance on
VQA during text-only epochs. In figure 5b, it can
be noticed the score of our base model on VQA
oscillates by 5% to 10% between text-only epochs
and image-caption epochs. We theorise that the
cause of these variations is the difference in textual
data between the two types of epochs. There are
no turn-taking constructions in the image-caption
datasets, and the number of questions (25,300 ques-
tion marks) is significantly lower than in the text-
only datasets (1,083,559 question marks). How-
ever, both are present in the format of the VQA

text data. Therefore, we conclude that the image-
caption datasets support the VQA task less due to
differences in the text format. We argue that for a
high score on VQA during image-caption epochs,
the image-caption datasets should contain samples
similar to the task.

The alternation between text-only and image-
caption epochs has little to no effect on the
BLiMP, EWoK and Winoground benchmarks
for the base model. As shown in figure 5, there
is little oscillation between text-only and image-
caption epochs on the BLIMP benchmark, suggest-
ing that the text-only dataset supports the model
better for this task, but the score generally in-
creases. There are no noticeable patterns for EWoK
or Winoground.

Note: The reason the scores in all benchmarks
stabilise after checkpoint 800,000 is because of
the small learning rate (5e-5) combined with the
learning rate schedule (cosine annealing) we chose
for training. After checkpoint 800,000, the learning
rate gradually decreases from le-5 to 0, which has
little effect on the gradients.

G Correlation to Imageability Scores

Category Gate Selection
Mean (SD)  # words
Very Low (<342) 0.427 (0.143) 401

Low (342-450) 0.481 (0.130) 96
High (450-558)  0.378 (0.126) 78
Very High (>558) 0.351 (0.155) 140

Categories defined as ;¢ + o based on the MRC database.
SD = standard deviation.

Table 3: Mean gate value per imageability bin for our
base model (incorporating a soft gate per feature).

Table 3 summarises the mean gate values for our
base model corresponding to meaningful image-
ability bins, defined using cutpoints at mean + 1
SD from the MRC database (Coltheart, 1981).

H Experiments Setup

For all architectural features and training strategies
we define in subsections 3.3-E and A-C, we con-
duct experiments in the form of ablation studies in
order to evaluate each potential improvement in iso-
lation. We select our base architecture, described in
section 3.2, and define one experiment per feature.
We train each enhanced model in the same condi-
tions and evaluate it on five BabyLM Challenge
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benchmarks: BLiMP, BLiMP Supplement, EwoK,
Winoground and VQA.

H.1 Base Model Implementation Details

We implement our dual stream transformer in Py-
Torch (Imambi et al., 2021), following the archi-
tecture we introduce in section 3.2. We summarise
our hyperparameter choices for the base model in
table 4.

We use pre-layer normalisation rather than post-
layer normalisation in our implementation as pre-
vious research shows that pre-layer normalisation
provides better training stability for networks larger
than six layers (Takase et al., 2022), which is cru-
cial given our limited training budget and inability
to perform extensive hyperparameter searches.

Following standard transformer design, we
use residual connections around each sub-layer
(feed-forward networks, self-attention and cross-
attention).

While the image encoder may be over-
parameterised for single token processing, empiri-
cal results validate this choice (Appendix I), and it
ensures architectural consistency and directly com-
parable results for future extensions to patch-based
visual inputs.

H.2 Training Details

We train all of our models using the hyperparame-
ters summarised in table 5 using the BabyLM Chal-
lenge 2024 evaluation pipeline, with the exception
of a few changes for the auxiliary objective func-
tion and data curriculum experiments. In the case
of the auxiliary objective function experiments, we
increase the batch size from 64 to 128 as a larger
batch size is recommended for contrastive learn-
ing (Chen et al., 2020), which results in a total of
553,510 steps. Due to computational constraints,
we were not able to select a larger batch size. In the
case of the data curriculum experiments, the data
order differs according to the strategy we define
for that experiment. For the model trained using
LexiContrastive Grounding as the auxiliary func-
tion, we use weight tying as recommended in the
original work (Zhuang et al., 2024).

We select a learning rate of 5e-5 to ensure train-
ing stability, despite this being conservative for the
model size. While alternating between text-only
and image-caption epochs improves performance
on the benchmarks (as shown in Appendix E), this
training regime can cause gradient instability when

transitioning between epoch types. Therefore, we
adopt a lower learning rate to mitigate this risk.

H.3 Data Pipeline Details

The text-only training dataset is provided in .zxt
files, while the multimodal one is provided in .json
files for the captions and .npy for the image embed-
dings, where each row in the numpy array embeds
one image as a global token of dimension 768. We
load the text-only data as one training sample per
line, and the image-caption data as one (image, cap-
tion) pair representing one training sample. We do
not perform any preprocessing on either data.

For the text-only data and the captions, we to-
kenise the text using the GPT-2 tokeniser (Radford
et al., 2019), as our model is autoregressive. We
also add the BOS and EOS special tokens at the be-
ginning and end of each text-only/caption sample,
respectively.

We split the data into 80% training, 10% valida-
tion and 10% held-out test sets. In order to ensure
that all models are trained on the same data, we
save the data split indices and reuse them for all ex-
periments. We shuffle the training dataset indepen-
dently for each run while maintaining consistent
train/validation/test partitions.

I Design Choices for the Image
Processing Pipeline

Despite using only global image embeddings, we
chose to implement an image encoder in our frame-
work for the following reasons:

* Future compatibility: We aim to develop fu-
ture iterations of this framework that address
current limitations by using patch tokens in-
stead of global image embeddings. For com-
parable results, we choose to use an encoder
for the CLS token as well, which benefits from
feed-forward and normalisation layers, but not
self-attention. The image encoder outputs a
non-linear adaptation of pre-trained visual fea-
tures and improves alignment with the text
stream.

* Empirical performance: We experimented
with three variants: (1) directly using linearly
projected DINOv2 embeddings, (2) applying
a 2-layer multi-layer-perceptron (MLP), and
(3) using the transformer encoder. The en-
coder variant demonstrated superior perfor-
mance across benchmarks, which can be at-
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tributed to the encoder’s deeper transforma-
tion capacity. The benchmark scores for the
three variants are available in table 7.

Computational efficiency: An alternative to
the image encoder is to import and fully or
partially unfreeze the external pre-trained im-
age encoder used in the BabyLM Challenge,
facebook/dino2-base7. However, this would
require processing the raw images through
the entire encoder (86.6 million parameters)
during training, which would significantly in-
crease the computational costs for data load-
ing, forward passes (and backward passes if
unfrozen) and memory usage. This approach
contradicts the constraints of the challenge,
which advocates for the fair use of computa-
tional resources. In contrast, a customisable
image encoder component taking as input pre-
computed embeddings can be modified based
on the user’s computational constraints.

Table 7 summarises the performance of the base
model with different image processing pipelines,
evaluated every 200,000 steps on BLiMP, BLiMP
Supplement, EWoK, Winoground and VQA using
the BabyLM Challenge 2024 evaluation pipeline.
As shown, the results on BLiMP, BLiMP Supple-
ment and VQA validate the use of a transformer
encoder, for which the base model achieves the
best scores. However, since a single image embed-
ding cannot benefit from the self-attention mecha-
nism, an MLP encoder suffices if computational re-
sources are a constraint, achieving competitive per-
formance .Besides the superior performance, the
motivation for using a transformer encoder in this
work was to enable a direct performance compari-
son with future iterations of the framework using
patch-token embeddings.

7https ://huggingface.co/facebook/dinov2-base
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Model Hyperparameter Value

Model Dimensions

Model dimension (d,,oqe1) 768

Hidden dimension 3072

Number of attention heads 8

Image encoder layers 5

Decoder layers 8

Vocabulary & Sequence

Vocabulary size 50,260 (GPT-2 tokeniser (Radford et al., 2019))
Maximum sequence length 128

Special tokens [PAD], [BOS], [EOS]

Activation & Regularisation

Activation function GELU (Hendrycks and Gimpel, 2016)
Dropout rate 0.1

Layer normalisation Pre-layer norm

Layer norm epsilon le-5 (PyTorch default)

Input Dimensions

DINOV2 embedding dimension 768

DINOV2 representation CLS token only

Model Statistics

Total parameters ~198.5M

Table 4: The hyperparameters list for our dual stream transformer base model.

Training Hyperparameter Value

Data order Alternating between text-only and image-caption epochs
Number of epochs 10 text-only and 10 image-caption

Total number of steps 1,107,020

Checkpoints saved Every 50,000 steps

Batch size 64

Learning rate Se-5

Learning rate schedule Cosine annealing

Optimiser AdamW with 81 = 0.9, 85 = 0.999,¢ = 1le — 8
Number of steps for warmup ~1%

Weight decay 0.01

Gradient clipping norm 1.0

Main loss function Cross-entropy

Random seed 42

Table 5: The hyperparameters list for our base training regime.
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# Model Architecture Model Hyperparams Training Config

1 Base model (§3.2) Default” Default®
Dynamic Gating
2 Base model + no gate Default” Default”
3 Base model + soft gate per feature Default” Default”
4 Base model + soft gate per token Default” Default’
5 Base model + hard gate per feature Default” Default’
6 Base model + hard gate per token Default” Default’
Feature Representation
7 Base model + FiLM on text Default® Default”
8 Base model + FiLM on image Default” Default”
9 Base model + FiLM on cross-attention ~ Default” Default”
10 Base model + Dylntra on text Default” Default”
11 Base model + Dylntra on image Default® Default”
12 Base model + DyIntra on cross-attention Default” Default”
13 Base model + Channel Attention Default” Default”
Auxiliary Objectives
14 Base model Default” Default” + CLIP (BS=128)
15 Base model Default” + weight tying Default” + LCG (BS=128)
Data Curriculum
16 Base model Default® Text-only — image-caption®
17 Base model Default” Image-caption — text—onlyd
18 Base model Default® Non-uniform mix*
19 Base model Default” Uniform mix

“Asin Table4 “AsinTable5 BS = batch size
“First 10 epochs text-only, next 10 epochs image-caption
“First 10 epochs image-caption, next 10 epochs text-only

“Image-caption and text-only data non-uniformly mixed in same batch

Table 6: Summary of all the experiments we conduct in this work.
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Model Checkpoint BLiMP BLiMP S. EWoK Winoground VQA
200K [ 69.99 +£0.17 | 54.03 £0.52 | 49.87 £ 0.57 | 51.74 + 1.83 | 43.00 + 0.31
400K |73.21+0.16 | 53.33 £0.62 | 49.93 +£0.57 | 52.68 + 1.83 | 46.54 + 0.31
Base + 600K | 72.82+0.16|52.89 +0.65 | 50.38 £ 0.57 | 52.95 + 1.83 | 46.41 +0.31
No Encoder 800K | 73.40 £0.16 | 53.69 £ 0.64 | 50.16 + 0.57 | 52.41 + 1.83 | 46.52 + 0.31
M 73.17 £0.16 | 53.62 £ 0.64 | 50.43 £ 0.57 | 52.14 + 1.83 | 46.65 + 0.31
1.107TM | 74.29 +0.16 | 55.63 +0.58 | 50.18 £ 0.57 | 51.21 + 1.83 | 45.02 + 0.31
200K [ 70.66+0.17 | 57.42 £ 0.49 [ 50.03 £ 0.57 | 52.01 + 1.83 | 41.72 + 0.31
400K | 73.47 +£0.16 | 51.89 + 0.66 | 49.96 + 0.57 | 50.67 + 1.83 | 48.41 + 0.31
Bﬁsf; 600K | 73.20+0.16 | 52.49 +0.68 | 50.02 + 0.57 | 52.01 + 1.83 | 43.32 £ 0.31
Encoder 800K  |74.06+0.16 | 51.71 £ 0.67 | 50.47 £ 0.57 | 52.28 + 1.83 | 48.18 + 0.31
M 73.71 £0.16 | 50.56 + 0.67 | 50.21 £ 0.57 | 52.55 + 1.83 | 48.54 + 0.31
1.107TM | 74.35+0.16 | 55.38 £ 0.60 | 50.21 +0.57 | 50.27 + 1.83 | 49.83 + 0.31
200K 6997 +0.17]55.02+0.54 [ 49.83 £0.57 | 51.07 + 1.83 | 34.11 £ 0.32
400K |73.22+0.16 | 51.88 £0.66 | 50.13 = 0.57 | 50.94 + 1.83 | 47.82 + 0.31
T Base + 600K | 73.47+0.16 | 53.08 £0.62 [ 50.74 £ 0.57 | 51.61 + 1.83 | 48.36 + 0.31

ransformer

Encoder 800K | 74.18 £0.16 | 52.69 + 0.62 | 50.69 + 0.57 | 52.41 +1.83 | 51.2 +0.31
M 7434 +0.16 | 54.00 £ 0.61 | 50.82 £ 0.57 | 52.41 +1.83 | 51.2 +0.31
1.107M | 75.53+£0.16 | 55.71 £0.57 | 50.41 £0.57 | 51.74 + 1.83 | 50.02 + 0.31

Table 7: The performance of the base model with different image processing pipelines, evaluated using the
2024 BabyLM Challenge evaluation pipeline. The models are evaluated every 200,000 steps on BLiMP, BLiMP
Supplement, EWoK, Winoground and VQA.
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