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Abstract

Most studies on language model pretraining fo-
cus on large datasets, leaving open questions
about optimization in data-constrained settings.
In such settings, the effects of training data
order and of including alternative versions of
the same text remain underexplored. We ad-
dress this by studying curriculum learning in
pretraining, focusing on text-complexity order-
ing and data augmentation via simplification.
We ask: (1) Does simplifying texts enhance
representation quality more than reusing the
original data? and (2) Does ordering data by
text complexity yield better representations? To
answer, we build on a pair of parallel corpora
where human-written paragraphs are aligned
with LLM-simplified variants, and test four
data schedules: repeated exposure, low-to-high
complexity, high-to-low, and interleaved. We
analyze models’ representation quality from a
sample efficiency perspective via fine-tuning,
as well as its zero-shot performance on linguis-
tic knowledge, entity tracking, world knowl-
edge, and commonsense reasoning. Our find-
ings show that adding simplified data improves
fine-tuning and zero-shot performance over a
repeated-exposure baseline: smaller models
benefit from low-to-high complexity, while
larger models perform better with interleaved
ordering.

1 Introduction

Scaling studies show that language model perfor-
mance improves predictably with more data, param-
eters, and compute (Kaplan et al., 2020; Hoffmann
et al., 2022). However, these studies typically as-
sume that the amount of unique pretraining data is
effectively unlimited (Muennighoff et al., 2025). In
practice, pretraining often faces data-constrained
settings where continued exposure to the same cor-
pus is unavoidable. Under such conditions, two
factors remain underexplored in modern decoder-
only pretraining: (1) the order in which training
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Figure 1: Average score on six language tasks by cur-
riculum and fine-tuning data size. (Top) The 124M
model benefits from SIMP → HW curriculum, suggesting
smaller models gain from warming up on simpler text.
(Bottom) The 256M model benefits from INTERLEAVED,
favoring balanced exposure. All but HW → SIMP outper-
form BASELINE in sample efficiency.

data is presented, and (2) the use of simpler ver-
sions of the same text.

We examine these factors concretely. For train-
ing data order, we focus on coarse-grained text
complexity ordering—presenting a simple corpus
before a complex one—while keeping the core con-
tent constant, following the intuition of curriculum
learning (Bengio et al., 2009). We define "simple"
texts as those that use higher-frequency vocabulary
and have shallower syntactic structures.
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Our experiments use a high-quality English
dataset where human-written paragraphs are paired
with simplified counterparts produced by an LLM.
This corpus was introduced and validated in con-
current work (Velasco and Roque, 2025), which
demonstrates that simplification reduces surface-
level complexity (sentence length, syntactic depth,
lexical diversity) while preserving semantic con-
tent. Here, we do not revisit corpus construction in
detail; instead, we leverage it to test how simplified
data and ordering strategies interact under a fixed
training budget.

We evaluate four data schedules:

• BASELINE: repeated exposure to human-
written text.

• INTERLEAVED: human-written and simplified
paragraphs uniformly mixed.

• SIMP→HW: training first on simplified, then
human-written text (curriculum).

• HW→SIMP: training first on human-written,
then simplified text (anti-curriculum).

All other training variables (architecture, tokenizer,
context length, optimizer) are held constant across
schedules, isolating the effect of text complexity
and order.

Research questions. We ask two core questions:

(1) In data-constrained settings, does replacing re-
peated exposure with simplified text improve
representation quality?

(2) Does ordering data by text complex-
ity—simple to complex versus inter-
leaved—yield better downstream and
zero-shot performance?

Contributions. Our contributions are threefold:

(1) We provide the first controlled study of how
text simplification and curriculum scheduling
interact in data-constrained pretraining.

(2) We evaluate these schedules across fine-tuning
and zero-shot tasks, covering linguistic knowl-
edge, entity tracking, world knowledge, and
commonsense reasoning.

(3) We show that simplified data generally im-
proves performance over repeated exposure,
that smaller models benefit from simple-to-
complex curricula, and that larger models fa-
vor balanced exposure via interleaving.

2 Related Work

Data-constrained Pretraining and Synthetic
Data. Most scaling studies assume unlimited
data. In data-constrained settings, Muennighoff
et al. (2025) shows that training up to four epochs
of repeated data is just as good as unique data, but
further repetition offers no benefit. Recent works
address the "data wall" either by using LLMs to
generate synthetic data (Gunasekar et al., 2023;
Ben Allal et al., 2024) or to rewrite existing data,
broadly across general domains (Maini et al., 2024;
Su et al., 2025; Nguyen et al., 2025; DatologyAI
et al., 2025) and in specific domains such as math,
code, and clinical text (Fujii et al., 2025; Liu and
Nguyen, 2024). Rewriting into simpler forms re-
mains underexplored; we investigate this setting.

Curriculum Learning. Humans learn better
when examples follow a meaningful order (e.g.,
simple to complex). Bengio et al. (2009) formal-
ized this as Curriculum Learning (CL), training
neural networks on data of gradually increasing
complexity. The opposite, anti-curriculum, has
sometimes matched or outperformed CL (Kocmi
and Bojar, 2017; Zhang et al., 2018). Difficulty
metrics vary by application: in code language
models, Naïr et al. (2024) used software engineer-
ing metrics, while in machine translation, Zhou
et al. (2020) measured sequence uncertainty via
language model entropy. Recent studies applied
CL to pretraining language models: Tsvetkov et al.
(2016) examined linguistically inspired measures
such as age of acquisition, while Oba et al. (2023)
measured complexity via dependency tree depth. A
recent large-scale study by Zhang et al. (2025) finds
that using text complexity metrics such as Flesch
Reading Ease, Lexical Diversity, and Compression
Ratio can accelerate convergence and modestly out-
perform random shuffling.

However, most CL studies in pretraining conflate
language and content complexity, failing to iso-
late the effect of ordering by language complexity.
Most pretraining studies also assume large data vol-
umes, leaving open the question of how to advance
pretraining in data-constrained settings beyond re-
peated exposure. This work uniquely addresses this
gap, testing whether LLM-based simplification and
coarse-grained text complexity ordering improve
representational quality beyond repeated exposure
to the original data.
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3 Methodology

3.1 Data
We reuse the two parallel corpora from Velasco
and Roque (2025), derived from a 2B-token sub-
set of FineWeb-Edu (ODC-By 1.0; Penedo et al.,
2024). The human-written corpus (HW) and its sim-
plified variant (SIMP) are aligned at the paragraph
level: each paragraph in HW has a corresponding
simplification in SIMP produced by an LLM, with
paragraphs that fail basic length/formatting checks
symmetrically removed from both sides to preserve
one-to-one alignment. After filtering, token counts
are approximately 2.00B (HW) and 1.71B (SIMP).

In brief, SIMP reduces surface-level complexity
(shorter sentences, shallower syntax, more frequent
vocabulary) while preserving core content; Ve-
lasco and Roque (2025) report readability and lexi-
cal/syntactic metrics alongside semantic-similarity
checks that validate this property. Our study fo-
cuses on how to use these corpora under a fixed
budget: repeated exposure vs. augmentation with
simplifications and interleaving vs. ordered cur-
ricula. All other variables (architecture, tokenizer,
context length, optimizer) are held constant across
schedules.

3.2 Schedules
We compare four data schedules that differ only in
the order of data presented to the model. Unlike
most curriculum strategies that manipulate com-
plexity per example (fine-grained), our schedules
are coarse-grained, adjusting complexity at the cor-
pus level rather than per example. The four sched-
ules are as follows:

• BASELINE: two epochs of HW (simulating data-
constrained scenarios).

• INTERLEAVED: HW and SIMP are uniformly in-
terleaved, preserving each corpus’s within-
source order (simulating random shuffling in
a more balanced way).

• SIMP→HW: concatenation of SIMP and HW (sim-
ulating standard curriculum).

• HW→SIMP: concatenation of HW and SIMP (sim-
ulating anti-curriculum).

Each training example is a single paragraph, and
both HW and SIMP corpora are perfectly parallel,
containing the same number of paragraphs. Within
each source, paragraph order is fixed across all

schedules, ensuring differences arise only from the
sequence in which the two sources are presented.
This design isolates the effect of data ordering by
text complexity and the presence of LLM-rewritten
text, while controlling for content coverage and
total training steps.

3.3 Model and Training

We use 124M and 256M parameter causal lan-
guage models based on the design principles of
MobileLLM (Liu et al., 2024), adopting a deep-
and-thin architecture with SwiGLU activations
(Shazeer, 2020), grouped-query attention (Ainslie
et al., 2023), and without embedding weight shar-
ing for better comparability with contemporary
decoder-only models. Each model has 30 trans-
former layers with 9 attention heads (3 key–value
heads per layer) and embedding dimensions of 576
(124M) and 846 (256M). We refer to the config-
urations as 124M/256M by convention; the total
parameter counts including embeddings are approx-
imately 143M and 283M, respectively.

All corpora are tokenized using the LLaMA-2
BPE tokenizer (Touvron et al., 2023) with a 32,000-
token vocabulary. Training examples are individ-
ual paragraphs, with no concatenation or sequence
packing to control for total training steps. Inputs
are right–padded to 512 tokens with the EOS token.

Optimization uses AdamW (Loshchilov and Hut-
ter, 2019) with default hyperparameters, a peak
learning rate of 3e−4 linearly decayed over train-
ing, 5% warm-up, and no dropout. The effective
batch size is 256 (8 examples per GPU × 8 GPUs
× 4 gradient accumulation steps). Training is con-
ducted in FP16 mixed precision on 8× NVIDIA
P100 GPUs, without gradient checkpointing. All
experiments use PyTorch with Hugging Face Trans-
formers and Distributed Data Parallel (DDP), with
a fixed random seed of 42 for data shuffling and
parameter initialization.

3.4 Evaluation Setup

We evaluate each schedule under two complemen-
tary regimes to capture both transferable language
understanding after fine-tuning and generalization
without further task-specific training.

Fine-tuning on NLU tasks. We fine-tune the pre-
trained models on a subset of the BabyLM eval-
uation pipeline’s natural language understanding
(NLU) tasks, using the preprocessed training and
validation splits provided therein (Charpentier et al.,
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2025). From the original suite, we exclude:

• MultiRC, due to its substantially larger size
and because preliminary experiments showed
none of our pretraining setups outperformed
training from scratch (58–59 points).

• WSC, due to its much smaller dataset size
and the high variance (4–12 points) observed
across seeds under different fine-tuning bud-
gets.

The resulting set of tasks is: BoolQ, MNLI, MRPC,
QQP, and RTE. Each task is framed as classi-
fication, with paired-input tasks (e.g., premise-
hypothesis) concatenating the two sequences with
a separator token. Fine-tuning is performed with
all model parameters trainable. Batch sizes are
set by memory constraints: 2 examples per GPU
(effective batch size 16) for BoolQ, and 8 ex-
amples per GPU (effective batch size 64) for all
other tasks. For each task, we search over learn-
ing rates {1e−4, 5e−5, 2e−5, 1e−5, 5e−6} and
epochs {1, 2, 3, 4, 5}. Model selection is based on
the highest validation score according to the task’s
standard metric (accuracy for BoolQ, MNLI, and
RTE; F1 for MRPC and QQP). All results are aver-
aged over three runs with different random seeds.

In addition to this Full fine-tuning setup, we
introduce two smaller-scale, class-balanced vari-
ants to test whether having more downstream task
examples diminishes the influence of pretraining
differences. For each task, we identify the class
with the fewest examples in the original training
split, then construct:

1. Small dataset, in which all classes contain
exactly half of the least-represented class size,
and

2. Tiny dataset, in which all classes contain ex-
actly one quarter of the least-represented class
size.

This ensures that all classes are equally repre-
sented and that dataset size is systematically re-
duced across tasks.

These smaller datasets are fixed across runs so
that each of the three seeds per setup uses the same
subset of examples, with only model initialization
differing. The same hyperparameter sweeps are
applied to these reduced datasets as in the full-data
setup.

Task Classes Full Small Tiny

MNLI 3 10,000 4,911 (49%) 2,454 (25%)
MRPC 2 3,668 1,194 (33%) 596 (16%)
BoolQ 2 9,427 3,552 (38%) 1,776 (19%)
RTE 2 2,490 1,240 (50%) 620 (25%)
QQP 2 10,000 3,662 (37%) 1,830 (18%)

Table 1: Number of training examples per NLU task
in the Full, Small, and Tiny fine-tuning setups. Small
and tiny datasets are class-balanced subsets, with per-
centages shown relative to the full dataset. Percentages
vary across tasks because subset sizes are determined
relative to the least-represented class in each dataset.

Zero-shot evaluation. Using the LM Evalua-
tion Harness (Gao et al., 2024), we assess models
trained under different curricula via zero-shot per-
formance on a suite of multiple-choice benchmarks,
grouped into three capability areas:

• Linguistic knowledge: BLiMP (Warstadt
et al., 2020) and BLiMP Supplement (Charp-
entier et al., 2025) for syntactic and morpho-
logical phenomena.

• Discourse and world knowledge: Entity
Tracking (Kim and Schuster, 2023) for ref-
erence consistency, and MMLU (Hendrycks
et al., 2021) and EWoK (Ivanova et al., 2024)
for factual knowledge.

• Commonsense reasoning: ARC (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), PIQA
(Bisk et al., 2020), Social IQa (Sap et al.,
2019), and OpenBookQA (Mihaylov et al.,
2018) for reasoning about everyday scenarios.

All zero-shot tasks are formatted according to
their official specifications. For each candidate
answer, we compute the sum of log-probabilities
of its tokens given the prompt and select the option
with the highest score. Accuracy is reported for all
tasks. Evaluation is deterministic and performed
on a single NVIDIA P100 GPU.

4 Results and Discussion

Across fine-tuning and zero-shot setups, outcomes
hinge on two factors: augmenting with simplified
data versus repeated exposure, and ordering of data
from simplified to complex versus interleaving.

4.1 Simplification vs. Repetition
We ask whether replacing a second pass over
the human-written corpus with LLM-based sim-
plifications improves pretraining. The primary
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Model Full Small Tiny

124M
BASELINE 70.9 67.7 64.4
INTERLEAVED 71.1 68.2 64.8
SIMP→ HW 71.4 68.3 65.2
HW→ SIMP 71.1 67.5 64.4

256M
BASELINE 73.9 68.8 65.0
INTERLEAVED 75.7 70.7 66.9
SIMP→ HW 75.3 69.5 65.6
HW→ SIMP 75.5 69.1 64.8

Table 2: Macro-average across five NLU tasks (BoolQ,
MNLI, MRPC-F1, QQP-F1, RTE) under three fine-
tuning budgets: Full, Small, and Tiny. Best per model
size per budget in bold. At 124M, SIMP→HW leads
across all budgets (+0.5–0.8 vs. BASELINE); at 256M,
INTERLEAVED leads across all budgets (+1.8–1.9), indi-
cating size- and budget-dependent preferences. Per-task
breakdowns with mean ± std. dev. are in Appendix A.

comparison is BASELINE (two epochs of HW) vs.
INTERLEAVED, which uniformly mixes HW and
SIMP.

Fine-tuning evaluation. At 124M, adding SIMP
yields small, consistent gains over BASELINE
when mixed (INTERLEAVED: +0.2, +0.5, +0.4 on
Full/Small/Tiny). At 256M, the benefits of includ-
ing SIMP are larger overall in the mixed setting
(INTERLEAVED: +1.8/+1.9/+1.9). These advantages
grow as fine-tuning data decreases: INTERLEAVED
degrades less than BASELINE on Small and Tiny
setups, suggesting simplification is most beneficial
when data is scarce, improving sample efficiency.

Zero-shot evaluation. Across linguistic, dis-
course, and commonsense benchmarks, introduc-
ing SIMP tends to be neutral to positive at 124M and
more evidently positive at 256M, with the largest
single gain appearing on entity tracking when mix-
ing (INTERLEAVED vs. BASELINE: ≈ +4.9 points at
256M, Table 4). Other tasks show smaller, some-
times mixed, changes, so the aggregate trend favors
simplification but with task-family variability (Ta-
ble 3).

Summary. Compared to repeating HW, in-domain
augmentation via LLM simplification yields mod-
est gains at 124M and larger gains at 256M. While
we do not claim causality, a plausible explanation is
that the additional capacity of the 256M model may
better absorb paraphrastic variety, making mixed
(INTERLEAVED) exposure yield small but consistent
improvements in both fine-tuned and zero-shot set-

tings. We consider this hypothesis specific to our
training setup rather than a general rule.

While repetition underperforms simplification,
it remains attractive given its zero generation cost
and competitive results, consistent with findings
by Muennighoff et al. (2025). Our results com-
plement rather than replace repeated exposure:
since performance saturates beyond four epochs,
text simplification offers a way to extend these
gains further in data-constrained settings.

4.2 Curriculum vs. Interleaving

We next ask whether ordering simplified and
human-written text into two distinct phases (cur-
riculum or anti-curriculum) provides advantages
over mixing them uniformly. Here, INTERLEAVED
serves as the natural baseline, representing random
shuffling of the two corpora.

Fine-tuning evaluation. At 124M, the curricu-
lum schedule SIMP→HW edges out INTERLEAVED
across all budgets (+0.3, +0.1, +0.4), while
HW→SIMP is equal or slightly worse (Table 2). The
margins are small, but the consistent advantage for
SIMP→HW suggests that a warm-up on simplified
text may provide downstream benefits when model
capacity is limited. At 256M, the picture changes:
INTERLEAVED remains strongest across all budgets,
while the ordered schedules are competitive but
do not surpass it (SIMP→HW: −0.4, −1.2, −1.3 vs.
INTERLEAVED; HW→SIMP: −0.2, −1.6, −2.1). In
short, simple-to-complex ordering helps at 124M,
especially in low-resource settings where it shows
improved sample efficiency, but offers no advan-
tage as model capacity increases.

Zero-shot evaluation. For zero-shot tasks, or-
dering effects are somewhat stronger than in the
fine-tuning results. At 124M, SIMP→HW leads on
BLiMP and BLiMP-Supplement, while HW→SIMP
excels on entity tracking (Table 4). At 256M, how-
ever, INTERLEAVED typically matches or exceeds
the ordered setups—for example, it leads on en-
tity tracking (+4.3 vs. SIMP→HW) and holds a small
edge on HellaSwag (Table 3). These patterns sug-
gest that ordered exposure can steer smaller models
toward specific strengths, but that random mixing
is safer once capacity is sufficient.

Summary. Compared to interleaving, SIMP →
HW yields modest gains at 124M—especially for
NLU fine-tuning and linguistic probes—but these
benefits diminish or reverse at 256M. This pattern
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Model arc_chl arc_e hellaswag openbookqa piqa social_iqa Avg.

124M
BASELINE 22.0 35.9 28.4 14.0 57.1 36.0 34.28
INTERLEAVED 23.4 34.6 28.4 15.4 58.4 35.7 34.50
SIMP→ HW 23.1 33.7 28.0 17.0 57.3 36.1 34.42
HW→ SIMP 20.4 33.5 28.1 14.8 57.6 36.9 34.18

256M
BASELINE 23.1 37.8 27.7 16.0 57.3 35.2 34.80
INTERLEAVED 22.7 36.9 28.6 16.2 56.8 36.6 35.02
SIMP→ HW 21.8 35.5 29.1 18.2 58.4 36.5 35.54
HW→ SIMP 24.7 34.7 28.2 16.6 56.4 35.5 34.28

Table 3: Zero-shot accuracy on commonsense reasoning benchmarks (ARC-Challenge, ARC-Easy, HellaSwag,
OpenBookQA, PIQA, Social IQa). “Avg.” is the mean across tasks. At 124M, INTERLEAVED yields the highest aver-
age by a small margin; at 256M, SIMP → HW attains the best average, driven by gains on HellaSwag, OpenBookQA,
and PIQA, while INTERLEAVED leads on Social IQa and HW→ SIMP peaks on ARC-Challenge.

Model blimp supp ewok entity mmlu

124M
BASELINE 71.8 61.9 53.9 22.4 24.7
INTERLEAVED 72.3 63.6 55.5 28.1 24.9
SIMP→ HW 72.4 63.8 54.8 31.7 23.6
HW→ SIMP 70.7 61.3 55.1 36.9 23.3

256M
BASELINE 73.8 65.6 55.0 30.1 23.5
INTERLEAVED 73.6 64.1 56.2 35.0 24.5
SIMP→ HW 73.7 64.3 55.9 30.8 25.8
HW→ SIMP 73.1 64.3 56.0 34.1 26.2

Table 4: Zero-shot evaluations on linguistic compe-
tence (BLiMP, BLiMP-Supplement), world knowledge
(EWoK), discourse (Entity Tracking), and general-
domain reasoning (MMLU). For 124M models, SIMP→
HW leads on BLiMP, while HW→ SIMP achieves the high-
est score on Entity Tracking. At 256M, performance
differences are narrower, with small trade-offs across
tasks.

suggests that smaller models benefit from a simple-
to-complex progression in surface-level complexity,
whereas larger models can internalize both variants
without explicit ordering. We view these as hy-
potheses under our training regime: ordering
appears to matter more in low-capacity settings
and is less critical when models scale up.

5 Conclusion

This work examines whether augmenting pretrain-
ing data with LLM-based simplifications and or-
dering by text complexity improves representation
quality in data-constrained settings. Through con-
trolled data and training conditions, we isolated
the effects of text complexity in curriculum design
across two model sizes.

Our findings suggest three takeaways:

(1) Adding simplified data outperforms repeating
human-written text, yielding modest gains at
124M and clearer benefits at 256M.

(2) Curriculum effects depend on model scale:
smaller models benefit slightly more from a
simple-to-complex curriculum, while larger
models favor balanced exposure via interleav-
ing.

(3) Differences are most evident in zero-shot
and low-resource fine-tuning scenarios, where
schedule choice impacts representational qual-
ity, improving zero-shot performance and sam-
ple efficiency in small fine-tuning budgets.

Overall, our results show that in data-constrained
settings, text simplification and curriculum learn-
ing can complement repeated exposure. Although
the gains are modest, they suggest practical ways to
extend the utility of pretraining without fresh data
collection. Future work includes testing longer
training horizons, exploring rewriting methods be-
yond simplification, and evaluating schedule effects
at larger scales and in non-English domains.

Limitations

Our study is intentionally narrow in scope. We
test only two model sizes (124M and 256M) with
a single decoder-only architecture, leaving open
how schedule effects scale to larger models or al-
ternative designs. Training is constrained to a fixed
budget of roughly 4B tokens (two full passes over
a 2B-token human-written corpus), so results may
differ under longer horizons or larger-scale train-
ing. We also study only one form of rewriting
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(LLM-based simplification) while other transfor-
mation types (e.g., paraphrasing, elaboration, style
transfer) may behave differently. Finally, the evalu-
ation focuses on educational data in English and a
limited set of NLU and zero-shot benchmarks, the
results may not transfer directly to other domains,
languages, or broader task families.
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A Per-task Results of Fine-tuning
Evaluation

Results are presented by fine-tuning budget: Full
(Table 5), Small (Table 6), and Tiny (Table 7).
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Model BoolQ MNLI MRPC QQP RTE Avg.

124M
BASELINE 70.6 ± 0.3 66.2 ± 0.7 82.2 ± 1.7 80.9 ± 0.3 66.4 ± 3.1 70.9
INTERLEAVED 69.5 ± 0.6 67.5 ± 0.2 80.6 ± 1.0 81.1 ± 0.3 69.2 ± 2.4 71.1
SIMP→ HW 70.7 ± 0.6 67.1 ± 0.7 82.2 ± 2.2 81.3 ± 0.1 68.1 ± 2.8 71.4
HW→ SIMP 71.2 ± 0.7 66.7 ± 0.7 83.3 ± 0.7 80.6 ± 0.1 66.2 ± 1.7 71.1

256M
BASELINE 71.2 ± 0.1 69.2 ± 0.5 81.9 ± 1.1 81.5 ± 0.1 65.7 ± 3.1 73.9
INTERLEAVED 71.0 ± 0.3 69.8 ± 0.1 84.1 ± 1.7 82.2 ± 0.1 71.5 ± 1.8 75.7
SIMP→ HW 71.0 ± 0.8 70.3 ± 0.3 82.9 ± 1.0 82.0 ± 0.1 70.1 ± 2.5 75.3
HW→ SIMP 71.8 ± 0.2 69.5 ± 0.3 82.2 ± 1.0 82.0 ± 0.2 71.8 ± 2.6 75.5

Table 5: Per-task fine-tuning results under Full fine-tuning budget. “Avg.” is the mean across tasks. Results are
grouped by model size (124M and 256M) and curriculum strategy.

Model BoolQ MNLI MRPC QQP RTE Avg.

124M
BASELINE 62.9 ± 1.0 63.1 ± 0.4 70.8 ± 1.0 78.1 ± 0.9 63.4 ± 4.5 67.7
INTERLEAVED 62.4 ± 0.3 64.0 ± 0.3 72.4 ± 1.0 78.7 ± 0.0 63.7 ± 1.6 68.2
SIMP→ HW 64.1 ± 0.6 63.1 ± 0.3 71.5 ± 0.7 79.0 ± 0.2 63.9 ± 0.7 68.3
HW→ SIMP 62.7 ± 0.7 63.1 ± 0.2 73.2 ± 0.3 78.3 ± 0.4 60.2 ± 3.3 67.5

256M
BASELINE 63.9 ± 0.7 65.1 ± 0.2 72.8 ± 2.3 79.3 ± 0.1 63.2 ± 2.4 68.8
INTERLEAVED 63.7 ± 0.6 65.8 ± 0.5 73.1 ± 1.7 80.1 ± 0.2 71.1 ± 2.8 70.7
SIMP→ HW 64.2 ± 0.3 66.1 ± 0.7 71.5 ± 1.7 79.7 ± 0.1 66.0 ± 0.7 69.5
HW→ SIMP 63.7 ± 0.2 65.4 ± 0.7 71.6 ± 3.8 79.4 ± 0.2 65.3 ± 4.9 69.1

Table 6: Per-task fine-tuning results under Small fine-tuning budget. “Avg.” is the mean across tasks. Results are
grouped by model size (124M and 256M) and curriculum strategy.

Model BoolQ MNLI MRPC QQP RTE Avg.

124M
BASELINE 59.5 ± 0.7 59.4 ± 1.0 67.9 ± 0.3 75.3 ± 0.4 59.7 ± 6.1 64.4
INTERLEAVED 58.4 ± 0.4 60.7 ± 0.3 70.4 ± 1.5 76.0 ± 0.2 58.3 ± 1.2 64.8
SIMP→ HW 58.8 ± 1.0 59.8 ± 0.4 68.9 ± 2.6 76.5 ± 0.1 62.0 ± 0.8 65.2
HW→ SIMP 59.5 ± 1.5 60.3 ± 0.1 71.6 ± 0.8 75.6 ± 0.5 55.1 ± 3.3 64.4

256M
BASELINE 60.8 ± 1.3 60.7 ± 0.4 68.1 ± 1.2 76.5 ± 0.6 59.0 ± 1.8 65.0
INTERLEAVED 60.1 ± 0.7 61.6 ± 0.5 71.0 ± 1.9 77.5 ± 0.2 64.6 ± 0.7 66.9
SIMP→ HW 60.5 ± 1.0 60.9 ± 0.9 68.6 ± 1.8 76.9 ± 0.3 61.1 ± 2.5 65.6
HW→ SIMP 59.9 ± 0.6 61.4 ± 0.4 65.5 ± 4.1 76.2 ± 0.3 60.9 ± 4.2 64.8

Table 7: Per-task fine-tuning results under Tiny fine-tuning budget. “Avg.” is the mean across tasks. Results are
grouped by model size (124M and 256M) and curriculum strategy.
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