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Abstract
Human children acquire language from a sub-
stantially smaller amount of linguistic input
than that typically required for training large
language models (LLMs). This gap motivates
the search for more efficient pre-training meth-
ods. Inspired by child development, curricu-
lum learning, which progresses from simple
to complex data, has been widely adopted. In
this study, we propose a pre-training frame-
work that mirrors child language acquisition,
advancing step by step from words to sentences
while retaining prior knowledge. We investi-
gate whether this improves retention and effi-
ciency under limited resources. Our approach
is implemented through four components: (i)
a curriculum-aligned dataset, (ii) a batch-wise
convergence loop, (iii) a distance-controlled
loss to mitigate forgetting, and (iv) a constraint-
controlled optimizer for stability. Experiments
on the BabyLM benchmark show that the pro-
posed method performs slightly below the of-
ficial baselines in overall accuracy, with larger
gaps on grammar-oriented evaluations such as
BLiMP. Nonetheless, it yields small but con-
sistent gains on morphology- and discourse-
related tasks (e.g., WUG-ADJ, Entity Track-
ing), suggesting that the approach affects dif-
ferent linguistic aspects unevenly under limited
data conditions.

1 Introduction

Recent language models (LMs) have achieved re-
markable performance. They are typically trained
on massive datasets, often containing trillions of
tokens, which makes it difficult to attain compara-
ble performance when only limited training data is
available (Zhang et al., 2021; Kaplan et al., 2020).
In contrast, human children are able to acquire lan-
guage with far fewer words over their developmen-
tal period (Gilkerson et al., 2017), creating a sub-
stantial gap between human and machine learning
efficiency (Dupoux, 2018). Bridging this gap re-
quires developing training methods that can achieve

Figure 1: Inspired by human learning, our method trains
language models on batches of gradually increasing dif-
ficulty while trying to retain knowledge from previous
batches.

strong language modeling performance even under
limited data conditions. Such approaches are im-
portant not only for advancing natural language
processing but also for providing insights into hu-
man language learning.

The BabyLM Challenge (Warstadt et al., 2023;
Hu et al., 2024) was launched with this motivation
in mind. Inspired by human language acquisition, it
explores efficient pre-training methods under strict
constraints on the amount of training data and com-
putational resources.

Previous studies have proposed Curriculum
Learning (Bengio et al., 2009) strategies grounded
in studies of human language development. These
approaches control the order in which training data
is presented, starting with simpler linguistic con-
structs and then progressing to more complex ones.
Difficulty has been defined by factors such as sen-
tence length, punctuation count, vocabulary, syn-
tactic complexity, and readability. Models trained
under such curricula have shown improvements on
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some tasks compared to those trained on randomly
ordered data (Hu et al., 2024).

In this study, we extend the concept of curricu-
lum learning by combining it with a training algo-
rithm that is designed to imitate the human step-
by-step learning process, as illustrated in Figure 1.
Specifically, we take inspiration from the way hu-
mans tend to master one concept before progress-
ing to the next, while retaining previously acquired
knowledge. To emulate this, our method ensures
that the model continues training on a given batch
until its loss falls below the pre-defined acceptable
level before proceeding to the next one, thereby
aiming to solidify retention and prevent forgetting
of previously learned material.

Experimental results on the BabyLM bench-
mark show that our method does not yet match the
performance of the official baselines, particularly
on grammar-oriented tasks. However, it exhibits
small but consistent advantages in morphology-
and discourse-level evaluations, indicating that the
proposed approach affects different linguistic as-
pects in distinct ways under limited data conditions.

To summarize, our contributions are as follows:

• We propose a novel training algorithm that
aims to stabilize knowledge retention in LLMs
by continuing training on each batch until its
loss converges.

• We design a training curriculum that starts
with short utterances of two to three words,
extracted from child-directed speech, and
progressively increases linguistic complexity,
thereby mimicking stages of child language
acquisition.

2 Related Work

2.1 Stages of Child Language Development

Language acquisition in children follows a gradual,
stage-wise trajectory. Conti-Ramsden and Durkin
(2012) provides a comprehensive overview, not-
ing that vocabulary expands rapidly around ages
one to two. By age two, children begin producing
two-word combinations that gradually develop into
longer, grammatically structured utterances.

In contrast, the standard training approach for
large language models typically involves present-
ing the entire dataset at once, mixing sentences of
varying complexity from the outset. This standard
approach is computationally inefficient and does

not reflect the incremental nature of knowledge
acquisition observed in human learners.

Motivated by this discrepancy, our study pro-
poses a curriculum that more closely mimics child
language development. Instead of presenting com-
plete sentences from the beginning, we introduce
short utterances, typically two to three words as
in child-directed speech incrementally, gradually
increasing the linguistic complexity of the training
data. This approach aims to emulate the cumulative
learning process observed in early human language
acquisition, where new knowledge builds upon pre-
viously acquired elements without discarding them.

2.2 Curriculum Learning Strategies for
Language Models

Most curriculum learning strategies proposed in
previous studies on LMs, including those in past
BabyLM challenges (Warstadt et al., 2023; Hu
et al., 2024) have focused on reordering existing
text data based on measures of difficulty. For exam-
ple, Capone et al. (2024) leveraged the observation
that the first words learned by children are often
highly concrete and perceptually grounded. They
propose a curriculum based on lexical concrete-
ness, categorizing the data into four stages from
most to least concrete, and training the model on
them sequentially.

Other approaches have used linguistic features
such as sentence length, punctuation counts, or
readability scores to estimate difficulty and sort
the training dataset accordingly (Ghanizadeh and
Dousti, 2024; Behr, 2024).

An exception is the study by Salhan et al. (2024),
who explore a curriculum for masked language
modeling by selectively masking different parts of
speech at different stages of training. While this
goes beyond simple data reordering, it still operates
within the scope of conventional text and masking
strategies.

Our curriculum starts with short utterances of
around two to three words, as typically observed
in child-directed speech, and then gradually in-
creases linguistic complexity by expanding the
utterances toward longer and more complex sen-
tences. This approach mimics the developmen-
tal stages observed in child language acquisition,
where vocabulary builds incrementally and previ-
ously acquired words are retained and reused as
sentences grow in complexity.
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2.3 Forgetting and Lifelong Learning
Humans and animals are capable of continuously
acquiring knowledge and skills throughout their
lives. However, when neural networks are trained
sequentially on data drawn from different distri-
butions, the incremental acquisition of new infor-
mation generally leads to catastrophic forgetting
or interference with previously acquired knowl-
edge (French, 1999).

Research on Lifelong Learning has been ex-
tensively discussed in the context of neural net-
works, and a comprehensive review is provided
by Parisi et al. (2019). Various approaches have
been proposed to mitigate forgetting, including
replay-based methods that reuse past examples,
regularization-based methods that constrain param-
eter updates, and architectural methods that ex-
pand the network with additional neurons or layers,
among others.1

Curriculum learning improves efficiency by or-
dering training data, and when combined with Life-
long Learning techniques for mitigating forgetting,
it can form a framework that both accelerates learn-
ing and preserves knowledge. In this study, we
integrate curriculum learning with a batch-wise
regularization mechanism that constrains parame-
ter deviation while ensuring loss convergence. To
our knowledge, this integration represents a novel
direction in the context of pre-training small-scale
language models such as BabyLM.

3 Method

Inspired by the stepwise nature of human language
acquisition, we implement the learning dynamic of
advancing to the next batch only after sufficiently
mastering the current one as a constrained opti-
mization problem. At each step t, we minimize a
distance term that limits deviation from the previ-
ous parameters W (t−1) while enforcing, as a con-
straint, that the cross-entropy loss on the current
batch X (t) meets a prescribed criterion. We solve
this sequentially for t = 1, 2, . . ., which jointly
targets (i) mastery before progression within each
batch, (ii) retention of previously acquired knowl-
edge, and (iii) stability under small-data conditions.

We first summarize the pre-training data and cur-
riculum (Section 3.1), and then outline the learning
framework, including its formulation and optimiza-
tion (Section 3.2). We describe a consolidation step
based on parameter averaging that further reduces

1See Appendix A for more details on each approach.

Category Words Share (%)

Short-utterance data 3,824,058 3.824
Medium-utterance data 3,399,252 3.399
Synthetic short-sentence data 12,668,607 12.669
Narrative & dialogue data 80,107,855 80.108

Total 999,999,772 100.00

Table 1: Word counts of the pre-training dataset. Each
category’s proportion of the total is shown in the “Share”
column.

forgetting (Section 3.3). Finally, Implementation-
specific choices—such as stopping rule constants,
step-size clipping, hyperparameter listings, and the
concrete checkpoint-averaging protocol—are sum-
marized in Section 3.4.

3.1 Pre-training Data and Curriculum

3.1.1 Design goal.
To emulate the developmental trajectory from short
utterances to full sentences and narratives, we tailor
both the data and its presentation schedule. Our
pre-training set integrates four sources of increas-
ing complexity: two to three words utterances ex-
tracted from child-directed speech, slightly longer
short utterances from the same source, synthetic
short sentences, and finally longer child-directed
narratives and dialogues. The curriculum exposes
these sources in a gradually increasing order of
linguistic complexity.

3.1.2 Datset components.
We compose the dataset from four sources, de-
signed to support a smooth progression from lexical
to sentential learning shown in Figure 2.

Short-utterance data. From the CHILDES
dataset (Macwhinney, 2000) in the official
BabyLM corpus (Choshen et al., 2024), we extract
child-directed utterances of two to three words af-
ter removing metadata and non-linguistic markers.
These short utterances form the starting point of
our training material, corresponding to the earliest
stage of child-directed input.

Medium-utterance data. We extract four to ten
word utterances from CHILDES using the same
preprocessing for short-utterance data. These ex-
amples extend minimal expressions and serve as
the next stage of training material.

Synthetic short-sentence data. From English
AoA ratings (Kuperman et al., 2012), we select
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Figure 2: Overview of the staged curriculum used to construct our dataset. It progresses from short to medium
CHILDES utterances, then to LLM-synthesized short sentences, and finally to processed narratives and dialogues,
supporting a gradual transition from minimal expressions to full discourse.

words typically acquired by age 13 as lexical stim-
uli for the initial stage. For each word, Qwen3-
14B (Team, 2025) generates one to fifteen word
sentences showing simple literal uses while exclud-
ing named entities and complex syntax. Sentences
exceeding the length cap are removed, and markup
and punctuation normalized, yielding concise ex-
emplars bridging lexical and phrasal structures.

Processed narrative and dialogue data.
We preprocess three child-directed sources—
KidLM (Nayeem and Rafiei, 2024) (essays),
TinyStories (Eldan and Li, 2023) (narratives), and
TinyDialogues (Feng et al., 2024) (dialogues)—to
control length and remove extraneous markup.
We shorten overly long sentences (splitting or
compressing while preserving meaning), remove
tags and metadata, and compress redundantly
verbose paragraphs. This yields streamlined narra-
tive/dialogue material that remains semantically
coherent and aligns with our staged curriculum.

3.1.3 Two-axis curriculum.
We orchestrate the presentation order along two
complementary axes.

In-batch curriculum (mixture scheduling).
Within each batch, data are sampled from four
sources with mixture weights that evolve during
training. The share of short utterances starts high
and steadily declines, medium utterances decrease
more slowly, synthetic short sentences form a mid-
stage peak, and narratives/dialogues increase to-
ward the end. Let τ ∈ [0, 1] denote normal-
ized training progress; smooth piecewise-linear
schedules ωshort2-3(τ), ωshort4-10(τ), ωsynthetic(τ),
and ωlong(τ) satisfy

∑
ω = 1, with early-stage

data decreasing, late-stage data increasing, and in-
termediate data forming a unimodal peak.

Through-batch curriculum (difficulty ordering).
Across batches, items are sorted by estimated dif-
ficulty: CHILDES-derived short and medium ut-
terances appear first, synthetic sentences follow by
length and lexical rarity, and narratives/dialogues
by a composite difficulty score(see Appendix C).

3.2 Learning Framework

We conceptualize pre-training as a sequence of
batch-wise learning problems. For each batch,
the model is updated repeatedly until convergence,
then proceeds to the next. Each update minimizes
loss while constraining large parameter deviations
from the previous state. This design aims to consol-
idate knowledge within each batch and retain prior
learning, enabling gradual, stage-wise acquisition.

3.2.1 Batch-wise Convergent Pre-training
Procedure

We now present the principle and motivation of the
proposed batch-wise convergent pre-training loop.

Let t ∈ {1, 2, . . . , T} be the time step of the
pre-training process. Let X (t) denote the t-th sub-
set of the training data, which we usually refer
to as a batch. Let ϕ(W ,X (t)) denote the cross-
entropy over the t-th batch X (t) between the given
target probability distribution p(x) and the model’s
distribution q(W , x) parameterized by W , where
x ∈ X (t):

ϕ(W ,X (t)) = − 1

|X (t)|
∑

x∈X (t)

p(x) log
(
q(W , x)

)
.

(1)

Note that ϕ(W ,X (t)) ≥ 0 holds.
We then iterate inner updates until ϕ(W ,X (t))

satisfies a threshold ε. Conceptually, this corre-
sponds to minimizing the following sequence of
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constrained optimization problems:

W (t) =argmin
W

{
C

p
∥W −W (t−1)∥pp

}
(2)

subject to: ϕ(W ,X (t)) ≤ ε,

where p, C and ε are hyperparameters, and W (0) is
the initial parameter matrix. Moreover, p represents
the Lp-norm and C≥0 controls the strength of the
distance term. Note that we only consider the p∈
{1, 2} cases. This formulation explicitly encodes
the principle of learning the current batch with the
smallest necessary parameter change.

Interpreting the threshold. ε corresponds to the
negative log of a target average token accuracy (e.g.,
− log 0.5 = 0.6931, − log 0.9 = 0.1054), which
provides a principled grounding of the constraint in
probabilistic terms. This interpretation ensures that
ε is not chosen arbitrarily but reflects a meaningful
accuracy level; implementation-specific instantia-
tion is deferred to Section 3.4.

Intuition and benefits. Single-pass training,
with one update per batch, may progress while leav-
ing content unlearned, causing oscillation between
forgetting and relearning. In contrast, our progress-
upon-attainment criterion (ϕ ≤ ε) promotes stage-
wise consolidation. Together with distance control
described below, updates are confined to the mini-
mum necessary change to reach the target.

Role of the distance term. With p=2, the term
induces smooth contraction toward W t−1; with
p = 1, it creates per-parameter dead bands (i.e.,
effective freezing zones of width C) around W t−1.
The former ensures stability, while the latter selec-
tively immobilizes less important parameters.

3.2.2 Constrained Objective and Lagrangian
Formulation

Building on the criterion introduced in the previous
section, at each step t, our update solves a sequen-
tial constrained problem that combines minimal
deviation from the previous solution with a loss
constraint. Hereafter, unless otherwise specified,
we focus exclusively on the inner iterative steps,
which correspond to a single outer iterative step t.

Lagrangian form. Introducing a multiplier α≥0
yields

min
W

max
α≥0

L(W , α) =
C

p
∥W −W t−1∥pp

+ α
(
ϕ(W ,X (t))− ε

)
.
(3)

and we alternate updates of W and α. When ϕ>ε,
α increases, strengthening the drive to reduce the
data loss; after attainment, it trends back toward
zero. Thus, α acts as an on-demand gate that inten-
sifies learning only when needed.

3.2.3 Distance-Controlled Optimizer Design
We now detail the design of our optimizer, which
incorporates distance control in a way that delib-
erately separates it from gradient statistics. The
goal is to move from W t−1 to W with only the
change needed to satisfy the current batch, thereby
preserving prior knowledge.

Naive loss penalty vs. proximal correction. A
straightforward approach adds the distance term
directly to the data loss:

αϕ(W ,X )︸ ︷︷ ︸
data fit

+ C
p ∥W −W t−1∥pp︸ ︷︷ ︸

distance control

. (4)

However, this contaminates the moment estimates
in Adam-like optimizers. Instead, following the
idea of RecAdam (Chen et al., 2020), we place dis-
tance control outside the loss and split the update
into two stages. While RecAdam anchors param-
eters to the pretrained weights, we adapt this idea
to our batch-wise setting by anchoring each update
to the parameters from the previous batch, thereby
enabling “stepwise RecAdam” updates.

1. Data-fit update: apply a standard optimizer,
such as AdamW, to the scaled loss αϕ(W ,X )
to obtain tentative weights W ′.

2. Proximal correction: project W ′ by the
proximal operator of g(W ) = C

p ∥W −
W (t−1)∥pp to obtain the updated parameters.

This separation of roles keeps moment estimates
purely data-driven, while distance control acts as a
geometric post-update correction.

Scaling and gating of the data loss with α. To
enforce the constraint ϕ(W ,X ) ≤ ε, we update
the Lagrange multiplier α via projected gradient as-
cent. While a standard update would use a learning
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rate η(i), our implementation adopts a more robust
approach by fixing the step size and clipping the
update magnitude. This prevents numerical insta-
bility when the loss ϕ is far from the target ε. The
update is given by:

α(i) = max(0, α
′
) (5)

α
′
= α(i−1) + η(i)(ϕ(W (i),X )− ε) (6)

When ϕ > ε, α grows, amplifying the pressure to
fit the data; after attainment, it relaxes toward zero.
The clipping mechanism ensures that this growth
is controlled. Thus, α acts as a gate that increases
drive only when necessary, helping to avoid overly
aggressive updates.

Two-stage update: Loss minimization and prox-
imal projection. Let Optim(·) denote an opti-
mizer. We can apply any optimizer; however, for
example, we often choose the Adam optimizer
when training LMs. We assume Optim(·) to be
such an optimizer. Then, each inner iteration per-
forms

W ′ = Optim
(
α(i) ϕ(W (i),X )

)
, (7)

W (i+1) = proxηg(W
′)

= argmin
W

{
η g(W ) + 1

2 ∥W −W ′∥22
}
.

(8)

Closed forms follow from g. For p=2,

W (i+1) =
1

1 + C

(
W t−1 +W ′). (9)

i.e., a convex combination of W ′ and W t−1, with
larger C pulling more strongly toward W t−1. For
p = 1, the update reduces to elementwise soft-
thresholding,

W (i+1) =





W ′ − C, if W t−1 + C < W ′.

W t−1, if |W ′ −W t−1| ≤ C.

W ′ + C, if W ′ < W t−1 − C.

(10)

creating a width-C dead band around W t−1 that
freezes small changes.

3.2.4 Algorithmic Summary of the Training
Loop

At each batch X (t), training begins with α = 1
and repeatedly performs inner updates. Each step

Algorithm 1: Training with Alternating La-
grangian + Proximal Update

Input: batches {X (t)}, init. weights W (0), distance
coeff. C, norm p, threshold ε

, learning rate η for t = 1, 2, . . . , T do
Initialize α← 1, W ←W (t−1), no_inc← 0,
i← 0;

repeat
(1) ϕ← ϕ(W ,X (t)); i← i+ 1;
(2) ∆← min

(
1.0, η(ϕ− ε)

)
;

αnew ← max{0, α+∆}; if ∆ ≤ 0 then
no_inc←no_inc+1 else no_inc← 0;

(3) W ′ ← Optim
(
αnew · ϕ

)
;

(4) if p = 2 then

W ← W ′ + CW (t−1)

1 + C
else if p = 1 then

W ←
soft-threshold(W ′, W (t−1), C)

(5) α← αnew;
until (α < 1 and no_inc= 3) or i = Imax;
Commit W (t) ←W ;

computes the cross-entropy loss ϕ(W ,X (t)), up-
dates the multiplier α by a capped projected as-
cent α← max{0, α+min(1.0, η(ϕ− ε))}, and
then applies a two-stage parameter update: (i) an
AdamW step on the scaled loss αϕ, and (ii) a prox-
imal correction with respect to W (t−1). The loop
exits once α < 1 and shows no increase for three
consecutive steps (or when Imax is reached), after
which W (t) is committed and training advances to
the next batch.

3.3 Parameter Averaging for Consolidation
Motivation. While our batch-wise constrained
updates promote “mastery before progression,” the
sequence of batch endpoints {W (t)}Tt=1 can still
exhibit oscillations as the model adapts to new
material. Averaging successive solutions smooths
these fluctuations, approximates an implicit ensem-
ble, and biases the solution toward flatter minima,
thereby reducing susceptibility to forgetting when
exposure shifts.

Formulation. We adopt simple arithmetic aver-
aging of multiple checkpoints:

W =
1

K

K∑

j=1

W (tj), (11)

which directly yields a consolidated parameter set
without introducing additional hyperparameters.
This averaged model serves as a geometry-based
regularizer that complements the explicit distance
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control, further reducing the effective drift across
training.

3.4 Implementation Details

This subsection summarizes practical implementa-
tion details.

Optimizer re-initialization. Each batch is
treated as an independent constrained optimiza-
tion problem. Accordingly, we re-initialize the
first and second moment states of the first-order
optimizer at the beginning of every batch (instan-
tiated as AdamW in our implementation). The
global learning-rate schedule for model parameters
is maintained consistently across training, while the
Lagrange multiplier scales the loss side. This pre-
serves a separation of roles: the optimizer explores
each batch afresh, while the proximal correction
preserves knowledge across batches.

Multiplier update and stopping rule. At the
beginning of each batch we initialize α=1.0. The
multiplier is updated via projected gradient ascent,

α← Πα≥0

[
α+ η (ϕ− ε)

]
,

with a fixed step size and clipping for numerical
stability; concretely we clip the per-step increment
by min(1.0, η(ϕ−ε)). For stopping, we monitor α
rather than ϕ: convergence is declared once (i) α <
1 and (ii) α does not increase for M=3 consecutive
checks, corresponding to a stable satisfaction of
ϕ ≤ ε. As a safeguard, we cap the number of inner
iterations at Imax.

Norm and penalty coefficient. We instantiate
the distance term with an Lp-norm and, in our ex-
periments, use p ∈ {1, 2} with coefficient C. For
the conceptual effect of each choice (e.g., contrac-
tion vs. dead-band behavior), see Section 3.2 (Role
of the distance term).

Hyperparameters. The main hyperparameters
are the distance coefficient C, norm p, threshold
ε, inner learning-rate schedule {η(i)} for the mul-
tiplier update, iteration cap Imax, and the required
non-increase streak M . We instantiate ε from a
target token accuracy via ε = − log atgt and set
0.6931 for atgt=0.5 as an initial reference, adjust-
ing slightly to account for label smoothing and
vocabulary effects; beyond these systematic shifts,
we do not tune ε empirically.

Averaging protocol. For final consolidation, we
perform arithmetic checkpoint averaging. We save
checkpoints (i) every 1M words from 1M to 9M,
(ii) every 10M words from 10M to 100M, and (iii)
every 100M words from 100M to 1000M, yield-
ing 28 checkpoints in total. Their simple average
defines the final weights W used for evaluation.
Throughout training, all inner-loop decisions (loss
thresholding, α updates, proximal correction) oper-
ate on the live weights W .

4 Experiments

This study was conducted under the Strict track
setting of the BabyLM Challenge 2025, following
the official evaluation tasks and pipeline.2

4.1 Evaluation Tasks
We evaluate the proposed model on the benchmarks
and tasks suggested by the BabyLM challenge or-
ganizers to assess its language acquisition capabil-
ities.footnoteSee Appendix B for more details of
evaluation datasets.

4.2 Baselines
4.2.1 Baselines for Leaderboard Comparison
We use the official BabyLM pretrained models
from both the Strict and Loose Tracks as base-
line comparisons. Specifically, we set GPT-
BERT (Charpentier and Samuel, 2024) and GPT-2
small (Radford et al., 2019) as baselines.

4.2.2 Baselines for Controlled Comparison
To evaluate the effectiveness of our training algo-
rithm and curriculum design, we additionally con-
structed three controlled baselines. These models
were trained with vanilla pre-training using the
same dataset but under different data scheduling
strategies:

Random. The model was trained for 10 epochs
on the proposed dataset with sentences randomly
shuffled across the entire training process.

Curriculum. The model was trained for 10
epochs on the proposed dataset while preserving
the curriculum ordering of the data.

Curriculum-Repeat. The model was trained on
the curriculum-ordered dataset, but with each batch
repeated consecutively 10 times before moving on
to the next batch.

2Details regarding the experimental setup, including tok-
enizer selection, model architecture, and training procedures,
are provided in Appendix D.
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Model BLiMP BLiMP-S EWoK GLUE WUG-ADJ Entity Reading(SPR/ET) WUG-PAST COMPS AoA Avg.

GPT-BERT 80.5 73.0 52.4 70.9 41.2 39.9 3.0/8.7 27.1 59.7 22.3 43.5
GPT-2 small 74.9 63.3 51.7 54.7 50.2 31.5 3.2/7.9 7.3 56.2 5.5 36.9

Proposed(115M) 49.2 50.4 50.2 57.7 57.5 41.8 0.1/0.6 4.3 49.4 0.0 32.8
Proposed(372M) 47.8 50.5 50.5 57.7 56.2 41.2 0.0/0.5 8.5 50.6 0.3 33.1

Table 2: Main results on the BabyLM evaluation suite. We compare public baselines with our proposed models at
two scales (115M and 372M model). The GPT-BERT and GPT-2 small results are directly copied from the model
cards released by the BabyLM organizers. For each scale, we report the best-performing configuration selected
based on the highest average score across tasks.

Model (115M) BLiMP BLiMP-S EWoK GLUE WUG-ADJ Entity Reading(SPR/ET) WUG-PAST COMPS AoA Avg.

Random 64.3 57.5 50.3 57.7 26.0 18.9 0.0/3.1 15.6 53.8 0.1 31.6
Curriculum 56.6 49.6 49.6 57.7 48.1 38.1 0.6/3.7 -12.6 50.3 0.3 31.1
Curriculum-Repeat 54.1 48.2 49.8 57.7 40.6 41.3 0.8/2.4 -10.9 50.2 0.2 30.4

Proposed (p=1, C=10−6) 49.2 50.4 50.2 57.7 57.5 41.8 0.1/0.6 4.3 49.4 0.0 32.8
Proposed (p=2, C=1) 52.2 50.2 49.4 57.7 57.1 41.1 0.0/1.5 -2.6 50.2 0.1 32.5

Table 3: Comparison of the 115M model on BabyLM evaluation tasks between controlled baselines (Random,
Curriculum, Curriculum-Repeat) and our proposed method (p = 1, C = 10−6; p = 2, C = 1).

Model (372M) BLiMP BLiMP-S EWoK GLUE WUG-ADJ Entity Reading(SPR/ET) WUG-PAST COMPS AoA Avg.

Random 63.5 54.1 51.5 57.7 56.7 29.9 0.3/4.1 1.4 54.1 0.1 33.9
Curriculum 54.4 48.9 50.0 57.7 70.5 28.1 0.2/3.0 -16.2 50.9 0.0 31.6
Curriculum-Repeat 52.8 48.2 49.8 57.7 49.3 41.1 0.7/2.4 6.2 50.0 0.2 32.6

Proposed (p=1, C=10−6) 47.8 50.5 50.5 57.7 56.2 41.2 0.0/0.5 8.5 50.6 0.3 33.1
Proposed (p=2, C=1) 52.2 47.9 50.1 57.7 60.5 40.3 0.0/1.2 2.2 50.1 0.3 33.0

Table 4: Comparison of the 372M model on BabyLM evaluation tasks between controlled baselines (Random,
Curriculum, Curriculum-Repeat) and our proposed method (p = 1, C = 10−6; p = 2, C = 1).

These controlled baselines allow us to disentan-
gle the contributions of curriculum structure and
repetition effects from the impact of our proposed
training algorithm.

5 Results

5.1 Main Results: Comparison with Public
Baselines

Table 2 summarizes the main results on the
BabyLM evaluation suite. For each model size, we
report the configuration with the highest average
score across all tasks. Both the 115M and 372M
models use the same setting of (p, C) = (1, 10−6).
Overall, the proposed models perform lower than
the official BabyLM baselines, GPT-BERT and
GPT-2 small. Their average scores (around 33) re-
main below those baselines (43.5 and 36.9). This
indicates that the constrained optimization used
in our training has not yet reached the linguistic
competence achieved by the official pretrained sys-
tems. The largest gaps appear in grammar-oriented
benchmarks such as BLiMP and BLiMP-S. This
underperformance may occur because the batch-

wise constraint favors local stability over global
syntactic generalization. In contrast, the models
achieve relatively higher scores on WUG-ADJ and
Entity Tracking, indicating stronger learning of
morphological agreement and referential consis-
tency. In summary, the proposed method provides
small but consistent advantages in morphology-
and discourse-level tasks, while remaining weaker
on grammar-centric evaluations compared with the
official baselines.

5.2 Controlled Comparison of the Proposed
Method

Tables 3 and 4 compare the proposed constrained
optimization with three controlled baselines that
differ only in data-ordering and repetition. This
analysis isolates the effect of the training algo-
rithm itself. Overall, the proposed models achieve
slightly higher average scores than the controlled
baselines, but the improvements are small. For the
115M model, the proposed settings reach 32.5–32.8
in average, compared to 30–31 for the baselines. A
similar pattern holds for the 372M model, where
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Model Settings BLiMP BLiMP-S EWoK GLUE WUG-ADJ Entity Reading(SPR/ET) WUG-PAST COMPS AoA Avg.

115M p=1, Curriculum 49.2 50.4 50.2 57.7 57.5 41.8 0.1/0.6 4.3 49.4 0.0 32.8
115M p=1, Random 53.4 48.4 49.6 57.7 62.2 41.0 0.7/1.9 -4.6 49.6 -0.4 32.7

|∆| 4.2↓ 2.0↑ 0.6↑ 0.0– 4.7↓ 0.8↑ 0.6↓/1.3↓ 8.9↑ 0.2↓ 0.4↑ 0.1↑
115M p=2, Curriculum 52.2 50.2 49.4 57.7 57.1 41.1 0.0/1.5 -2.6 50.2 0.1 32.5
115M p=2, Random 51.2 50.7 50.3 57.7 57.9 41.0 0.0/1.1 5.5 50.2 0.1 33.2

|∆| 1.0↑ 0.5↓ 0.9↓ 0.0– 0.8↓ 0.1↑ 0.0–/0.4↑ 8.1↓ 0.0– 0.0– 0.7↓
372M p=1, Curriculum 47.8 50.5 50.5 57.7 56.2 41.2 0.0/0.5 8.5 50.6 0.3 33.1
372M p=1, Random 52.8 50.6 50.0 57.7 60.7 41.6 0.1/1.2 4.2 49.7 -0.0 33.5

|∆| 5.0↓ 0.1↓ 0.5↑ 0.0– 4.5↓ 0.4↓ 0.1↓/0.7↓ 4.3↑ 0.9↑ 0.3↑ 0.4↓
372M p=2, Curriculum 52.2 47.9 50.1 57.7 60.5 40.3 0.0/1.2 2.2 50.1 0.3 33.0
372M p=2, Random 54.3 49.5 49.9 57.7 59.5 40.6 0.8/3.2 0.3 50.1 -0.3 33.2

|∆| 2.1↓ 1.6↓ 0.2↑ 0.0– 1.0↑ 0.3↓ 0.8↓/2.0↓ 1.9↑ 0.0– 0.6↑ 0.2↓

Table 5: Ablation study of curriculum scheduling for the 115M and 372M models. We compare p = 1 and
p = 2 configurations trained on curriculum-ordered versus randomly shuffled data under the same C. Each
Curriculum/Random pair is followed by a |∆| row, reporting the absolute difference with ↑/↓ indicating whether
curriculum ordering increased or decreased the score, respectively.

the proposed method yields around 33.0 on average,
within the variance of baseline performance. These
results suggest that the algorithm contributes incre-
mental rather than substantial gains. In grammar-
oriented benchmarks such as BLiMP, the proposed
models tend to underperform, indicating that the
constrained updates may restrict flexibility needed
for broad syntactic learning. However, they show
higher scores on WUG-ADJ and Entity Tracking,
implying better capture of morphological and refer-
ential regularities. In summary, the proposed opti-
mization provides minor yet consistent advantages
in morphology- and discourse-level tasks, while
overall performance remains comparable to the
controlled baselines.

5.3 Effect of Curriculum Scheduling in the
Proposed Method

Table 5 compares curriculum-ordered training with
fully shuffled training data. For each model size,
we report results under two representative hyper-
parameter settings, (p, C) = (1, 10−6) and (2, 1).
Overall, the effect of curriculum scheduling is lim-
ited. Across both 115M and 372M models, the av-
erage differences between curriculum and random
orders remain within one point, suggesting that
the data order alone does not substantially influ-
ence final performance. In some grammar-related
benchmarks such as BLiMP, the curriculum mod-
els even underperform, implying that gradual data
presentation may constrain the diversity of contexts
required for broader syntactic generalization. On
the other hand, curriculum training yields slightly

higher scores on WUG-ADJ and COMPS, indicat-
ing that staged exposure can help the model capture
morphological and compositional patterns more
consistently. In summary, curriculum ordering pro-
vides small and task-specific benefits but does not
consistently improve overall language acquisition
performance within the proposed framework.

6 Conclusion and Future Works

This study introduced a batch-wise constrained
optimization framework for language model pre-
training under the developmental data condition
of the BabyLM Challenge 2025. Experimental
results show that the method performs worse on
grammar-sensitive benchmarks such as BLiMP and
BLiMP-S, suggesting that the constraint limits gen-
eralization across syntactic contexts. In contrast, it
yields small but consistent gains on morphology-
and discourse-related tasks such as WUG-ADJ and
Entity Tracking, indicating slightly improved con-
sistency in local linguistic patterns.

Future work will address the theoretical gap be-
tween batch-wise learning and the distributional
hypothesis underlying language modeling. Learn-
ing from isolated batches restricts contextual di-
versity, which likely explains the weak syntactic
generalization observed. A promising direction is
to extend the framework toward context-aggregated
or memory-based architectures that integrate infor-
mation across batches.
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A Overview of Prior Approaches to
Catastrophic Forgetting

Replay-based methods. In natural language pro-
cessing, representative replay-based methods in-
clude Gradient Episodic Memory (GEM) (Lopez-
Paz and Ranzato, 2017) and LAnguage MOdel-
ing for Lifelong language learning (LAMOL) (Sun
et al., 2020). Both methods aim to preserve per-
formance on previously learned tasks when learn-
ing a new one. GEM explicitly stores examples
from past tasks and constrains gradient updates so
as not to reduce past task performance, whereas
LAMOL avoids explicit memory by generating
pseudo-samples from past tasks and mixing them
with new training examples.

Regularization-based methods. Regularization
is typically employed to prevent overfitting, but it
has also been adapted to mitigate forgetting. Elas-
tic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017) and Synaptic Intelligence (SI) (Zenke et al.,
2017) slow down the update of parameters deemed
important for previously learned tasks, thereby
maintaining prior knowledge while enabling new
learning.

Architectural methods. Approaches such as Pro-
gressive Neural Networks (PNNs) (Rusu et al.,
2022) expand the network by adding new parame-
ters for each task. This enables the reuse of knowl-
edge from past tasks while preventing forgetting.
However, these methods require identifying which
parameters correspond to each task, and the overall
model size grows linearly with the number of tasks,
which poses practical challenges.

Why regularization in this study? In the
BabyLM setting, where the vocabulary size and
available training data are restricted, replay-based
methods that rely on storing or generating addi-
tional samples are less desirable. Similarly, pa-
rameter expansion approaches are impractical for
complex language model architectures. For these
reasons, this study adopts a regularization-based
approach to mitigate forgetting.

B Details of Evaluation Tasks

BLiMP. BLiMP (Benchmark of Linguistic Mini-
mal Pairs) (Warstadt et al., 2020) is an English zero-
shot benchmark that tests the grammatical knowl-
edge of language models. We also use BLiMP Sup-
plement, an extended version covering dialogue,

question–answer congruence, and lexical seman-
tics.

EWoK. Ewok (Elements of World Knowl-
edge) (Ivanova et al., 2025) assesses the extent to
which LMs possess fundamental world knowledge.
It uses a cognition-inspired framework to evalu-
ate whether models can identify plausible contexts
given varying fillers.

GLUE. GLUE (Wang et al., 2018) is a multi-task
benchmark for evaluating natural language under-
standing models. As models began surpassing hu-
man performance on GLUE, the more challenging
SuperGLUE (Sarlin et al., 2020) was introduced to
provide a tougher evaluation.

Derivational Morphology. This task tests a lan-
guage model’s ability to generate English adjective-
to-noun nominalizations (Hofmann et al., 2024), fo-
cusing on irregular patterns that defy simple rules.

Entity Tracking. This task measures how well
LMs can track changes in the states of entities
throughout a text (Kim and Schuster, 2023). Given
a description of an entity’s initial state and a se-
quence of state-altering events, the model must
infer the entity’s final state.

Reading time. This task assesses how well an
LM’s word prediction probabilities align with hu-
man cognitive processing data (de Varda et al.,
2024). The task examines the relationship between
model predictions and brain responses or reading
behaviors.

WUG PAST. This hidden task evaluates mor-
phological generalization by correlating model and
human distributions for nonce verb past-tense and
adjective nominalizations (Weissweiler et al., 2023;
Hofmann et al., 2024), enabling comparison across
evaluation protocols.

COMPS. This task tests whether models cor-
rectly inherit properties from superordinate to
subordinate concepts using nonce-word minimal
pairs (Misra et al., 2023). Models should assign
higher probability to the semantically correct sen-
tence, probing robust conceptual inheritance in lan-
guage representations.

Age of Acquisition. This task estimates when
models learn specific words by tracking sur-
prisal across training (Chang and Bergen, 2022).
Model-derived acquisition ages are fit with sig-
moids and compared to human norms from the
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Component 115M Model 372M Model

Total parameters 114,964,224 372,234,112
Number of layers 12 24
Hidden size 768 896
Attention heads 8 14
FFN intermediate size 2,688 4,864
Activation SiLU SiLU
Normalization RMSNorm (ϵ = 10−6) RMSNorm (ϵ = 10−6)
Positional encoding RoPE (θ = 106) RoPE (θ = 106)
Vocab size 16k 16k

Table 6: Architectural specifications of the 115M and 372M models. Both follow the Qwen2 decoder-only
architecture with differences in scale.

MacArthur–Bates Communicative Development
Inventory.

C Difficulty scoring for curriculum
ordering

To rank samples, we combine five textual features:

• Li: average sentence length (words per sen-
tence)

• TTR
(1/2)
i : square-root adjusted type–token

ratio

• Ri: rare-word rate (fraction not found in a
background frequency lexicon)

• AoAmean
i : mean Age of Acquisition over to-

kens

• AoAmax
i : maximum Age of Acquisition over

tokens

Because these features have different scales, we
standardize each xi by a z-score:

z(xi) =
xi − µx

σx
. (12)

Here, we define fi and w as follows:

fi =
(
Li, TTR

(1/2)
i , Ri, AoAmean

i , AoAmax
i

)
,

w = (0.20, 0.15, 0.20, 0.20, 0.05).

We define the composite difficulty score as:

Scorei =

5∑

k=1

wk · z(fk,i), (13)

and sort items in ascending order of Scorei. The
weights prioritize structural length and lexical rarity
while incorporating average and worst-case AoA
to align with developmental plausibility.

D Experimental Setup

Tokenizer. In this study, we trained a new to-
kenizer directly on the pre-training dataset. To
ensure sufficient expressiveness under the limited-
data setting, we adopted the Unigram subword seg-
mentation model. The Unigram model is known
to provide flexible segmentation for infrequent
and morphologically varied words, thereby balanc-
ing vocabulary compression with generalization
ability (Kudo and Richardson, 2018). Concretely,
we trained the tokenizer using the Hugging Face
tokenizers implementation, with the vocabulary
size fixed at 16,000. We additionally included the
special tokens <pad>, <cls>, <sep>, <s>, </s>,
and <unk>. For text normalization, we applied the
NFKC scheme, and we enabled byte fallback to
guarantee stable encoding even for inputs contain-
ing unseen characters.

Model Architecture. We adopted a Transformer-
based decoder-only language model, motivated by
findings that children engage in predictive sentence
processing: they integrate syntactic and seman-
tic cues to anticipate upcoming words (Borovsky
et al., 2012), which in turn facilitates sentence struc-
ture learning (Reuter et al., 2019). For similar rea-
sons, decoder-only architectures are widely used
in BabyLM challenge (Haga et al., 2024; Warstadt
et al., 2023; Hu et al., 2024).

Table 6 lists the architectural specifications of
the two model scales used in our experiments:
115M and 372M model. Both models follow the
Qwen2 (Yang et al., 2024) architecture family, shar-
ing the same decoder-only backbone but differing
in size-related hyperparameters.

Pre-training parameters. Table 7 lists the pa-
rameters that are common to both the baselines and
the proposed method, covering general optimiza-
tion and compute settings. Table 8 specifies the hy-
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perparameters unique to our proposed method, as
well as those that differ from the baselines. All ex-
periments were trained on a single NVIDIA H200
(64GB) GPU, with a maximum wall-clock train-
ing time of approximately 24 hours per run for the
proposed models.

Training hyperparameter Setting

Total training tokens 1,176,922,330
Batch size 128
Sequence length 512
Warmup ratio 5%
Learning rate (max/min) 5e-4 / 5e-5
Scheduler cosine
Optimizer AdamW
AdamW β1, β2, ϵ 0.9, 0.999, 1e-8
GPU hardware 1 × NVIDIA H200 (64GB)

Table 7: Common training hyperparameters and com-
pute setup shared across all baselines and proposed mod-
els.

Hyperparameter Baselines Proposed

AdamW weight decay 0.01 0
Optimizer re-initialization – Enabled
p (norm type) – 1 , 2
C (penalty coefficient) – 10−6 , 1
Cross-entropy tolerance ϵ – 0.693 (− ln 0.5)
η for α update – 0.1
max batch repeat – 10

Table 8: Hyperparameters specific to the proposed
method and those differing from the baselines.

E Additional Ablation: Optimizer
Re-initialization

Table 9 presents an ablation of optimizer state re-
initialization. Overall, removing re-initialization
(w/o) does not consistently improve performance
and sometimes leads to instability across tasks.
For instance, the 115M and 372M models without
re-initialization show large fluctuations in WUG-
PAST and BLiMP scores, suggesting that momen-
tum carried over between batches can introduce
noise and interfere with the batch-level indepen-
dence assumed by our method. At the same time,
re-initialization slightly decreases scores on a few
morphology-oriented benchmarks such as WUG-
ADJ, indicating that the added stability may also
reduce optimization flexibility. Across all settings,
the differences in average scores remain within one
point, confirming that the choice has only minor
quantitative impact. In summary, re-initializing the
optimizer state helps maintain the intended separa-

tion between batches but provides limited benefit
in terms of overall downstream performance.
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Model p Re-initialization BLiMP BLiMP-S EWoK GLUE WUG-ADJ Entity Reading(SPR/ET) WUG-PAST COMPS AoA Avg.

115M 1 w/ 49.2 50.4 50.2 57.7 57.5 41.8 0.1/0.6 4.3 49.4 0.0 32.8
115M 1 w/o 55.2 47.7 50.0 57.7 60.8 40.9 0.7/4.1 -13.1 50.3 0.0 32.2

|∆| 6.0↓ 2.7↑ 0.2↑ 0.0– 3.3↓ 0.9↑ 0.6↓/3.5↓ 17.4↑ 0.9↓ 0.0– 0.6↑
115M 2 w/ 52.2 50.2 49.4 57.7 57.1 41.1 0.0/1.5 -2.6 50.2 0.1 32.5
115M 2 w/o 53.8 50.8 49.9 57.7 48.6 40.9 0.3/2.2 5.2 49.6 0.1 32.6

|∆| 1.6↓ 0.6↓ 0.5↓ 0.0– 8.5↑ 0.2↑ 0.3↓/0.7↓ 7.8↓ 0.6↑ 0.0– 0.1↓
372M 1 w/ 47.8 50.5 50.5 57.7 56.2 41.2 0.0/0.5 8.5 50.6 0.3 33.1
372M 1 w/o 56.5 49.6 50.5 57.7 60.5 39.9 1.9/3.6 -1.0 49.8 0.1 33.5

|∆| 8.7↓ 0.9↑ 0.0– 0.0– 4.3↓ 1.3↑ 1.9↓/3.1↓ 9.5↑ 0.8↑ 0.2↑ 0.4↑
372M 2 w/ 52.2 47.9 50.1 57.7 60.5 40.3 0.0/1.2 2.2 50.1 0.3 33.0
372M 2 w/o 52.8 46.9 50.3 57.7 57.8 41.2 0.2/2.0 -4.6 49.5 0.8 32.2

|∆| 0.6↓ 1.0↓ 0.2↑ 0.0– 2.7↓ 0.9↓ 0.2↓/0.8↓ 6.8↑ 0.6↑ 0.5↓ 0.8↑

Table 9: Ablation study on optimizer state re-initialization for the 115M and 372M models. Each pair of rows
compares training with (w/) and without (w/o) re-initializing optimizer states at the beginning of each batch.
Following each pair, the |∆| row reports the absolute difference with ↑/↓ indicating whether re-initialization
increased or decreased the score, respectively.
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