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Abstract

We introduce RecombiText Augmentation
(RTA), a novel purely statistical NLP method
for compositional data augmentation for data-
efficient LLM pre-training in low-resource sce-
narios. RTA identifies lexically and semanti-
cally similar sentences within the corpus and
generates synthetic sentence pairs from them
while preserving underlying patterns from the
corpus. We pre-train GPT-2 and RoBERTa
language models on a domain-specific, low-
resource corpus of 10 million words, with dif-
ferent proportions of augmented data. We com-
pare our RTA-augmented model variants to
a baseline model trained on the full original
dataset. Zero-shot results show that the lan-
guage models pre-trained on synthetic data im-
prove in entity tracking, self-paced reading, and
morphological generalization benchmarks. In
other tasks, the performance is comparable to
the baseline model. We demonstrate that it is
possible to expand low-resource datasets by
two- to four-fold without compromising bench-
mark performance, solely through statistical
processing of the available data.

1 Introduction

Large language models (LLMs), such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
GPT-3 (Brown et al., 2020), and Chinchilla (Hoff-
mann et al., 2022), are large-scale language mod-
els based on the Transformer architecture from
Vaswani et al. (2017) that have achieved remark-
able performance across various Natural Language
Processing (NLP) tasks. However, success is based
on extensive training data, often hundreds of bil-
lions of words. For example, GPT-3 (Brown et al.,
2020) was trained with 570 GB of text after filter-
ing. This typically results in high computational
costs, as well as a dependency on vast amounts of
available training data in the respective language or
domain. However, large amounts of data are not al-
ways available in all languages or domains, which

limits the applicability of current language model
pre-training for low-resource scenarios (Charpen-
tier et al., 2025; Hedderich et al., 2020). In con-
trast, human language acquisition is far more effi-
cient. For example, children can fully learn a lan-
guage by the time they reach puberty, even though
they are only exposed to 3 to 11 million words per
year (Warstadt and Bowman, 2022; Warstadt et al.,
2025).

This discrepancy underscores the limitations of
current LLM pre-training and emphasizes the need
for data-efficient pre-training in low-resource sce-
narios. Data augmentation (DA) offers a promising
solution for efficiently utilizing available training
data by generating synthetic examples from exist-
ing datasets (Warstadt et al., 2025; Hu et al., 2024).
While DA is well-explored in computer vision and
downstream NLP tasks (Feng et al., 2021), its ap-
plication for LLM pre-training in low-resource sce-
narios is less explored (Warstadt et al., 2025; Hu
et al., 2024). Recent efforts show that DA methods
can improve model performance. However, many
rely on generative models or auxiliary text data
beyond the limited domain training set (Theodor-
opoulos et al., 2024; Haga et al., 2024; Edman
et al., 2024; Zhang et al., 2023; Lyman and Hepner,
2024), thereby limiting their suitability for scenar-
ios in which such auxiliary data is not available.

To address this gap, we propose RecombiText
Augmentation (RTA). This novel statistical compo-
sitional DA method leverages information retrieval
techniques and combines lexical and semantic sim-
ilarity by utilizing a one-point crossover, a concept
inspired by genetic algorithms (Goldberg, 1989).
Since RTA relies exclusively on the corpus itself,
it is independent of models trained on additional
text and is therefore ideal for truly low-resource
scenarios. RTA generates synthetic sentences in
four corpus-dependent phases:

i. Generating corpus-based embeddings
ii. Selecting matching candidates
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iii. Identifying pivot elements with sliding con-
text windows

iv. Applying a one-point crossover to create syn-
thetic sentence pairs.

Experiments on a 10-million-word corpus, act-
ing as a domain-specific low-resource scenario,
show that the language models that were trained
with RTA-augmented datasets improve the most for
performances in zero-shot Entity Tracking (Kim
and Schuster, 2023; Charpentier et al., 2025), Self-
paced Reading (de Varda et al., 2024), and morpho-
logical generalization tasks (WUGs) compared to
the baseline.

We demonstrate that purely statistical composi-
tional data augmentation can effectively enhance
the language model pre-training dataset in low-
resource scenarios without incurring any significant
losses in evaluation.

2 Related Work

Good-Enough Compositional Data Augmentation
(GECA) (Andreas, 2020) is another compositional
data augmentation algorithm for language mod-
eling. GECA identifies and swaps substitutable
fragments from sentences that share similar local
environments to generate synthetic compositional
examples, thereby enabling compositional text re-
combination without relying on models trained on
additional text. In contrast to GECA, our RTA
method focuses on lexical and semantical similari-
ties.

Related data augmentation methods for efficient
language modeling in low-resource scenarios in-
clude using word embeddings from Mikolov et al.
(2013) for word substitutions within the training
data and external treebanks to ensure grammati-
cal correctness, as proposed by Lyman and Hep-
ner (2024). Haga et al. (2024) generates artificial
variation sets that mimic children’s speech to pro-
duce paraphrased utterances using a pre-trained
language model trained on extensive external data.
Theodoropoulos et al. (2024) trains a decoder on
subsets of the TinyStories dataset (Eldan and Li,
2023) to generate synthetic examples. While these
methods enhance performance in low-resource sce-
narios, many rely on models that were trained on
additional text (Lyman and Hepner, 2024; Haga
et al., 2024; Edman et al., 2024; Zhang et al., 2023;
Theodoropoulos et al., 2024).

3 RecombiText Augmentation

RTA relies exclusively on information from the
training corpus, addressing the limitations of meth-
ods that depend on resources trained with addi-
tional text. Our method generates synthetic sen-
tence pairs based on lexically and semantically
similar sentences from the corpus.

3.1 Intuition

RTA is based on the idea of ad-hoc information
retrieval (IR), where a user sends a query in natural
language and receives relevant results from a col-
lection of documents (Jurafsky and Martin, 2019).
Furthermore, it is assumed that sentences that share
similar local environments can be swapped to some
extent. Based on this, we select a reference sen-
tence that represents the query and perform a hy-
brid search for lexically and semantically similar
sentences within the corpus. We then re-rank them,
similar to hybrid search techniques. We borrow
the idea from genetic algorithms (Goldberg, 1989)
and use a one-point crossover to cut and swap the
sentence fragments. To determine the intersection
of the reference and candidate sentences, we must
assess the pivot elements in each respective sen-
tence. For this purpose, a sliding context window
is employed based on semantic similarity and term
importance within both sentences. Figure 1 shows
the intuition behind the RTA algorithm to create
new sentence pairs.

3.2 Algorithmic Formulation

The RTA algorithm operates in four phases us-
ing corpus statistics and accessing only the avail-
able training data. It combines information re-
trieval techniques for candidate matching, statis-
tical embeddings for semantic similarity, and a ge-
netic algorithm-inspired crossover for augmenta-
tion. The process is divided into four main phases:
(i) Word and Sentence Embeddings, (ii) Candidate
Selection, (iii) Context Window, and (iv) Crossover
Operation. The source code is publicly available 1.

Word and Sentence Embeddings Word embed-
dings with Global Vectors for Word Representation
(GloVe) (Pennington et al., 2014), and sentence
embeddings with unsupervised smoothed inverse
frequency (uSIF) (Ethayarajh, 2018) are created
beforehand. Both methods use the available cor-
pus training data. The sentence embeddings are

1https://github.com/luciendgolden/RTA
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The cat chased the dog over the mat.

The cat

chased the dog over the mat.

A tabby hunted the mutt across the carpet.

A tabby

hunted the mutt across the carpet.

Parents

Children

Figure 1: The idea is to create new synthetic sentences based on lexical and semantic similarity from parts of
sentences using a one-point crossover. This involves searching for a semantic context window that maximizes the
IDF-weighted cosine similarity between a reference and candidate sentence, to determine the pivot elements at
which the sentences can be cut and swapped. In this example, the semantic context window size is W = 2

stored in the IR system for efficient use of semantic
search.

Candidate Selection To generate the synthetic
data, a query sentence q is randomly selected from
the specified corpus. For a query sentence q, lex-
ically and semantically similar candidates are re-
trieved. Lexical matches are determined via Best
Matching 25 (BM25) (Robertson and Zaragoza,
2009) and give ranking RBM25, which is an ex-
tended TF-IDF variant where TF-IDF is the prod-
uct of two terms, namely the term frequency (TF)
and the inverse document frequency (IDF). Seman-
tic matches are determined via k-Nearest Neigh-
bors (kNN) with cosine similarity on sentence em-
beddings and give ranking RkNN , which is used
for the semantic classification of the candidates.
These rankings are fused using Reciprocal Rank
Fusion (RRF) (Cormack et al., 2009) with constant
kRRF to produce RRRF , forming the result set
RRRF = {d | d ∈ RBM25} ∪ {d | d ∈ RkNN}
where d represents the document sentence. A can-
didate m is then selected from the top ktop via top-
k sampling with softmax probabilities modulated
by temperature T . From the amount of synthetic
text generated Daug relative to the proportional
baseline dataset Dbase we get an augmentation ra-
tio r, which defines the maximum frequency of
use for q and m. Therefore, in the dataset variant
that combines 1 million words from the baseline
dataset with 9 million words from synthetic text,
Dbase1M +Daug9M , each q and m sentence can be
selected up to 9 times, in theDbase2.5M+Daug7.5M

variant, up to 3 times, and in all other variants only
once.

Context Window To ensure linguistic consis-
tency of the generated sentences after the crossover
operation, pivot elements are identified where the
query sentence and the selected candidate exhibit
high semantic similarity in terms of context. This
is achieved using a sliding context window for q,m
where sequences of the two sentences are compared
based on the importance and semantic equivalence.
To avoid placing too much importance on words
that are often insignificant, the respective words
within the context window are weighted by their
IDF values. The context window is defined by a
fixed size W where W determines the number of
words within the window. Within the respective
windows Wq,Wm, the words with the highest sim-
ilarity and importance are searched for.

For each possible starting position in both sen-
tences, a window of size W is defined, which starts
at positions i in Q and j in M where Q and M
are tokenized versions of the query sentence q and
candidate sentence m. Therefore, we define a con-
text similarity Sctx(i, j) between the corresponding
windows Wq,Wm. Equation 1 shows the context
similarity calculation.

Sctx(i, j) =

∑
(cosk × idfk)∑

idfk
(1)

where k is each token pair within the windows
Wq and Wm and cosk is the respective cosine sim-
ilarity between the word embeddings in Wq and
Wm. A context window is only accepted if it is
above the threshold τwindow. Within the best win-
dow, find the pair with the maximum similarity
cosk × idfk, which acts as pivot elements for the
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following crossover operation.

Crossover Operation One-point crossover is ap-
plied at pivot elements to produce new synthetic
sentence pairs q̃, m̃ where the splitting takes place
at pivot elements. The algorithm also defines and
considers various edge cases, such as when iden-
tical sentences are produced. If such edge cases
occur, additional retries are executed. If the al-
gorithm fails several times, a new attempt with a
randomly new query sentence q is executed.

4 Experimental Setup

The experiments are carried out in four stages.
Firstly, the generation of the different training data
variants. Secondly, evaluating the quality of aug-
mented training data. Thirdly, the pre-training of
the language model, and fourthly, the evaluation
of the language models using zero-shot and fine-
tuning tasks.

4.1 Data Generation

The experiments use the 10-million-word corpus
from the official strict-small 2025 BabyLM
Challenge by Charpentier et al. (2025). We denote
the≈ 10M -word internal baseline dataset from Ta-
ble 4 as Dbase, with DbaseX representing the sam-
pled proportion of X million words; DaugY as the
Y million words generated via RTA; and the com-
bined dataset asDbaseX+DaugY . To create the dif-
ferent proportions from the baseline dataset Dbase,
the sample chunks and split script from Warstadt
et al. (2025) is used. The custom Python script
from Timiryasov and Tastet (2023) is used for pre-
processing (see Appendix A).

GloVe (Pennington et al., 2014) is employed to
generate word embeddings and trained on the re-
spective baseline proportion for each variant. Sen-
tence embeddings are created corpus-wide with
uSIF (Ethayarajh, 2018) when running the algo-
rithm. RTA was applied to the baseline dataset
Dbase to generate synthetic sentences in Daug. The
augmented sentences are inserted adjacent to the
reference sentences, based on the findings from
Haga et al. (2024).

4.2 Data Quality

Perplexity (PPL) is used to evaluate the quality of
the generated data Daug. The evaluation of data
quality is only a diagnostic metric and indepen-
dent of the data generation process. The perplexity
is compared for all augmented sentences in Daug

with the perplexity values for all reference sen-
tences from Dbase to determine whether the aug-
mented examples preserve the underlying linguistic
fluency. For this, the official pre-trained openai-
community/gpt2 (Radford et al., 2019) from Hug-
gingface is utilized, as it has been trained on large
amounts of data, enabling us to determine how sur-
prised the model is by the augmented sentences.
The RTA-augmented datasets used in our experi-
ments exhibit an approximately three times higher
average PPL (53.09±4.11) compared to the propor-
tional baseline datasets (17.83±0.21). Self-BLEU
scores are used to measure the diversity within the
corpus and show a modest increase for augmented
datasets (14.57% ± 4.45%) compared to the pro-
portional baseline datasets (8.41%± 0.31%).

4.3 Language Model Pre-training
For language model pre-training, we utilize a
decoder-based language model, GPT-2 Radford
et al. (2019), which was trained using next-token
prediction. Additionally, we employ an encoder-
based language model, RoBERTa (Liu et al., 2019),
which was trained using masked language model-
ing with a custom checkpoint strategy. Training
is quantified by the total number of whitespace-
separated input words, which must not exceed the
threshold of 100 million input words in total for
all models trained on text (Charpentier et al., 2025)
(for details see Appendix A).

4.4 Language Model Evaluation
For the performance evaluation of the pre-trained
language model, the official 2025 BabyLM Chal-
lenge evaluation pipeline from Charpentier et al.
(2025) is utilized, which encompasses domain-
specific zero-shot, fast zero-shot, and fine-tuning
tasks.

For zero-shot evaluation, the tasks are the Bench-
mark of Linguistic Minimal Pairs (BLiMP) and
the BLiMP Supplement (Warstadt et al., 2020),
which assess grammatical ability. Elements of
World Knowledge (EWoK) (Ivanova et al., 2024)
evaluates the ability of world modeling for lan-
guage models. Eye Tracking (Reading ET) and
Self-paced Reading (Reading SPR) (de Varda et al.,
2024) are behavioral paradigms used to measure
word-by-word language processing. Entity Track-
ing (ENT) (Kim and Schuster, 2023; Charpentier
et al., 2025) tests how well language models can fol-
low changes to objects such as a book or an apple
within a story or conversation. WUGs (Weissweiler
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et al., 2023; Hofmann et al., 2025) tests the linguis-
tic generalization of language models. COMPS
(Misra et al., 2022) assesses commonsense property
inheritance, where properties of broader categories
apply to more specific subcategories. Age of Ac-
quisition (AoA) (Chang and Bergen, 2022) tracks
word surprisal over training checkpoints to derive
learning curves correlated with human acquisition
ages. The fast zero-shot tasks utilize a smaller set
of evaluation examples from the zero-shot tasks
and evaluate the performance of the language mod-
els at specific checkpoints. The fine-tuning tasks
utilize selected tasks from the GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019) datasets,
which reflect language understanding tasks.

5 Results and Discussion

The quantitative results are presented briefly be-
low, followed by a brief insight into the qualitative
results.

Decoder For our GPT-2 model (Table 1), the
dataset variant that uses only 25% of the original
data (25/75) achieves the highest performance for
entity tracking (Kim and Schuster, 2023; Charp-
entier et al., 2025). The variant with 50% of the
original data (50/50) achieves the highest perfor-
mance for BLiMP Supplement (Warstadt et al.,
2020), EWoK (Ivanova et al., 2024), WUGs Past,
Reading SPR and ET (de Varda et al., 2024), and
GLUE (Wang et al., 2018, 2019) over the baseline.
The 75% original data variant (75/25) achieves the
best results for BLiMP (Warstadt et al., 2020). The
baseline showed a negligible correlation with hu-
man language acquisition, while the augmented
datasets led to moderate improvements. The vari-
ant (75/25) achieved the highest correlation. How-
ever, no variant achieved statistical significance of
p < 0.05 (see Appendix A).

Encoder For our RoBERTa model (Table 2),
the dataset variant that uses only 25% of the
original data (25/75) achieves the highest average
performance for entity tracking (Kim and Schuster,
2023; Charpentier et al., 2025), WUGs Past
(Weissweiler et al., 2023; Hofmann et al., 2025),
and COMPS (Misra et al., 2022) benchmarks over
the baseline. The detailed fine-tuning results show
that the mixed variants achieve improvements in
reading comprehension (Khashabi et al., 2018),
recognizing text entailments (Dagan et al., 2005;
Giampiccolo et al., 2007; Bentivogli et al., 2009),

and identifying the meaning of an ambiguous word
(Levesque et al., 2012). Regarding the correlation
with human language acquisition, the variants
consistently showed near-zero correlations (see
Appendix A for details).

We want to highlight that all our model variants
pre-trained on augmented data saw fewer words in
total (see Appendix A.3) but achieved similar or
better results in the zero-shot and fine-tuning tasks.

Qualitative Insights Table 3 presents qualitative
examples generated with the RTA method and pos-
sibly explains the pronounced gains in entity track-
ing and grammatical understanding of the LMs. For
example, the sentence "Two months passed, and
spring deepened into summer" and the aug-
mented version "Days deepened into summer"
could improve entity tracking (Kim and Schuster,
2023; Charpentier et al., 2025) by highlighting
time progressions. Similarly, swapping phrases
such as "My Missionary life has, on the
whole, been a very happy one..." with "My
Missionary life has, on the whole, was
very happy" leads to syntactic robustness, which
may have resulted in stronger BLiMP (Warstadt
et al., 2020) results in the augmented datasets.
Mixing weather descriptions, as in the examples
"It was very early on a hot December
morning." and "On nice sunny days when
it was not very cold she took them out
in the carriage," could, for example, expand
world knowledge and thus have led to improve-
ments in EWoK (Ivanova et al., 2024) and reading
tasks (de Varda et al., 2024).

6 Conclusion

RecombiText Augmentation is a statistical compo-
sitional data augmentation approach that generates
synthetic sentences via lexical-semantic similari-
ties and a one-point crossover. Our experimental re-
sults show that the proposed augmentation method
can expand low-resource datasets by two- to four-
fold without degrading language model benchmark
performance, and on tasks such as entity tracking,
self-paced reading, and morphological generaliza-
tion, it even outperforms models trained on the
full original dataset. This highlights substantial
data efficiency gains over training solely on the full
original dataset.

552



BLiMP WUGs Reading

Variant Prop. BLiMP Suppl. EWoK ENT Adj. Past COMPS SPR ET GLUE

Baseline 0% 61.62 58.17 50.01 12.95 0.69 -0.06 51.48 4.01 11.83 64.02
Dbase1M +Daug9M 10% 58.30 57.42 49.81 16.24 0.47 -0.17 50.38 3.92 10.07 64.06
Dbase2.5M +Daug7.5M 25% 60.18 60.48 50.41 19.65 0.54 0.24 50.49 3.97 11.65 64.50
Dbase5M +Daug5M 50% 61.87 61.08 50.80 16.51 0.56 0.24 50.83 4.74 12.05 64.76
Dbase7.5M +Daug2.5M 75% 62.91 59.02 49.74 17.50 0.56 0.03 51.42 4.13 11.64 63.39
Dbase9M +Daug1M 90% 61.27 59.80 50.24 16.53 0.71 -0.05 50.84 4.39 11.80 62.70
Dbase10M +Daug10M 100% 61.99 59.11 50.20 16.19 0.54 0.07 51.22 4.32 12.02 64.66

Table 1: GPT-2 evaluation results with downsampled size from baseline dataset (prop.), Blimp, Bimp Supplement
(Suppl.), EWoK, Entity Tracking (ENT), COMPS with accuracy (in %), WUGs with Spearman’s rank correlation
coefficient ρ, Self-paced Reading (SPR), Eye Tracking (ET) with change in R2, and (Super)GLUE subset with
macroaverage accuracy (in %).

BLiMP WUGs Reading

Variant Prop. BLiMP Suppl. EWoK ENT Adj. Past COMPS SPR ET GLUE

Baseline 0% 54.44 50.98 51.01 32.27 0.58 -0.09 50.34 3.08 10.06 61.27
Dbase1M +Daug9M 10% 57.06 52.33 50.17 28.41 0.52 -0.03 50.66 3.53 10.17 61.51
Dbase2.5M +Daug7.5M 25% 55.15 51.77 49.38 38.89 0.48 0.23 51.25 3.52 11.01 61.19
Dbase5M +Daug5M 50% 55.56 51.55 49.89 33.65 0.67 -0.03 50.93 3.50 11.02 62.29
Dbase7.5M +Daug2.5M 75% 55.76 52.72 49.92 29.02 0.68 -0.20 50.90 3.42 11.03 61.65
Dbase9M +Daug1M 90% 54.30 51.67 49.62 33.83 0.57 -0.15 50.85 2.93 10.25 62.11
Dbase10M +Daug10M 100% 54.39 53.10 49.46 29.70 0.72 -0.03 50.49 2.81 10.48 61.98

Table 2: RoBERTa evaluation results with downsampled size from baseline dataset (prop.), Blimp, Bimp Supplement
(Suppl.), EWoK, Entity Tracking (ENT), COMPS with accuracy (in %), WUGs with Spearman’s rank correlation
coefficient ρ, Self-paced Reading (SPR), Eye Tracking (ET) with change in R2 and (Super)GLUE subset with
macroaverage accuracy (in %).

Reference Sentences Augmented Sentences
Two months passed, and spring deepened into
summer.

Two months passed, and spring ran into weeks,
weeks into months, but the expected agent of
deliverance was not forthcoming.

Days ran into weeks, weeks into months, but
the expected agent of deliverance was not forth-
coming.

Days deepened into summer.

Life on the whole was very happy. Life on the whole, been a very happy one....’
My Missionary life has, on the whole, been a
very happy one....’

My Missionary life has, on the whole was very
happy.

I’ve already started something. I’ve been spectating
Cos I’ve been spectating Cos I’ve already started something.
It was very early on a hot December morning. it was not very cold she took them out in the

carriage.
On nice sunny days when it was not very cold
she took them out in the carriage.

On nice sunny days when It was very early on a
hot December morning.

Table 3: Examples of RTA-generated augmented sentences based on a picked reference sentence and matching
candidates.

Learnings

The experiments have demonstrated that the pro-
posed method improves the morphological general-
ization, entity tracking, and reading comprehension

capabilities of language models over the baseline.
However, the strategy used, the frequency with
which query sentences are combined with candi-
date sentences, and how augmentation is performed
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play a significant role. Based on the experiments
and results, it can be assumed that language models
develop a better understanding of language when
they frequently see how the same sentence can be
combined in different ways. This can be observed,
for example, in variants with 25% original data
(25/75), which yield better results in entity track-
ing and morphological generalization than more
balanced variants.

Limitations

The success of semantic search for candidates and
the context window depends on word embeddings.
As a result, ineffective or low-quality embeddings
can lead to candidates that are less semantically
relevant and therefore influence the relevance for
the resulting augmented sentences. Furthermore,
as the embedding quality decreases, the algorithm
relies more heavily on lexical matches within the
context windows for the respective intersections.
It is plausible to assume that such factors could
influence the performance when evaluating the lan-
guage models.

Focusing on the evaluation of the quality of word
and sentence embeddings when using the RTA
method could ensure robust semantic alignment.
Furthermore, a separate assessment of the effects
of lexical versus semantic augmentations can lead
to a better understanding of the respective improve-
ments. The selection of the matching candidates
and the presentation of the resulting data to the
language model could provide deeper insights into
the individual contributions. This separate evalu-
ation would further contribute to the optimization
of the RTA method by showing which type of aug-
mentation leads to improvements. Investigating the
effects of the used RTA hyperparameters could also
enable more targeted data augmentation strategies
for low-resource scenarios.
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A Appendix A

A.1 Setup Details

The RTA algorithm was implemented locally with
Python 3.13. GNU Parallel (Tange, 2025) was
used to execute the jobs for generating the aug-
mented datasets, enabling multiple instances to be
run simultaneously. The language models were
trained on 1x NVIDIA H100 Tensor Core GPU
with Python 3.12.9, Transformers 4.50.3, and Py-
Torch 2.7.1+cu126. For reproducibility, random
seeds are used.

A.2 Data Preprocessing

The datasets were preprocessed to remove spe-
cific metadata. The custom Python script from
Timiryasov and Tastet (2023) was used. We apply
corpus-specific cleanup functions to normalize the
text for model training. The common steps for all
functions include removing extra spaces, tabs, and
unnecessary line breaks. Additional customized
processes vary depending on the corpus. For ex-
ample, in OpenSubtitles (Lison and Tiedemann,
2016), subtitle credits are removed. In Simple En-
glish Wikipedia, leading line breaks at the end are
removed.

A.3 Language Model Pre-training Details

GloVe (Pennington et al., 2014) is trained exclu-
sively on the baseline proportion |DbaseX |, which
is deducted from the total 100 million word bud-
get to determine the remaining allocation for LM
training. The training corpus was tokenized using
Byte Pair Encoding (BPE) (Gage, 1994; Sennrich
et al., 2015) with the script from Charpentier and
Samuel (2024). This yields the average number
of subword tokens per whitespace-separated word
(Avg. Splits/Word), which varies slightly across
variants due to differences in data composition.
All LMs use a batch size of 16 and a sequence
length of 512, resulting in 16 × 512 = 8192 to-
kens per training step. The approximate number
of words processed per step is then calculated as
Words/Step = Tokens/Step

Avg. Splits/Word . To utilize the allo-
cated number of words for the LMs without exceed-
ing the budget, the maximum training steps are de-
termined by the formula Max Steps = # Words LM

Words/Step .
The number of times the LMs iterate over the
dataset is called an epoch and is, in our case, cal-
culated as Epoch = # Words LM

# Words Dataset . Checkpoints are
created every 1 million words for the first 10 mil-
lion words and every 10 million words thereafter,

up to a total of 100 million words. To determine
when the language models have encountered a spe-
cific number of words, we perform specific calcu-
lations. Table 6 shows the detailed experimental
language model setup for each variant.
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Dataset Description Citation # Words
British National Corpus (BNC) Dialogue (Consortium et al., 2007) 0.93M
CHILDES Child-directed speech (MacWhinney, 2000) 2.84M
Project Gutenberg (children’s stories) Written English (Gerlach and Font-Clos, 2020) 2.54M
OpenSubtitles Movie subtitles (Lison and Tiedemann, 2016) 2.04M
Simple English Wikipedia Written Simple English - 1.45M
Switchboard Dialog Act Corpus Dialogue (Godfrey et al., 1992; Stolcke et al., 2000) 0.15M
Total 9.95M

Table 4: Datasets for the experiments simulating the low-resource scenario by Charpentier et al. (2025) after
preprocessing.

Variant Pro
por

tio
n

# Tota
l W

or
ds

# Base
W

or
ds

# Aug W
or

ds

Rati
o r

Dbase10M 0% 9.95M 9.95M 0.00M 0.00
Dbase1M +Daug9M 10% 10.55M 1.06M 9.49M 9.00
Dbase2.5M +Daug7.5M 25% 9.68M 2.43M 7.25M 3.00
Dbase5M +Daug5M 50% 9.72M 4.96M 4.76M 1.00
Dbase7.5M +Daug2.5M 75% 9.99M 7.48M 2.52M 0.33
Dbase9M +Daug1M 90% 9.96M 8.95M 1.01M 0.11
Dbase10M +Daug10M 100% 19.49M 9.95M 9.54M 1.00

Table 5: Sampled proportions from the original strict-small low-resource training data by Charpentier et al.
(2025), total words (in millions) in the resulting dataset, actual number of base words sampled from the baseline
dataset Dbase, augmented words generated as Daug with RTA and the approximate nominal augmentation ratio
r =

|Daug|
|Dbase| . The actual ratios may vary slightly due to data preprocessing.

Variant # W
or

ds Data
set

Avg
. Splits

/W
or

d

# W
or

ds GloV
e

# W
or

ds LM

Tok
en

s/S
tep

W
or

ds/S
tep

M
ax

Step
s

Epoc
hs

Dbase10M 9.95M 1.608 0.00M 100.00M 8,192 5,095 19,627 10.05
Dbase1M +Daug9M 10.55M 1.463 1.06M 98.94M 8,192 5,599 17,672 9.38
Dbase2.5M +Daug7.5M 9.68M 1.518 2.43M 97.57M 8,192 5,397 18,079 10.08
Dbase5M +Daug5M 9.72M 1.529 4.96M 95.04M 8,192 5,358 17,738 9.77
Dbase7.5M +Daug2.5M 9.99M 1.564 7.48M 92.52M 8,192 5,238 17,664 9.26
Dbase9M +Daug1M 9.96M 1.59 8.95M 91.05M 8,192 5,152 17,672 9.14
Dbase10M +Daug10M 19.49M 1.527 9.95M 90.05M 8,192 5,365 16,785 4.62

Table 6: Language Model training setup for each data augmentation variant, where # Words represents the total
whitespace-separated words in the preprocessed training dataset, Avg. Splits/Word indicates the average subword
tokens per word from BPE tokenizer, # Words GloVe is the size of the dataset with which the GloVe model was
trained, # Words LM reflects the budgeted words for the language model, Tokens/Step is the number of tokens per
training step the LM sees, Words/Step approximates the number of words per training step the LM sees, Max Steps
gives the total training steps for the LM, Epochs is the number the LM iterates over the dataset.
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PPL Self-BLEU

Variant DbaseX DaugY DbaseX DaugY

Dbase1M +Daug9M 18.23 47.50 8.83 12.65
Dbase2.5M +Daug7.5M 17.69 49.84 8.67 12.56
Dbase5M +Daug5M 17.83 54.21 8.50 12.33
Dbase7.5M +Daug2.5M 17.81 55.05 8.02 18.33
Dbase9M +Daug1M 17.66 59.21 8.30 22.67
Dbase10M +Daug10M 17.75 53.51 8.19 11.74

Table 7: Data quality evaluation for the base dataset Dbase and the augmented dataset Daug with their respective
PPL and Self-BLEU (in %) values.

AoA

Variant GPT-2 RoBERTa

Baseline -0.001 (p=0.997) 0.00
Dbase1M +Daug9M 0.120 (p=0.670) -0.274 (p=0.656)
Dbase2.5M +Daug7.5M 0.233 (p=0.404) 0.00
Dbase5M +Daug5M 0.031 (p=0.888) 0.00
Dbase7.5M +Daug2.5M 0.265 (p=0.182) 0.00
Dbase9M +Daug1M 0.089 (p=0.718) 0.00
Dbase10M +Daug10M 0.204 (p=0.388) 0.00

Table 8: AoA results for the different model variants.

Figure 2: GPT-2 final fast zero-shot checkpoint results.
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Figure 3: GPT-2 fast zero-shot results across training checkpoints where the language model has seen between
1M–10M words.

Figure 4: GPT-2 fast zero-shot results across training checkpoints where the language model has seen between
10M–100M words.

Variant Prop. BoolQ MNLI MRPC QQP MultiRC RTE WSC Macro Avg.

Baseline 0% 67.58 50.81 81.25 62.86 63.94 60.43 67.31 64.02
Dbase1M +Daug9M 10% 67.65 54.79 82.46 66.99 63.94 53.96 63.46 64.06
Dbase2.5M +Daug7.5M 25% 67.03 54.16 82.01 66.97 63.94 59.71 63.46 64.50
Dbase5M +Daug5M 50% 66.73 55.89 83.23 66.17 60.81 59.71 65.38 64.76
Dbase7.5M +Daug2.5M 75% 66.91 52.89 81.96 66.73 59.98 56.12 65.38 63.39
Dbase9M +Daug1M 90% 67.83 49.29 81.37 61.22 60.35 58.27 63.46 62.70
Dbase10M +Daug10M 100% 68.75 55.62 82.65 68.20 60.60 56.12 65.38 64.66

Table 9: GPT-2 detailed fine-tuning results.
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Figure 5: RoBERTa final fast zero-shot checkpoint results.

Figure 6: RoBERTa fast zero-shot results across training checkpoints where the language model has seen between
1M–10M words.

Variant Prop. BoolQ MNLI MRPC QQP MultiRC RTE WSC Macro Avg.

Baseline 0% 66.24 40.99 83.39 59.46 57.55 54.68 65.38 61.27
Dbase1M +Daug9M 10% 66.36 42.32 81.23 61.18 57.96 56.12 65.38 61.51
Dbase2.5M +Daug7.5M 25% 66.12 41.95 81.55 60.33 57.55 56.83 61.54 61.19
Dbase5M +Daug5M 50% 66.54 43.42 82.47 61.08 60.23 55.40 65.38 62.29
Dbase7.5M +Daug2.5M 75% 67.22 43.13 82.28 60.31 57.96 56.83 65.38 61.65
Dbase9M +Daug1M 90% 66.67 42.46 82.13 60.59 57.96 58.99 67.31 62.11
Dbase10M +Daug10M 100% 65.87 42.14 80.75 58.47 59.32 57.55 67.31 61.98

Table 10: RoBERTa detailed fine-tuning results.
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Figure 7: RoBERTa fast zero-shot results across training checkpoints where the language model has seen between
10M–100M words.

Hyperparameter Value
Vector Size 50
Window Size 10
Minimum Vocabulary Count 5
Maximum Co-occurrence Weight (x_max) 10
Maximum Iterations 25
Number of Threads 4
Memory 4.0 GB

Table 11: Hyperparameters for the GloVe model used in the experiments.

Variant RRF k τwindow W top-k T Ratio r

Dbase1M +Daug9M 60 60% 3 50 1.3 9.00
Dbase2.5M +Daug7.5M 60 60% 3 30 1.1 3.00
Dbase5M +Daug5M 60 60% 3 20 1.0 1.00
Dbase7.5M +Daug2.5M 60 60% 3 15 0.9 0.33
Dbase9M +Daug1M 60 60% 3 10 0.8 0.11
Dbase10M +Daug10M 60 60% 3 20 1.0 1.00

Table 12: Hyperparameters for the RTA algorithm used in the experiments.
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Hyperparameter Value
Model Type openai-community/gpt2
Tokenizer BPE
Learning Rate 5× 10−5

Maximum Gradient Norm 1.0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Block Size 512
Batch Size 16
Save Strategy Steps
Save Total Limit 20
Logging Steps 100
Evaluation Strategy Steps
Seed 42

Table 13: Hyperparameters for the GPT-2 model training used in the experiments.

Hyperparameter Value
Model Type FacebookAI/roberta-base
Tokenizer BPE
Learning Rate 5× 10−5

Maximum Gradient Norm 1.0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Sequence Length 512
Batch Size 16
MLM Probability 15%
Save Strategy Steps
Save Total Limit 20
Logging Steps 100
Evaluation Strategy Steps
Seed 42

Table 14: Hyperparameters for the RoBERTa model training used in the experiments.

Hyperparameter MultiNLI, RTE, QQP, MRPC BoolQ, MultiRC WSC
Learning Rate 3× 10−5 3× 10−5 3× 10−5

Batch Size 32 16 32
Epochs 10 10 30
Weight Decay 0.01 0.01 0.01
Optimizer AdamW AdamW AdamW
Scheduler cosine cosine cosine
Warmup Percentage 6% 6% 6%
Dropout 0.1 0.1 0.1

Table 15: Hyperparameters for fine-tuning the language models used in the experiments.
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Expression Definition
D Set of documents
q Query sentence
|q|, |m| Sentence lengths
q̃, m̃ Augmented sentence pairs
RBM25 Lexical search results (BM25)
RkNN Semantic search results (k-NN)
RRRF Fused ranked list from Reciprocal Rank Fusion
τwindow Threshold for context window similarity
ktop Number of top-k candidates for sampling
p(xi) Softmax probability
m Candidate sentence
W Fixed size of the context window
vt ∈ Rd Word embedding of token t in d-dimensional space
vuSIF ∈ Rd Sentence embeddings in d-dimensional space
idf(t,D) IDF value of token t in corpus D
Sctx(i, j) Context window similarity
i, j Positions within the sliding context windows
k∗ Pivot index within the context window maximizing similarity
i∗, j∗ Pivot elements for q,m
|| Concatenation operator

Table 16: Mathematical notation for the RecombiText Augmentation (RTA) algorithm.
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Algorithm 1: RecombiText Augmentation (RTA) Pseudo Algorithm

Data: Dataset D, q ∈ D, vt ∈ Rd, vuSIF ∈ Rd, idf(t,D)
Result: q̃, m̃
RetrieveRBM25 for q;
RetrieveRkNN for q on vuSIF ∈ Rd;
RRRF ← empty;
for d inRBM25 ∪RkNN do

Compute RRFscore;
Add d toRRRF with its RRF score;

end
SortRRRF in descending order of RRF scores;
retry ← 1;
for retry ≤ |RRRF | do

Select ktop candidates fromRRRF ;
Compute p(xi) on ktop candidates according to top-k sampling;
Sample candidate sentence m according to probabilities p;
Tokenize q = ⟨q0, . . . , q|q|−1⟩ and m = ⟨m0, . . . ,m|m|−1⟩;
Normalize q,m;
Smax ← 0, i∗ ← 0, j∗ = 0;
for i = 0 to |q| −Wq + 1 do

for j = 0 to |m| −Wm + 1 do
Compute Sctx(i, j) according to Equation 1;
if Sctx(i, j) > Smax then

Smax ← Sctx(i, j);
Compute k∗ for Wq,Wm according to cosk × idfk;
i∗ ← i+ k∗;
j∗ ← j + k∗;

end
end

end
if Smax > τwindow then

q̃ = ⟨q0, . . . , qi∗−1 || mj∗ , . . . ,m|m|−1⟩;
m̃ = ⟨m0, . . . ,mj∗−1 || qi∗ , . . . , q|q|−1⟩;
return q̃, m̃;

else
retry ← retry + 1;
Remove candidate m fromRRRF ;
continue;

end
end
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