@inproceedings{kabir-etal-2025-advancing,
title = "Advancing Subjectivity Detection in {B}engali News Articles Using Transformer Models with {POS}-Aware Features",
author = "Kabir, Md Minhazul and
Ahmed, Kawsar and
Habib, Mohammad Ashfak and
Hoque, Mohammed Moshiul",
editor = "Alam, Firoj and
Kar, Sudipta and
Chowdhury, Shammur Absar and
Hassan, Naeemul and
Prince, Enamul Hoque and
Tasnim, Mohiuddin and
Rony, Md Rashad Al Hasan and
Rahman, Md Tahmid Rahman",
booktitle = "Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025)",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.banglalp-1.11/",
pages = "131--141",
ISBN = "979-8-89176-314-2",
abstract = "Distinguishing fact from opinion in text is a nuanced but essential task, particularly in news articles where subjectivity can influence interpretation and reception. Identifying whether content is subjective or objective is critical for sentiment analysis, media bias detection, and content moderation. However, progress in this area has been limited for low-resource languages such as Bengali due to a lack of benchmark datasets and tools. To address these constraints, this work presents BeNSD (Bengali News Subjectivity Detection), a novel dataset of 8,655 Bengali news article texts, along with an enhanced transformer-based architecture ($POS-Aware-MuRIL$) that integrates parts-of-speech (POS) features with MuRIL embeddings at the input level to provide richer contextual representation for subjectivity detection. A range of baseline models is evaluated, and the proposed architecture achieves a macro F1-score of 93.35{\%} in subjectivity detection for the Bengali language."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kabir-etal-2025-advancing">
<titleInfo>
<title>Advancing Subjectivity Detection in Bengali News Articles Using Transformer Models with POS-Aware Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Minhazul</namePart>
<namePart type="family">Kabir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kawsar</namePart>
<namePart type="family">Ahmed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Ashfak</namePart>
<namePart type="family">Habib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="given">Moshiul</namePart>
<namePart type="family">Hoque</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Firoj</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shammur</namePart>
<namePart type="given">Absar</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naeemul</namePart>
<namePart type="family">Hassan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enamul</namePart>
<namePart type="given">Hoque</namePart>
<namePart type="family">Prince</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohiuddin</namePart>
<namePart type="family">Tasnim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Rashad</namePart>
<namePart type="given">Al</namePart>
<namePart type="given">Hasan</namePart>
<namePart type="family">Rony</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Tahmid</namePart>
<namePart type="given">Rahman</namePart>
<namePart type="family">Rahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-314-2</identifier>
</relatedItem>
<abstract>Distinguishing fact from opinion in text is a nuanced but essential task, particularly in news articles where subjectivity can influence interpretation and reception. Identifying whether content is subjective or objective is critical for sentiment analysis, media bias detection, and content moderation. However, progress in this area has been limited for low-resource languages such as Bengali due to a lack of benchmark datasets and tools. To address these constraints, this work presents BeNSD (Bengali News Subjectivity Detection), a novel dataset of 8,655 Bengali news article texts, along with an enhanced transformer-based architecture (POS-Aware-MuRIL) that integrates parts-of-speech (POS) features with MuRIL embeddings at the input level to provide richer contextual representation for subjectivity detection. A range of baseline models is evaluated, and the proposed architecture achieves a macro F1-score of 93.35% in subjectivity detection for the Bengali language.</abstract>
<identifier type="citekey">kabir-etal-2025-advancing</identifier>
<location>
<url>https://aclanthology.org/2025.banglalp-1.11/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>131</start>
<end>141</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Advancing Subjectivity Detection in Bengali News Articles Using Transformer Models with POS-Aware Features
%A Kabir, Md Minhazul
%A Ahmed, Kawsar
%A Habib, Mohammad Ashfak
%A Hoque, Mohammed Moshiul
%Y Alam, Firoj
%Y Kar, Sudipta
%Y Chowdhury, Shammur Absar
%Y Hassan, Naeemul
%Y Prince, Enamul Hoque
%Y Tasnim, Mohiuddin
%Y Rony, Md Rashad Al Hasan
%Y Rahman, Md Tahmid Rahman
%S Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025)
%D 2025
%8 December
%I Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-314-2
%F kabir-etal-2025-advancing
%X Distinguishing fact from opinion in text is a nuanced but essential task, particularly in news articles where subjectivity can influence interpretation and reception. Identifying whether content is subjective or objective is critical for sentiment analysis, media bias detection, and content moderation. However, progress in this area has been limited for low-resource languages such as Bengali due to a lack of benchmark datasets and tools. To address these constraints, this work presents BeNSD (Bengali News Subjectivity Detection), a novel dataset of 8,655 Bengali news article texts, along with an enhanced transformer-based architecture (POS-Aware-MuRIL) that integrates parts-of-speech (POS) features with MuRIL embeddings at the input level to provide richer contextual representation for subjectivity detection. A range of baseline models is evaluated, and the proposed architecture achieves a macro F1-score of 93.35% in subjectivity detection for the Bengali language.
%U https://aclanthology.org/2025.banglalp-1.11/
%P 131-141
Markdown (Informal)
[Advancing Subjectivity Detection in Bengali News Articles Using Transformer Models with POS-Aware Features](https://aclanthology.org/2025.banglalp-1.11/) (Kabir et al., BanglaLP 2025)
ACL