@inproceedings{fahmid-etal-2025-nsu,
title = "{NSU}{\_}{P}ied{P}iper at {BLP}-2025 Task 2: A Chain-of-Thought with Iterative Debugging Approach for Code Generation with {B}angla Instruction",
author = "Fahmid, Ahmad and
Foysal, Fahim and
Haider, Wasif and
Rahman, Shafin and
Arefeen, Md Adnan",
editor = "Alam, Firoj and
Kar, Sudipta and
Chowdhury, Shammur Absar and
Hassan, Naeemul and
Prince, Enamul Hoque and
Tasnim, Mohiuddin and
Rony, Md Rashad Al Hasan and
Rahman, Md Tahmid Rahman",
booktitle = "Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025)",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.banglalp-1.60/",
pages = "595--600",
ISBN = "979-8-89176-314-2",
abstract = "Code generation from natural language instructions in Bangla is a fundamental task in programming automation, as explored in BLP-2025 Shared Task 2: Code Generation in Bangla. Current code generation models are designed primarily for high-resource languages such as English, which creates major limitations when applied to Bangla. The key challenges are limited training data and difficulty in correctly interpreting Bangla programming instructions. In this paper, to accommodate Bangla instructions, we present a chain of thought (CoT) based prompting approach with Qwen2.5-Coder-14B model. We further introduce few-shot example in the prompt template to improve the accuracy. During competition, an accuracy of 93{\%} is achieved in the shared test set (test{\_}v1.csv) and 82.6{\%} is achieved on the public and private test sets (hidden). After the competition is closed, we implement a debugger prompt technique which refines answers with 3 iterative fixing attempts. Applying this new technique on the public shared test set, our system outperforms by 7{\%} and achieves 100{\%} accuracy on the public test set, highlighting the effectiveness of combining CoT prompting with iterative debugging."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fahmid-etal-2025-nsu">
<titleInfo>
<title>NSU_PiedPiper at BLP-2025 Task 2: A Chain-of-Thought with Iterative Debugging Approach for Code Generation with Bangla Instruction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahmad</namePart>
<namePart type="family">Fahmid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahim</namePart>
<namePart type="family">Foysal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wasif</namePart>
<namePart type="family">Haider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafin</namePart>
<namePart type="family">Rahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Adnan</namePart>
<namePart type="family">Arefeen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Firoj</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shammur</namePart>
<namePart type="given">Absar</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naeemul</namePart>
<namePart type="family">Hassan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enamul</namePart>
<namePart type="given">Hoque</namePart>
<namePart type="family">Prince</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohiuddin</namePart>
<namePart type="family">Tasnim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Rashad</namePart>
<namePart type="given">Al</namePart>
<namePart type="given">Hasan</namePart>
<namePart type="family">Rony</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Tahmid</namePart>
<namePart type="given">Rahman</namePart>
<namePart type="family">Rahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-314-2</identifier>
</relatedItem>
<abstract>Code generation from natural language instructions in Bangla is a fundamental task in programming automation, as explored in BLP-2025 Shared Task 2: Code Generation in Bangla. Current code generation models are designed primarily for high-resource languages such as English, which creates major limitations when applied to Bangla. The key challenges are limited training data and difficulty in correctly interpreting Bangla programming instructions. In this paper, to accommodate Bangla instructions, we present a chain of thought (CoT) based prompting approach with Qwen2.5-Coder-14B model. We further introduce few-shot example in the prompt template to improve the accuracy. During competition, an accuracy of 93% is achieved in the shared test set (test_v1.csv) and 82.6% is achieved on the public and private test sets (hidden). After the competition is closed, we implement a debugger prompt technique which refines answers with 3 iterative fixing attempts. Applying this new technique on the public shared test set, our system outperforms by 7% and achieves 100% accuracy on the public test set, highlighting the effectiveness of combining CoT prompting with iterative debugging.</abstract>
<identifier type="citekey">fahmid-etal-2025-nsu</identifier>
<location>
<url>https://aclanthology.org/2025.banglalp-1.60/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>595</start>
<end>600</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NSU_PiedPiper at BLP-2025 Task 2: A Chain-of-Thought with Iterative Debugging Approach for Code Generation with Bangla Instruction
%A Fahmid, Ahmad
%A Foysal, Fahim
%A Haider, Wasif
%A Rahman, Shafin
%A Arefeen, Md Adnan
%Y Alam, Firoj
%Y Kar, Sudipta
%Y Chowdhury, Shammur Absar
%Y Hassan, Naeemul
%Y Prince, Enamul Hoque
%Y Tasnim, Mohiuddin
%Y Rony, Md Rashad Al Hasan
%Y Rahman, Md Tahmid Rahman
%S Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025)
%D 2025
%8 December
%I Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-314-2
%F fahmid-etal-2025-nsu
%X Code generation from natural language instructions in Bangla is a fundamental task in programming automation, as explored in BLP-2025 Shared Task 2: Code Generation in Bangla. Current code generation models are designed primarily for high-resource languages such as English, which creates major limitations when applied to Bangla. The key challenges are limited training data and difficulty in correctly interpreting Bangla programming instructions. In this paper, to accommodate Bangla instructions, we present a chain of thought (CoT) based prompting approach with Qwen2.5-Coder-14B model. We further introduce few-shot example in the prompt template to improve the accuracy. During competition, an accuracy of 93% is achieved in the shared test set (test_v1.csv) and 82.6% is achieved on the public and private test sets (hidden). After the competition is closed, we implement a debugger prompt technique which refines answers with 3 iterative fixing attempts. Applying this new technique on the public shared test set, our system outperforms by 7% and achieves 100% accuracy on the public test set, highlighting the effectiveness of combining CoT prompting with iterative debugging.
%U https://aclanthology.org/2025.banglalp-1.60/
%P 595-600
Markdown (Informal)
[NSU_PiedPiper at BLP-2025 Task 2: A Chain-of-Thought with Iterative Debugging Approach for Code Generation with Bangla Instruction](https://aclanthology.org/2025.banglalp-1.60/) (Fahmid et al., BanglaLP 2025)
ACL