@inproceedings{liu-etal-2025-cogent,
title = "{COGENT}: A Curriculum-oriented Framework for Generating Grade-appropriate Educational Content",
author = "Liu, Zhengyuan and
Yin, Stella Xin and
Goh, Dion Hoe-Lian and
Chen, Nancy",
editor = {Kochmar, Ekaterina and
Alhafni, Bashar and
Bexte, Marie and
Burstein, Jill and
Horbach, Andrea and
Laarmann-Quante, Ronja and
Tack, Ana{\"i}s and
Yaneva, Victoria and
Yuan, Zheng},
booktitle = "Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bea-1.10/",
doi = "10.18653/v1/2025.bea-1.10",
pages = "129--143",
ISBN = "979-8-89176-270-1",
abstract = "While Generative AI has demonstrated strong potential and versatility in content generation, its application to educational contexts presents several challenges. Models often fail to align with curriculum standards and maintain grade-appropriate reading levels consistently. Furthermore, STEM education poses additional challenges in balancing scientific explanations with everyday language when introducing complex and abstract ideas and phenomena to younger students.In this work, we propose COGENT, a curriculum-oriented framework for generating grade-appropriate educational content. We incorporate three curriculum components (science concepts, core ideas, and learning objectives), control readability through length, vocabulary, and sentence complexity, and adopt a ``wonder-based'' approach to increase student engagement and interest. We conduct a multi-dimensional evaluation via both LLM-as-a-judge and human expert analysis. Experimental results show that COGENT consistently produces grade-appropriate passages that are comparable or superior to human references. Our work establishes a viable approach for scaling adaptive and high-quality learning resources."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-cogent">
<titleInfo>
<title>COGENT: A Curriculum-oriented Framework for Generating Grade-appropriate Educational Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhengyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="given">Xin</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dion</namePart>
<namePart type="given">Hoe-Lian</namePart>
<namePart type="family">Goh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bashar</namePart>
<namePart type="family">Alhafni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Bexte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronja</namePart>
<namePart type="family">Laarmann-Quante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaïs</namePart>
<namePart type="family">Tack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Yaneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-270-1</identifier>
</relatedItem>
<abstract>While Generative AI has demonstrated strong potential and versatility in content generation, its application to educational contexts presents several challenges. Models often fail to align with curriculum standards and maintain grade-appropriate reading levels consistently. Furthermore, STEM education poses additional challenges in balancing scientific explanations with everyday language when introducing complex and abstract ideas and phenomena to younger students.In this work, we propose COGENT, a curriculum-oriented framework for generating grade-appropriate educational content. We incorporate three curriculum components (science concepts, core ideas, and learning objectives), control readability through length, vocabulary, and sentence complexity, and adopt a “wonder-based” approach to increase student engagement and interest. We conduct a multi-dimensional evaluation via both LLM-as-a-judge and human expert analysis. Experimental results show that COGENT consistently produces grade-appropriate passages that are comparable or superior to human references. Our work establishes a viable approach for scaling adaptive and high-quality learning resources.</abstract>
<identifier type="citekey">liu-etal-2025-cogent</identifier>
<identifier type="doi">10.18653/v1/2025.bea-1.10</identifier>
<location>
<url>https://aclanthology.org/2025.bea-1.10/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>129</start>
<end>143</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T COGENT: A Curriculum-oriented Framework for Generating Grade-appropriate Educational Content
%A Liu, Zhengyuan
%A Yin, Stella Xin
%A Goh, Dion Hoe-Lian
%A Chen, Nancy
%Y Kochmar, Ekaterina
%Y Alhafni, Bashar
%Y Bexte, Marie
%Y Burstein, Jill
%Y Horbach, Andrea
%Y Laarmann-Quante, Ronja
%Y Tack, Anaïs
%Y Yaneva, Victoria
%Y Yuan, Zheng
%S Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-270-1
%F liu-etal-2025-cogent
%X While Generative AI has demonstrated strong potential and versatility in content generation, its application to educational contexts presents several challenges. Models often fail to align with curriculum standards and maintain grade-appropriate reading levels consistently. Furthermore, STEM education poses additional challenges in balancing scientific explanations with everyday language when introducing complex and abstract ideas and phenomena to younger students.In this work, we propose COGENT, a curriculum-oriented framework for generating grade-appropriate educational content. We incorporate three curriculum components (science concepts, core ideas, and learning objectives), control readability through length, vocabulary, and sentence complexity, and adopt a “wonder-based” approach to increase student engagement and interest. We conduct a multi-dimensional evaluation via both LLM-as-a-judge and human expert analysis. Experimental results show that COGENT consistently produces grade-appropriate passages that are comparable or superior to human references. Our work establishes a viable approach for scaling adaptive and high-quality learning resources.
%R 10.18653/v1/2025.bea-1.10
%U https://aclanthology.org/2025.bea-1.10/
%U https://doi.org/10.18653/v1/2025.bea-1.10
%P 129-143
Markdown (Informal)
[COGENT: A Curriculum-oriented Framework for Generating Grade-appropriate Educational Content](https://aclanthology.org/2025.bea-1.10/) (Liu et al., BEA 2025)
ACL