@inproceedings{marciniak-etal-2025-improving,
title = "Improving {AI} assistants embedded in short e-learning courses with limited textual content",
author = "Marciniak, Jacek and
Kubis, Marek and
Gulczy{\'n}ski, Micha{\l} and
Szpilkowski, Adam and
Wieczarek, Adam and
Szczepa{\'n}ski, Marcin",
editor = {Kochmar, Ekaterina and
Alhafni, Bashar and
Bexte, Marie and
Burstein, Jill and
Horbach, Andrea and
Laarmann-Quante, Ronja and
Tack, Ana{\"i}s and
Yaneva, Victoria and
Yuan, Zheng},
booktitle = "Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bea-1.57/",
doi = "10.18653/v1/2025.bea-1.57",
pages = "794--804",
ISBN = "979-8-89176-270-1",
abstract = "This paper presents a strategy for improving AI assistants embedded in short e-learning courses. The proposed method is implemented within a Retrieval-Augmented Generation (RAG) architecture and evaluated using several retrieval variants. The results show that query quality improves when the knowledge base is enriched with definitions of key concepts discussed in the course. Our main contribution is a lightweight enhancement approach that increases response quality without overloading the course with additional instructional content."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marciniak-etal-2025-improving">
<titleInfo>
<title>Improving AI assistants embedded in short e-learning courses with limited textual content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jacek</namePart>
<namePart type="family">Marciniak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Kubis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michał</namePart>
<namePart type="family">Gulczyński</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Szpilkowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Wieczarek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcin</namePart>
<namePart type="family">Szczepański</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bashar</namePart>
<namePart type="family">Alhafni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Bexte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronja</namePart>
<namePart type="family">Laarmann-Quante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaïs</namePart>
<namePart type="family">Tack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Yaneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-270-1</identifier>
</relatedItem>
<abstract>This paper presents a strategy for improving AI assistants embedded in short e-learning courses. The proposed method is implemented within a Retrieval-Augmented Generation (RAG) architecture and evaluated using several retrieval variants. The results show that query quality improves when the knowledge base is enriched with definitions of key concepts discussed in the course. Our main contribution is a lightweight enhancement approach that increases response quality without overloading the course with additional instructional content.</abstract>
<identifier type="citekey">marciniak-etal-2025-improving</identifier>
<identifier type="doi">10.18653/v1/2025.bea-1.57</identifier>
<location>
<url>https://aclanthology.org/2025.bea-1.57/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>794</start>
<end>804</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving AI assistants embedded in short e-learning courses with limited textual content
%A Marciniak, Jacek
%A Kubis, Marek
%A Gulczyński, Michał
%A Szpilkowski, Adam
%A Wieczarek, Adam
%A Szczepański, Marcin
%Y Kochmar, Ekaterina
%Y Alhafni, Bashar
%Y Bexte, Marie
%Y Burstein, Jill
%Y Horbach, Andrea
%Y Laarmann-Quante, Ronja
%Y Tack, Anaïs
%Y Yaneva, Victoria
%Y Yuan, Zheng
%S Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-270-1
%F marciniak-etal-2025-improving
%X This paper presents a strategy for improving AI assistants embedded in short e-learning courses. The proposed method is implemented within a Retrieval-Augmented Generation (RAG) architecture and evaluated using several retrieval variants. The results show that query quality improves when the knowledge base is enriched with definitions of key concepts discussed in the course. Our main contribution is a lightweight enhancement approach that increases response quality without overloading the course with additional instructional content.
%R 10.18653/v1/2025.bea-1.57
%U https://aclanthology.org/2025.bea-1.57/
%U https://doi.org/10.18653/v1/2025.bea-1.57
%P 794-804
Markdown (Informal)
[Improving AI assistants embedded in short e-learning courses with limited textual content](https://aclanthology.org/2025.bea-1.57/) (Marciniak et al., BEA 2025)
ACL