@inproceedings{martynova-etal-2025-llms,
title = "Can {LLM}s Effectively Simulate Human Learners? Teachers' Insights from Tutoring {LLM} Students",
author = "Martynova, Daria and
Macina, Jakub and
Daheim, Nico and
Yalcin, Nilay and
Zhang, Xiaoyu and
Sachan, Mrinmaya",
editor = {Kochmar, Ekaterina and
Alhafni, Bashar and
Bexte, Marie and
Burstein, Jill and
Horbach, Andrea and
Laarmann-Quante, Ronja and
Tack, Ana{\"i}s and
Yaneva, Victoria and
Yuan, Zheng},
booktitle = "Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bea-1.8/",
doi = "10.18653/v1/2025.bea-1.8",
pages = "100--117",
ISBN = "979-8-89176-270-1",
abstract = "Large Language Models (LLMs) offer many opportunities for scalably improving the teaching and learning process, for example, by simulating students for teacher training or lesson preparation. However, design requirements for building high-fidelity LLM-based simulations are poorly understood. This study aims to address this gap from the perspective of key stakeholders{---}teachers who have tutored LLM-simulated students. We use a mixed-method approach and conduct semi-structured interviews with these teachers, grounding our interview design and analysis in the Community of Inquiry and Scaffolding frameworks. Our findings indicate several challenges in LLM-simulated students, including authenticity, high language complexity, lack of emotions, unnatural attentiveness, and logical inconsistency. We end by categorizing four types of real-world student behaviors and provide guidelines for the design and development of LLM-based student simulations. These include introducing diverse personalities, modeling knowledge building, and promoting questions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martynova-etal-2025-llms">
<titleInfo>
<title>Can LLMs Effectively Simulate Human Learners? Teachers’ Insights from Tutoring LLM Students</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daria</namePart>
<namePart type="family">Martynova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Macina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nico</namePart>
<namePart type="family">Daheim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nilay</namePart>
<namePart type="family">Yalcin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mrinmaya</namePart>
<namePart type="family">Sachan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bashar</namePart>
<namePart type="family">Alhafni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Bexte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronja</namePart>
<namePart type="family">Laarmann-Quante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaïs</namePart>
<namePart type="family">Tack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Yaneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-270-1</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) offer many opportunities for scalably improving the teaching and learning process, for example, by simulating students for teacher training or lesson preparation. However, design requirements for building high-fidelity LLM-based simulations are poorly understood. This study aims to address this gap from the perspective of key stakeholders—teachers who have tutored LLM-simulated students. We use a mixed-method approach and conduct semi-structured interviews with these teachers, grounding our interview design and analysis in the Community of Inquiry and Scaffolding frameworks. Our findings indicate several challenges in LLM-simulated students, including authenticity, high language complexity, lack of emotions, unnatural attentiveness, and logical inconsistency. We end by categorizing four types of real-world student behaviors and provide guidelines for the design and development of LLM-based student simulations. These include introducing diverse personalities, modeling knowledge building, and promoting questions.</abstract>
<identifier type="citekey">martynova-etal-2025-llms</identifier>
<identifier type="doi">10.18653/v1/2025.bea-1.8</identifier>
<location>
<url>https://aclanthology.org/2025.bea-1.8/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>100</start>
<end>117</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can LLMs Effectively Simulate Human Learners? Teachers’ Insights from Tutoring LLM Students
%A Martynova, Daria
%A Macina, Jakub
%A Daheim, Nico
%A Yalcin, Nilay
%A Zhang, Xiaoyu
%A Sachan, Mrinmaya
%Y Kochmar, Ekaterina
%Y Alhafni, Bashar
%Y Bexte, Marie
%Y Burstein, Jill
%Y Horbach, Andrea
%Y Laarmann-Quante, Ronja
%Y Tack, Anaïs
%Y Yaneva, Victoria
%Y Yuan, Zheng
%S Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-270-1
%F martynova-etal-2025-llms
%X Large Language Models (LLMs) offer many opportunities for scalably improving the teaching and learning process, for example, by simulating students for teacher training or lesson preparation. However, design requirements for building high-fidelity LLM-based simulations are poorly understood. This study aims to address this gap from the perspective of key stakeholders—teachers who have tutored LLM-simulated students. We use a mixed-method approach and conduct semi-structured interviews with these teachers, grounding our interview design and analysis in the Community of Inquiry and Scaffolding frameworks. Our findings indicate several challenges in LLM-simulated students, including authenticity, high language complexity, lack of emotions, unnatural attentiveness, and logical inconsistency. We end by categorizing four types of real-world student behaviors and provide guidelines for the design and development of LLM-based student simulations. These include introducing diverse personalities, modeling knowledge building, and promoting questions.
%R 10.18653/v1/2025.bea-1.8
%U https://aclanthology.org/2025.bea-1.8/
%U https://doi.org/10.18653/v1/2025.bea-1.8
%P 100-117
Markdown (Informal)
[Can LLMs Effectively Simulate Human Learners? Teachers’ Insights from Tutoring LLM Students](https://aclanthology.org/2025.bea-1.8/) (Martynova et al., BEA 2025)
ACL