@inproceedings{rosu-etal-2025-archaeology,
title = "Archaeology at {BEA} 2025 Shared Task: Are Simple Baselines Good Enough?",
author = "Roșu, Ana and
Ispas, Jany-Gabriel and
Nisioi, Sergiu",
editor = {Kochmar, Ekaterina and
Alhafni, Bashar and
Bexte, Marie and
Burstein, Jill and
Horbach, Andrea and
Laarmann-Quante, Ronja and
Tack, Ana{\"i}s and
Yaneva, Victoria and
Yuan, Zheng},
booktitle = "Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bea-1.98/",
doi = "10.18653/v1/2025.bea-1.98",
pages = "1224--1241",
ISBN = "979-8-89176-270-1",
abstract = "This paper describes our approach for 5 classification tasks from Building Educational Applications (BEA) 2025 Shared Task.Our methods range from classical machine learning models to large-scale transformers with fine-tuning and prompting strategies. Despite the diversity of approaches, performance differences were often minor, suggesting a strong surface-level signal and the limiting effect of annotation noise{---}particularly around the ``To some extent'' label. Under lenient evaluation, simple models perform competitively, showing their effectiveness in low-resource settings. Our submissions ranked in the top 10 in four of five tracks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rosu-etal-2025-archaeology">
<titleInfo>
<title>Archaeology at BEA 2025 Shared Task: Are Simple Baselines Good Enough?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="family">Roșu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jany-Gabriel</namePart>
<namePart type="family">Ispas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergiu</namePart>
<namePart type="family">Nisioi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bashar</namePart>
<namePart type="family">Alhafni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Bexte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronja</namePart>
<namePart type="family">Laarmann-Quante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaïs</namePart>
<namePart type="family">Tack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Yaneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-270-1</identifier>
</relatedItem>
<abstract>This paper describes our approach for 5 classification tasks from Building Educational Applications (BEA) 2025 Shared Task.Our methods range from classical machine learning models to large-scale transformers with fine-tuning and prompting strategies. Despite the diversity of approaches, performance differences were often minor, suggesting a strong surface-level signal and the limiting effect of annotation noise—particularly around the “To some extent” label. Under lenient evaluation, simple models perform competitively, showing their effectiveness in low-resource settings. Our submissions ranked in the top 10 in four of five tracks.</abstract>
<identifier type="citekey">rosu-etal-2025-archaeology</identifier>
<identifier type="doi">10.18653/v1/2025.bea-1.98</identifier>
<location>
<url>https://aclanthology.org/2025.bea-1.98/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1224</start>
<end>1241</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Archaeology at BEA 2025 Shared Task: Are Simple Baselines Good Enough?
%A Roșu, Ana
%A Ispas, Jany-Gabriel
%A Nisioi, Sergiu
%Y Kochmar, Ekaterina
%Y Alhafni, Bashar
%Y Bexte, Marie
%Y Burstein, Jill
%Y Horbach, Andrea
%Y Laarmann-Quante, Ronja
%Y Tack, Anaïs
%Y Yaneva, Victoria
%Y Yuan, Zheng
%S Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-270-1
%F rosu-etal-2025-archaeology
%X This paper describes our approach for 5 classification tasks from Building Educational Applications (BEA) 2025 Shared Task.Our methods range from classical machine learning models to large-scale transformers with fine-tuning and prompting strategies. Despite the diversity of approaches, performance differences were often minor, suggesting a strong surface-level signal and the limiting effect of annotation noise—particularly around the “To some extent” label. Under lenient evaluation, simple models perform competitively, showing their effectiveness in low-resource settings. Our submissions ranked in the top 10 in four of five tracks.
%R 10.18653/v1/2025.bea-1.98
%U https://aclanthology.org/2025.bea-1.98/
%U https://doi.org/10.18653/v1/2025.bea-1.98
%P 1224-1241
Markdown (Informal)
[Archaeology at BEA 2025 Shared Task: Are Simple Baselines Good Enough?](https://aclanthology.org/2025.bea-1.98/) (Roșu et al., BEA 2025)
ACL