@inproceedings{ambaliya-etal-2025-niyamika,
title = "Niyamika at {BHASHA} Task 1: Word-Level Transliteration for {E}nglish-{H}indi Mixed Text in Grammar Correction Using {MT}5",
author = "Ambaliya, Rucha and
Dugar, Mahika and
Mishra, Pruthwik",
editor = "Bhattacharya, Arnab and
Goyal, Pawan and
Ghosh, Saptarshi and
Ghosh, Kripabandhu",
booktitle = "Proceedings of the 1st Workshop on Benchmarks, Harmonization, Annotation, and Standardization for Human-Centric AI in Indian Languages (BHASHA 2025)",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bhasha-1.13/",
pages = "135--141",
ISBN = "979-8-89176-313-5",
abstract = "Grammar correction for Indian languages poses significant challenges due to complex morphology, non-standard spellings, and frequent script variations. In this work, we address grammar correction for English-mixed sentences in five Indic languages{---}Hindi, Bengali, Malayalam, Tamil, and Telugu{---}as part of the IndicGEC 2025 Bhasha Workshop. Our approach first applies word-level transliteration using IndicTrans (Bhat et al., 2014) to normalize Romanized and mixed-script tokens, followed by grammar correction using the mT5-small model (Xue et al., 2021). Although our experiments focus on these five languages, the methodology is generalizable to other Indian languages. Our implementation and code are publicly available at: https://github.com/Rucha-Ambaliya/bhasha-workshop"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ambaliya-etal-2025-niyamika">
<titleInfo>
<title>Niyamika at BHASHA Task 1: Word-Level Transliteration for English-Hindi Mixed Text in Grammar Correction Using MT5</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rucha</namePart>
<namePart type="family">Ambaliya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahika</namePart>
<namePart type="family">Dugar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pruthwik</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Benchmarks, Harmonization, Annotation, and Standardization for Human-Centric AI in Indian Languages (BHASHA 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arnab</namePart>
<namePart type="family">Bhattacharya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawan</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saptarshi</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kripabandhu</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-313-5</identifier>
</relatedItem>
<abstract>Grammar correction for Indian languages poses significant challenges due to complex morphology, non-standard spellings, and frequent script variations. In this work, we address grammar correction for English-mixed sentences in five Indic languages—Hindi, Bengali, Malayalam, Tamil, and Telugu—as part of the IndicGEC 2025 Bhasha Workshop. Our approach first applies word-level transliteration using IndicTrans (Bhat et al., 2014) to normalize Romanized and mixed-script tokens, followed by grammar correction using the mT5-small model (Xue et al., 2021). Although our experiments focus on these five languages, the methodology is generalizable to other Indian languages. Our implementation and code are publicly available at: https://github.com/Rucha-Ambaliya/bhasha-workshop</abstract>
<identifier type="citekey">ambaliya-etal-2025-niyamika</identifier>
<location>
<url>https://aclanthology.org/2025.bhasha-1.13/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>135</start>
<end>141</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Niyamika at BHASHA Task 1: Word-Level Transliteration for English-Hindi Mixed Text in Grammar Correction Using MT5
%A Ambaliya, Rucha
%A Dugar, Mahika
%A Mishra, Pruthwik
%Y Bhattacharya, Arnab
%Y Goyal, Pawan
%Y Ghosh, Saptarshi
%Y Ghosh, Kripabandhu
%S Proceedings of the 1st Workshop on Benchmarks, Harmonization, Annotation, and Standardization for Human-Centric AI in Indian Languages (BHASHA 2025)
%D 2025
%8 December
%I Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-313-5
%F ambaliya-etal-2025-niyamika
%X Grammar correction for Indian languages poses significant challenges due to complex morphology, non-standard spellings, and frequent script variations. In this work, we address grammar correction for English-mixed sentences in five Indic languages—Hindi, Bengali, Malayalam, Tamil, and Telugu—as part of the IndicGEC 2025 Bhasha Workshop. Our approach first applies word-level transliteration using IndicTrans (Bhat et al., 2014) to normalize Romanized and mixed-script tokens, followed by grammar correction using the mT5-small model (Xue et al., 2021). Although our experiments focus on these five languages, the methodology is generalizable to other Indian languages. Our implementation and code are publicly available at: https://github.com/Rucha-Ambaliya/bhasha-workshop
%U https://aclanthology.org/2025.bhasha-1.13/
%P 135-141
Markdown (Informal)
[Niyamika at BHASHA Task 1: Word-Level Transliteration for English-Hindi Mixed Text in Grammar Correction Using MT5](https://aclanthology.org/2025.bhasha-1.13/) (Ambaliya et al., BHASHA 2025)
ACL