@inproceedings{nagy-etal-2025-szegedai,
title = "{S}zeged{AI} at {A}rch{EHR}-{QA} 2025: Combining {LLM}s with traditional methods for grounded question answering",
author = {Nagy, Soma and
Nyerges, B{\'a}lint and
Kisp{\'e}ter, Zsombor and
T{\'o}th, G{\'a}bor and
Szl{\'u}ka, Andr{\'a}s and
K{\H{o}}r{\"o}si, G{\'a}bor and
Sz{\'a}nt{\'o}, Zsolt and
Farkas, Rich{\'a}rd},
editor = "Soni, Sarvesh and
Demner-Fushman, Dina",
booktitle = "Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)",
month = aug,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bionlp-share.17/",
doi = "10.18653/v1/2025.bionlp-share.17",
pages = "136--149",
ISBN = "979-8-89176-276-3",
abstract = "In this paper, we present the SzegedAI team{'}s submissions to the ArchEHR-QA 2025 shared task. Our approaches include multiple prompting techniques for large language models (LLMs), sentence similarity methods, and traditional feature engineering. We are aiming to explore both modern and traditional solutions to the task. To combine the strengths of these diverse methods, we employed different ensembling strategies."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nagy-etal-2025-szegedai">
<titleInfo>
<title>SzegedAI at ArchEHR-QA 2025: Combining LLMs with traditional methods for grounded question answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soma</namePart>
<namePart type="family">Nagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bálint</namePart>
<namePart type="family">Nyerges</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zsombor</namePart>
<namePart type="family">Kispéter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gábor</namePart>
<namePart type="family">Tóth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">András</namePart>
<namePart type="family">Szlúka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gábor</namePart>
<namePart type="family">Kőrösi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zsolt</namePart>
<namePart type="family">Szántó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richárd</namePart>
<namePart type="family">Farkas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarvesh</namePart>
<namePart type="family">Soni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-276-3</identifier>
</relatedItem>
<abstract>In this paper, we present the SzegedAI team’s submissions to the ArchEHR-QA 2025 shared task. Our approaches include multiple prompting techniques for large language models (LLMs), sentence similarity methods, and traditional feature engineering. We are aiming to explore both modern and traditional solutions to the task. To combine the strengths of these diverse methods, we employed different ensembling strategies.</abstract>
<identifier type="citekey">nagy-etal-2025-szegedai</identifier>
<identifier type="doi">10.18653/v1/2025.bionlp-share.17</identifier>
<location>
<url>https://aclanthology.org/2025.bionlp-share.17/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>136</start>
<end>149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SzegedAI at ArchEHR-QA 2025: Combining LLMs with traditional methods for grounded question answering
%A Nagy, Soma
%A Nyerges, Bálint
%A Kispéter, Zsombor
%A Tóth, Gábor
%A Szlúka, András
%A Kőrösi, Gábor
%A Szántó, Zsolt
%A Farkas, Richárd
%Y Soni, Sarvesh
%Y Demner-Fushman, Dina
%S Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)
%D 2025
%8 August
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-276-3
%F nagy-etal-2025-szegedai
%X In this paper, we present the SzegedAI team’s submissions to the ArchEHR-QA 2025 shared task. Our approaches include multiple prompting techniques for large language models (LLMs), sentence similarity methods, and traditional feature engineering. We are aiming to explore both modern and traditional solutions to the task. To combine the strengths of these diverse methods, we employed different ensembling strategies.
%R 10.18653/v1/2025.bionlp-share.17
%U https://aclanthology.org/2025.bionlp-share.17/
%U https://doi.org/10.18653/v1/2025.bionlp-share.17
%P 136-149
Markdown (Informal)
[SzegedAI at ArchEHR-QA 2025: Combining LLMs with traditional methods for grounded question answering](https://aclanthology.org/2025.bionlp-share.17/) (Nagy et al., BioNLP 2025)
ACL
- Soma Nagy, Bálint Nyerges, Zsombor Kispéter, Gábor Tóth, András Szlúka, Gábor Kőrösi, Zsolt Szántó, and Richárd Farkas. 2025. SzegedAI at ArchEHR-QA 2025: Combining LLMs with traditional methods for grounded question answering. In Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks), pages 136–149, Vienna, Austria. Association for Computational Linguistics.