@inproceedings{wilson-etal-2025-raincitynlp,
title = "{R}ain{C}ity{NLP} at {B}io{L}ay{S}umm2025: Extract then Summarize at Home",
author = "Wilson, Jen and
Pollack, Michael and
Edwards, Rachel and
Bellamy, Avery and
Salgi, Helen",
editor = "Soni, Sarvesh and
Demner-Fushman, Dina",
booktitle = "Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)",
month = aug,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bionlp-share.24/",
doi = "10.18653/v1/2025.bionlp-share.24",
pages = "190--195",
ISBN = "979-8-89176-276-3",
abstract = "As part of the BioLaySumm shared task at ACL 2025, we developed a summarization tool designed to translate complex biomedical texts into layperson-friendly summaries. Our goal was to enhance accessibility and comprehension for patients and others without specialized medical knowledge. The system employed an extractive-then-abstractive summarization pipeline. For the abstractive component, we experimented with two models: Pegasus-XSum and a Falcons.ai model pre-trained on medical data. Final outputs were evaluated using the official BioLaySumm 2025 metrics. To promote practical accessibility, we completed all experimentation on consumer-grade hardware, demonstrating the feasibility of our approach in low-resource settings."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wilson-etal-2025-raincitynlp">
<titleInfo>
<title>RainCityNLP at BioLaySumm2025: Extract then Summarize at Home</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jen</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Pollack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Edwards</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avery</namePart>
<namePart type="family">Bellamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Salgi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarvesh</namePart>
<namePart type="family">Soni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-276-3</identifier>
</relatedItem>
<abstract>As part of the BioLaySumm shared task at ACL 2025, we developed a summarization tool designed to translate complex biomedical texts into layperson-friendly summaries. Our goal was to enhance accessibility and comprehension for patients and others without specialized medical knowledge. The system employed an extractive-then-abstractive summarization pipeline. For the abstractive component, we experimented with two models: Pegasus-XSum and a Falcons.ai model pre-trained on medical data. Final outputs were evaluated using the official BioLaySumm 2025 metrics. To promote practical accessibility, we completed all experimentation on consumer-grade hardware, demonstrating the feasibility of our approach in low-resource settings.</abstract>
<identifier type="citekey">wilson-etal-2025-raincitynlp</identifier>
<identifier type="doi">10.18653/v1/2025.bionlp-share.24</identifier>
<location>
<url>https://aclanthology.org/2025.bionlp-share.24/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>190</start>
<end>195</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RainCityNLP at BioLaySumm2025: Extract then Summarize at Home
%A Wilson, Jen
%A Pollack, Michael
%A Edwards, Rachel
%A Bellamy, Avery
%A Salgi, Helen
%Y Soni, Sarvesh
%Y Demner-Fushman, Dina
%S Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)
%D 2025
%8 August
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-276-3
%F wilson-etal-2025-raincitynlp
%X As part of the BioLaySumm shared task at ACL 2025, we developed a summarization tool designed to translate complex biomedical texts into layperson-friendly summaries. Our goal was to enhance accessibility and comprehension for patients and others without specialized medical knowledge. The system employed an extractive-then-abstractive summarization pipeline. For the abstractive component, we experimented with two models: Pegasus-XSum and a Falcons.ai model pre-trained on medical data. Final outputs were evaluated using the official BioLaySumm 2025 metrics. To promote practical accessibility, we completed all experimentation on consumer-grade hardware, demonstrating the feasibility of our approach in low-resource settings.
%R 10.18653/v1/2025.bionlp-share.24
%U https://aclanthology.org/2025.bionlp-share.24/
%U https://doi.org/10.18653/v1/2025.bionlp-share.24
%P 190-195
Markdown (Informal)
[RainCityNLP at BioLaySumm2025: Extract then Summarize at Home](https://aclanthology.org/2025.bionlp-share.24/) (Wilson et al., BioNLP 2025)
ACL
- Jen Wilson, Michael Pollack, Rachel Edwards, Avery Bellamy, and Helen Salgi. 2025. RainCityNLP at BioLaySumm2025: Extract then Summarize at Home. In Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks), pages 190–195, Vienna, Austria. Association for Computational Linguistics.