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Abstract

The Circuit Localization track of the Mecha-
nistic Interpretability Benchmark (MIB) evalu-
ates methods for localizing circuits within large
language models (LLMs), i.e., subnetworks re-
sponsible for specific task behaviors. In this
work, we investigate whether ensembling two
or more circuit localization methods can im-
prove performance. We explore two variants:
parallel and sequential ensembling. In parallel
ensembling, we combine attribution scores as-
signed to each edge by different methods—e.g.,
by averaging or taking the minimum or maxi-
mum value. In the sequential ensemble, we use
edge attribution scores obtained via EAP-IG
as a warm start for a more expensive but more
precise circuit identification method, namely
edge pruning. We observe that both approaches
yield notable gains on the benchmark metrics,
leading to a more precise circuit identification
approach. Finally, we find that taking a paral-
lel ensemble over various methods, including
the sequential ensemble, achieves the best re-
sults. We evaluate our approach in the Black-
boxNLP 2025 MIB Shared Task, comparing en-
semble scores to official baselines across multi-
ple model–task combinations.

1 Introduction

The Circuit Localization track of MIB (Mueller
et al., 2025) evaluates the ability of interpretability
methods to identify circuits, i.e., subnetworks in
language models that are responsible for solving
a specific task. Its performance metrics measure
how well the subnetwork can perform the given
task on its own. As proposed by the shared task,
this is measured in two specific ways: circuit per-
formance ratio (CPR) and circuit-model difference
(CMD). The first metric, CPR, measures how well
the method finds performant circuits at various cir-
cuit sizes. The second metric, CMD, measures
how closely the circuit’s behavior resembles the
model’s task-specific behavior at various circuit

sizes (Mueller et al., 2025). Typically, a circuit lo-
calization method gives an attribution score to each
edge in the network; it is then possible to choose
different thresholds for including an edge in the
circuit. Therefore, CPR and CMD scores are in-
tegrated over different circuit sizes to give a more
holistic picture of each method.

In this work, we investigate whether ensembling
two or more baseline methods can lead to better
performance. We hypothesize that different meth-
ods might be biased towards different model com-
ponents, and that ensembling them might yield a
more robust picture. Specifically, we explore two
variants of ensembling: parallel and sequential. In
parallel ensembling, we gather the scores assigned
to each edge by different methods, typically by
averaging, but also by taking the maximum or min-
imum score. In sequential ensembling, we first
warm-start with EAP-IG (Sundararajan et al., 2017;
Hanna et al., 2024) attribution scores, then apply
edge pruning with attribution score sign recovery.

We evaluate our methods on both the private and
public test sets. Our sequential ensemble method
with warm-start edge pruning (s-ens) improves
performance across tasks over the EAP-IG-inputs
baseline, while the parallel ensemble (p-ens) also
yields consistent gains. Motivated by these results,
we combine both strategies—integrating warm-
start edge pruning with the three EAP-based meth-
ods for parallel ensembling—into hybrid-ens, a
hybrid ensemble, which achieves the best overall
performance on the leaderboard, with the lowest
CMD score (lower is better) and highest CPR score
(higher is better). Our code is publicly available.1

2 Background

In this section, we describe the models, tasks,
and base methods used in our experiments for the
shared task.

1https://github.com/cisnlp/MIB-circuit-track
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2.1 Models and tasks

To showcase our method, we use the three manda-
tory model/task combinations: (1) GPT-2-Small
(Radford et al., 2019) on IOI (indirect object identi-
fication, Wang et al., 2023); (2) Qwen-2.5-0.5B
(Yang et al., 2024) on IOI; (3) Qwen-2.5-0.5B
on MCQA (multiple choice question answering
without task-specific knowledge, Wiegreffe et al.,
2025).

We use both datasets in the version pro-
vided by Mueller et al. (2025). Each one has
train/validation/test splits, plus a private test set
that is used for the leaderboard.2

2.2 Base methods

We experiment with various base methods in our
parallel and sequential ensemble settings.

A commonly used method is edge activation
patching (Vig et al., 2020; Finlayson et al., 2021).
It computes the effect of replacing the activation
of an edge with its activation on the counterfactual
input. This is very inefficient (it needs a separate
forward pass for each edge), so various approxima-
tions have been proposed. We use the following
three as base methods (as implemented by (Mueller
et al., 2025)): (1) EAP (edge attribution patching,
Nanda, 2023; Syed et al., 2024), (2) EAP-IG-inputs
(edge attribution patching with integrated gradi-
ents over inputs, Sundararajan et al., 2017; Hanna
et al., 2024), and (3) EAP-IG-activations (Sun-
dararajan et al., 2017; Marks et al., 2025). They
are among the best performing methods according
to Mueller et al. (2025), with EAP-IG-inputs being
the best one overall, so we use EAP-IG-inputs as
the baseline for comparison in Section 5.

We further incorporate edge pruning (Bhaskar
et al., 2024), a more precise but computationally
expensive method, into the ensemble framework.

3 Method Overview

We explore two variants of ensembling: parallel
and sequential. In parallel ensembling, we gather
the scores different methods give to any edge – for
example using an average over methods, but we
also experiment with taking the maximum or mini-
mum score. In sequential ensembling, we first use
EAP-IG-inputs as a warm start, and then perform
edge pruning.

2https://huggingface.co/spaces/mib-bench/
leaderboard

3.1 Parallel ensembling

As implemented by Mueller et al. (2025), a circuit
detection method (base method) gives a score to
each edge of the model. We pre-compute these
scores for a range of methods. As a result, each
edge gets different base scores. Our goal is to
consolidate these to one final score for each edge.

3.1.1 Comparing base scores across methods
We first have to answer the question whether the
base scores are comparable across methods.

The EAP variants (first three methods above) are
all designed to be approximations of edge activa-
tion patching. We therefore assume the scores to
be comparable across these methods.

The original edge pruning method obtains a
mask (i.e., importance score) for each edge in the
range [0, 1] without the sign information. There-
fore, the importance score value is not comparable
with the EAP-based methods. To make the scores
of different methods in a matching space, we use
the method described in Section 3.2 to recover the
sign information for a better hybrid ensemble (de-
tailed description in Section 3.3).

3.1.2 Reduction methods
We experiment with four score reduction methods
across base approaches: (1) mean, (2) weighted
average, (3) maximum, and (4) minimum. Inter-
preting scores as binary indicators, the maximum
corresponds to a union of circuits (edges selected
by any method), while the minimum corresponds
to an intersection (edges selected by all methods).
Ultimately, taking the mean yields the best results.

3.2 Sequential ensembling

The main idea of our sequential ensemble ap-
proach is to use the attribution scores produced
by a fast circuit identification method to warm-start
a slower, more precise method, thereby achieving
faster convergence and further refining the initial
scores. Specifically, we use edge attribution val-
ues computed via EAP-IG-inputs (Hanna et al.,
2024) to initialize the learnable mask—specifically,
the learnable log alpha parameters—of edge prun-
ing (Bhaskar et al., 2024).

We convert attribution scores to hard-concrete
log alpha values as follows. First, we take the ab-
solute values of the edge attribution scores. These
unsigned importance scores are grouped per layer
and rank-normalized within each group to [0, 1].
We then fit a logistic mapping to these ranks so
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that its average “keep” probability matches a pre-
defined starting edge sparsity (a hyperparameter),
yielding per-edge keep probabilities. Finally, we
invert the hard-concrete expectation to obtain log
alpha values via the stretched-sigmoid inverse, with
standard clipping.

Once we initialize the log alphas as described,
we refine the scores via edge pruning (Bhaskar
et al., 2024). After training, we recover signed
attribution scores from the refined log alpha values.
To this end, we first compute the mask z as defined
by Bhaskar et al. (2024):

u ∼ Uniform(ε, 1− ε)

s = σ

(
1

β
· log u

1− u
+ logα

)

s̃ = s× (r − l) + l

z = min
(
1, max(0, s̃)

)

where ε = 10−6, 1
β = 2

3 , and [l, r] =
[−0.1, 1.1]. Note that the mask values are positive,
i.e., z ∈ [0, 1], and thus contain no sign information
(i.e., whether an edge contributes positively or neg-
atively to the model’s behavior). To recover sign
information, we experiment with two approaches:

1. Reuse the sign from the initial EAP-IG-inputs
attribution values, or

2. Compute a forward pass of the model in which
each edge’s output is a weighted combination
of its original activation and a reference acti-
vation, determined by the learned mask values

yi = fi

(
z0i y0 + (1− z0i) ỹ0

+
∑

1≤j<i
j upstream of i

(
zji yj + (1− zji) ỹj

))
.

and then compute the gradients of a metric M
(e.g., the KL divergence between circuit and
model) with respect to the mask ∂M

∂z . The sign
of this gradient indicates whether the edge is
useful for the task behavior (positive) or not
useful (negative). We call this approach z-
score attribution.

When performing hyperparameter optimization,
we include a boolean that specifies whether the first
or second approach is used. More details on our
hyperparameters and the optimization procedure
can be found in Section 4 and Appendix A.

3.3 Final submissions

After preliminary experiments, we finally submit-
ted three different versions of ensembling:
s-ens (sequential ensembling, i.e., warmstart

edge pruning with Z-score attribution): We use
edge attribution values computed via EAP-IG-
inputs to initialize the learnable mask of edge prun-
ing as described above in section 3.2.
p-ens (parallel ensembling): We calculate the

average scores (non-weighted) from the three EAP
variants for all three model-task combinations.

hybrid-ens: We combine the parallel and se-
quential strategies by taking the unweighted aver-
age over all four methods—the three EAP variants
and warm-start edge pruning—for all model–task
combinations.

4 Experimental Setup

Warmstart edge pruning Once we have initial-
ized the log alpha from the EAP-IG-inputs attri-
bution scores, as defined in Section 3.2, we train
each model on its respective task via edge prun-
ing (Bhaskar et al., 2024) for 1,000 training steps,
using a batch size of 20 for GPT-2 and 10 for Qwen-
2.5. We search for hyperparameters via Bayesian
optimization on the validation set, selecting the
combination that minimizes the combined objec-
tive P = CMD − CPR. For more details on the
final hyperparameters and the optimization proce-
dure, see Appendix A.

5 Results

We evaluated our methods on both the private and
public test sets of the shared task using the CMD
(lower is better) and CPR (higher is better) metrics.
Tables 1 to 4 summarize the results.

On both test sets, we observe that our sequential
ensemble method with warm-start edge pruning
(s-ens) already improves the performance across
tasks compared to the EAP-IG-inputs baseline, par-
ticularly with respect to the CPR metric, achiev-
ing a +0.16 average gain. The parallel ensem-
ble (p-ens) also provides consistent improvements
over the baseline.

Building on these findings, we combined both
strategies—integrating warm-start edge pruning
with the three EAP-based methods for parallel en-
sembling—into our final submission, hybrid-ens.
This combined approach achieves the best overall
results on the private set, with the lowest CMD
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Table 1: CMD scores (lower is better) on the private test set, i.e., on the final leaderboard.

Method GPT-IOI Qwen-IOI Qwen-MCQA Average
EAP-IG-inputs 0.02 0.01 0.05 0.03

s-ens 0.03 0.02 0.07 0.04
p-ens 0.02 0.02 0.07 0.04

hybrid-ens 0.03 0.02 0.04 0.03

Table 2: CPR scores (higher is better) on the private test set, i.e., on the final leaderboard.

Method GPT-IOI Qwen-IOI Qwen-MCQA Average
EAP-IG-inputs 1.89 1.73 1.15 1.59

s-ens 2.37 1.71 1.16 1.75
p-ens 2.11 1.88 0.79 1.59

hybrid-ens 2.43 1.88 1.19 1.83

Table 3: CMD scores (lower is better) on the public test set. EAP-IG-inputs scores are copied from Mueller et al.
(2025). Our own scores should be taken with a grain of salt because we could not precisely reproduce the baselines.

Method GPT-IOI Qwen-IOI Qwen-MCQA Average
EAP-IG-inputs 0.03 0.02 0.08 0.04

s-ens 0.03 0.01 0.09 0.04
p-ens 0.03 0.03 0.09 0.05

hybrid-ens 0.02 0.03 0.04 0.03

Table 4: CPR scores (higher is better) on the public test set. EAP-IG-inputs scores are copied from Mueller et al.
(2025). Our own scores should be taken with a grain of salt because we could not precisely reproduce the baselines.

Method GPT-IOI Qwen-IOI Qwen-MCQA Average
EAP-IG-inputs 1.85 1.63 1.16 1.55

s-ens 2.22 1.62 0.99 1.61
p-ens 2.06 1.83 0.99 1.63

hybrid-ens 2.23 1.83 1.22 1.76

score (0.03 average) and the highest CPR score
(1.83 average) on the leaderboard.

6 Conclusion

In this work, we introduce our system for the MIB
shared task, exploring ensemble strategies for com-
bining various circuit localization methods. We
investigate two complementary ensemble strate-
gies: a sequential ensemble with warm-start edge
pruning and a parallel ensemble over multiple EAP-
based variants, each yielding improvements over
the baseline. Combining these strategies into a
hybrid ensemble achieves the lowest CMD scores
and highest CPR scores on both private and pub-
lic leaderboards, demonstrating that ensembling
complementary circuit localization methods can
consistently and robustly enhance performance in
mechanistic interpretability benchmarks.

For future work, we plan to investigate more di-
verse base methods, develop adaptive weighting
schemes for ensembling, design improved strate-
gies to integrate edge pruning with attribution-
based approaches, and optimize for efficiency to
scale to larger models and more complex tasks.

Limitations

While our hybrid ensemble achieves strong results
on the MIB shared task, several limitations re-
main. Our current ensemble relies on a naïve equal-
weight averaging of the base methods, which may
not fully exploit their complementary strengths;
more adaptive weighting strategies could poten-
tially yield further improvements. Additionally,
our experiments are restricted to the task–model
combinations defined in the shared task, and it is
unclear how well the ensemble strategies general-
ize to other interpretability benchmarks or model
architectures. Finally, the integration of edge prun-
ing with attribution-based approaches is still heuris-
tic, leaving room for more principled formulations
that could improve both interpretability and perfor-
mance.
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A Hyperparameters

In Table 5, we report the final hyperparameters
for each model and task, as described in Sec-
tion Section 2.1. These were selected based
on a hyperparameter search via Bayesian op-
timization over the following hyperparameters:
edge learning rate ∈ {0.03, 0.4, 0.8}, layer learn-
ing rate ∈ {0.001, 0.4, 0.8}, regularization edge
learning rate ∈ {0.03, 0.4, 0.8}, regularization
layer learning rate ∈ {0.001, 0.4, 0.8}, start edge
sparsity ∈ {0.8, 0.9, 0.95}, target edge sparsity
∈ {0.975, 0.99, 1.05}, target layer sparsity ∈
{0.4, 0.69}, warmup steps ∈ {50, 250, 500}, dis-
able node loss ∈ {true, false}, signs from EAP-
IG ∈ {true, false}.

B Experiments with IFR

We also experimented with information flow routes,
or IFR (Ferrando and Voita, 2024), as a base
method. The results were clearly weaker than the
EAP-IG-inputs baseline, so we did not include this
in our final submissions.

We need a special approach to compare edge
scores from IFR with other base methods. This
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Parameter GPT-2
IOI

Qwen-2.5
IOI

Qwen-2.5
MCQA

Train steps 1000 1000 1000
Batch 20 10 10
Warmup type linear linear linear

Warmup steps 250 250 250
Disable node loss ✓ × ✓
Edge LR 0.4 0.8 0.4
Layer LR 0.03 0.8 0.4
Reg edge LR 0.8 0.8 0.4
Reg layer LR 0.001 0.4 0.8
Start edge spars. 0.90 0.95 0.95
Target edge spars. 0.975 0.975 1.05
Start layer spars. 0.0 0.0 0.0
Target layer spars. 0.69 0.69 0.69
Attribution / Signs z-score attribution signs from EAP-IG signs from EAP-IG

Table 5: Final hyperparameters for the three runs. Columns are model–task combinations; rows are parameters. A
checkmark (✓) indicates a flag is enabled; a cross (×) indicates disabled.

is because IFR is designed such that the scores of
incoming edges to a given node sum to 1. We there-
fore apply the same normalization to the scores
from other methods as well, and proceed from there.
This also means that, when computing actual cir-
cuits from the final scores, we need greedy search,
as already described by Mueller et al. (2025).
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