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Abstract

We propose a natural language inference (NLI)
system that operates on the principles of compo-
sitional semantics. The system integrates light-
blue, a syntactic and semantic parser grounded
in Combinatory Categorial Grammar (CCG)
and Dependent Type Semantics (DTS), with
Wani, an automated theorem prover for De-
pendent Type Theory (DTT). A key feature of
this system is that each computational step cor-
responds to a specific theoretical assumption,
allowing the system’s evaluation to function as
a form of hypothesis verification. We evaluate
our inference system using the Japanese Seman-
tic Test Suite (JSeM) and demonstrate how error
analyses can provide feedback for refining both
the system and its underlying linguistic theory.

1 Introduction

With the advancement of Natural Language Pro-
cessing (NLP), the gap between formal linguistics
and computational linguistics has been widening.
Historically, computational linguistics was deeply
intertwined with theoretical linguistics, serving as a
means to implement and empirically verify formal
linguistic theories. However, the field’s focus has
progressively shifted towards engineering-oriented
approaches, a trend significantly accelerated by the
rise of large language models (LLMs).

While LLMs have achieved impressive perfor-
mance on a wide range of NLP tasks, including nat-
ural language inference (NLI) (Cobbe et al., 2021;
Wei et al., 2022), their reasoning processes are
largely associative rather than formally grounded.
As a result, their inferences are not based on
whether a hypothesis is formally deduced from
given premises. Although their outputs are often
plausible, concerns persist regarding the reliability
and explainability of their inferential processes.

∗This work was conducted independently and does not
reflect the views or positions of Amazon Web Services.

In contrast, inference systems based on formal
linguistic theories (Bos, 2008; Chatzikyriakidis and
Luo, 2014; Abzianidze, 2017) can output formal
proof diagrams that explicitly detail the steps of syn-
tactic, semantic, and theorem proving analysis. A
notable example is ccg2lambda (Mineshima et al.,
2015; Martínez Gómez et al., 2016), an inference
system the syntactic parser of which employs Com-
binatory Categorial Grammar (CCG; Steedman,
1996, 2000), a lexicalized grammar that associates
syntactic and semantic information with lexical en-
tries. It generates higher-order logical forms, which
are then processed by the Coq theorem prover (The
Coq Development Team, 2021).

Despite its theoretical foundation, ccg2lambda
has limitations stemming from its bi-LSTM-based
syntactic parser (Yoshikawa et al., 2017). As CCG
concentrates linguistic information within the lex-
icon, neural parsers make it difficult to precisely
diagnose errors at the lexical level. In practice, cor-
recting parsing errors often requires modifying the
treebank and retraining the model, which hinders
its utility for empirical theory verification.

We conceptualize inference as the ability to for-
mally deduce the semantic representation of a hy-
pothesis from that of the premises. To address the
aforementioned challenge, we propose an inference
pipeline (Figure 1) that combines lightblue (Bekki
and Kawazoe, 2016), a robust syntactic and seman-
tic parser based on CCG and Dependent Type Se-
mantics (DTS; Bekki, 2014; Bekki and Mineshima,
2017), with Wani (Daido and Bekki, 2017), an
automated theorem prover for DTS. We evaluate
this pipeline along with a detailed error analysis.

2 Theoretical Background

2.1 Combinatory Categorial Grammar (CCG)
CCG is a lexicalized grammar that models syn-
tactic structures through a lexicon and a set of
combinatory rules. We adopt CCG as our syntac-
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tic framework, because it allows for the explicit
encoding of syntactic and semantic information
within lexical items, providing a clear and localized
representation of linguistic structure. This design
is particularly well-suited for computational imple-
mentations aimed at the empirical verification of
linguistic theories, as parsing errors can often be
directly attributed to specific lexical entries, facili-
tating targeted revision.

2.2 Dependent Type Semantics (DTS)

DTS is a type-theoretical framework for natural
language semantics based on Dependent Type
Theory (DTT; Martin-Löf, 1984). In DTT, the
Curry–Howard correspondence establishes an iso-
morphism between types as propositions, and be-
tween terms as proofs. A key feature of this system
is its ability to allow types (propositions) to be
dependent on terms (proofs). This property al-
lows DTS to represent propositions (types) that
contain a reference to a proof from a preceding dis-
course, Consequently, it reduces phenomena such
as anaphora and presupposition resolution to proof
search. Since this proof search mechanism is used
to validate inferences from premises to conclusions,
DTS provides a unified, proof-theoretic account
of meaning. Beyond its handling of anaphora
and presupposition resolution, the type-theoretical
foundation of DTS also allows for the use of type-
checking to ensure the consistency of semantic
representations. We will examine this property in
detail in Section 3.1.2.

3 Inference Pipeline

3.1 Syntactic/Semantic Parser lightblue

lightblue1 is a syntactic and semantic parser that
integrates CCG-based syntactic parsing with DTS-
based semantic composition. The syntactic parsing
is grounded in the formalization of Japanese CCG
as described in Bekki (2010), and it is capable of
generating syntactic structures enriched with de-
tailed syntactic features. Furthermore, lightblue
incorporates the anaphora resolution mechanism
based on type inference to identify anaphoric re-
lations within discourse. The system also verifies
the consistency of the derived semantic representa-
tions by performing type checking (Bekki and Sato,
2015).

1https://github.com/DaisukeBekki/lightblue

3.1.1 Anaphora and Presupposition
Resolution with lightblue

In DTS, type checking is employed to verify whether
a semantic representation, obtained through seman-
tic composition, is of type type in DTT. This
condition is referred to as the Semantic Felicity
Condition (SFC). Consequently, this process re-
trieves the contexts that are available for resolving
anaphora and presuppositions.

Pronouns and presupposition triggers introduce
underspecified terms into the semantic representa-
tions. Following semantic composition, lightblue
performs type checking, in which each underspec-
ified type launches a proof search, and the Wani
system calculates a corresponding (possibly empty)
set of proof terms.

The proof terms derived from the above process
are used to rewrite underspecified terms, resulting in
fully specified semantic representations. This is the
first system to implement anaphora and presupposi-
tion resolution in DTS, according to its theoretical
formulation. This implementation was made pos-
sible by the seamless integration of lightblue and
Wani.

3.1.2 Type Checking for Evaluating Semantic
Analysis

In CCG, semantic composition is derived from
the syntactic structure through a homomorphic
mapping. Consequently, any ill-formedness in
the resulting semantic representations indicates an
inconsistency in the corresponding lexical entries.
Therefore, the failure of the SFC, as described in the
previous section, directly points to an error in some
semantic representation specified in the lexicon. In
this way, type checking serves as a valuable tool
for verifying the internal consistency of the overall
implementation.

3.2 Automated Theorem Prover Wani

Wani (Daido and Bekki, 2017) is an automated
theorem prover designed for a specific fragment of
DTS. Given a set of premises and a conclusion, both
formulated as propositions in DTT, Wani attempts
to construct a proof. If a proof is found, it outputs
the corresponding DTT proof diagram.

Wani performs proof search by applying DTT in-
ference rules to the premises and the conclusion. It
combines forward reasoning and backward reason-
ing strategies. Forward reasoning proceeds from
the premises, applying elimination rules to derive
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Figure 1: NLI pipeline with lightblue and Wani

their consequences and expand the set of avail-
able propositions. In contrast, backward reasoning
starts from the conclusion, iteratively working back-
ward to identify the propositions required to apply
the rules that would derive it. Wani implements
backward reasoning as a depth-first search.

Proof search in DTT is known to be undecidable.
To ensure the practical feasibility of Wani, we
introduced the following constraints on the search
process:

Time and Depth Limits To prevent non-
termination, we implemented upper bounds on
both the computation time and the number of back-
ward inference steps (i.e., depth). The search is
terminated if either of these thresholds is exceeded.

Forward vs. Backward Reasoning While for-
ward reasoning is less flexible, it guarantees termi-
nation for elimination rules. Conversely, backward
reasoning, while more versatile, can lead to nonter-
mination. To balance these trade-offs, Wani uses
forward reasoning for the elimination rule of Σ
types and for both the introduction and elimination
rules of identity types. All other inference rules are
handled via backward reasoning.

Pruning We applied branch pruning to specific
backward inference rules for to enhance search
efficiency.

3.3 Pipeline Design
The pipeline of the natural language inference sys-
tem, which utilize lightblue and Wani, is depicted
in Figure 1. The process take a set of n-premise
sentences and one hypothesis sentence as input,
which are then passed to lightblue. For each sen-
tence, lightblue performs syntactic and semantic
analyses to compose a semantic representation. A
subsequent type-checking procedure is then ap-
plied to each semantic representation to ensure that

it has the type type. At this stage, a context for
anaphora and presupposition resolution is incremen-
tally constructed by sequentially adding previously
type-checked (fully-specified) semantic representa-
tions. This allows type-checking to serve as both a
consistency check and a mechanism for anaphora
and presupposition resolution. Once all sentences
have successfully passed the type-checking phase,
Wani is called upon to conduct a proof search. Dur-
ing the search, Wani attempts to construct a proof
term of type Mh (the semantic representation of the
hypothesis) from the semantic representations of
the premise sentences M1, . . . ,Mn. If a proof term
is found, Wani returns a proof diagram as output.
Based on the output from Wani, lightblue assigns
one of three inference labels:

yes: A proof term of type Mh is constructed (i.e.,
the hypothesis is entailed)

no: A proof term of type ¬Mh is constructed (i.e.,
a contradiction)

unknown: No proof term is constructed.

Finally, lightblue provides a structured output
containing the following information:

Syntactic Structures / Semantic Representations
The CCG syntactic structures and DTS semantic
composition for the premises T1, . . . , Tn and the
hypothesis H

Type Checking Information Type checking
queries and the corresponding proof diagrams

Proof Search Information Proof search queries
and the corresponding proof diagrams

Inference Result The inference label assigned by
the system.
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JSeM ID:693, Answer:Yes

Premise
ITEL-wa 1993-nen-ni MTALK-o tsukut-ta.
ITEL-TOP 1993-year-in MTALK-ACC
make-PST
(ITEL made MTALK in 1993.)
Hypothesis
ITEL-wa 1993-nen-ni MTALK-o tsukuri-oe-ta.
ITEL-TOP 1993-year-in MTALK-ACC
make-finish-PST
(ITEL finished making MTALK in 1993.)
JSeM ID:703, Answer:Unknown

Premise
Taro-ga Hanako-o sikat-ta.
Taro-NOM Hanako-ACC scold-PST
(Taro scolded Hanako.)
Hypothesis
Taro-ga sikara-re-ta.
Taro-NOM scold-PASSIVE-PST
(Taro was scolded.)

Table 1: Examples in the JSeM dataset

4 Evaluation Experiment

4.1 Dataset: JSeM
The evaluation was conducted on the JSeM
dataset (Kawazoe et al., 2015)2, an inference dataset
for Japanese. The dataset contains a mixed set of
inference problems: some are direct translations of
the English FraCaS test suite (Cooper et al., 1996),
while others are specifically designed to address
semantic phenomena unique to Japanese. Each
problem consists of a set of premises, a hypothesis,
and an inference label (yes, no, unknown, or un-
def, which denotes unacceptable sentences). The
problems are further organized into sections cate-
gorized in accordance with linguistic phenomena.
Examples of data labeled as yes and unknown are
shown in Table 1.

4.2 Experiment Setup
We evaluate our system on the 36 problems from
the “Verbs” section of JSeM dataset (see Table 1 for
examples). This section was selected as it represents
the most basic subset of inference problems.

We report the following evaluation metrics: pars-
ing success rate, type-checking success rate, and
overall accuracy, precision, recall, and F1 scores.

2https://github.com/DaisukeBekki/JSeM

The parsing success rate measures the proportion
of problems for which a full syntactic and semantic
parse was successfully obtained, as this is a prereq-
uisite for inference. The type checking success rate
measures the number of cases where the semantic
analysis yielded a well-formed and internally con-
sistent semantic representation. Macro averages
treat each class equally, while weighted averages
reflect the actual label distribution. Given the class
imbalance in the dataset, we report both macro- and
weighted-averaged scores for a balanced evaluation.

We emphasize that the 36-problem evaluation set
was not used for any system tuning. All components,
including parsing, semantic composition, and infer-
ence, were applied uniformly without task-specific
adjustments.

4.3 Result

Results are shown in Table 2. The evaluation set
comprises 72 sentences (36 premises and 36 hy-
potheses), lightblue generated full parsed trees in
65 sentences, achieving a parsing success rate of ap-
proximately 90%. When restricting the evaluation
to the 52 unique sentences by removing duplicates,
the system achieved full parsed trees for 48, corre-
sponding to a 92.3% success rate. Moreover, type
checking succeeded for all parsed sentences, indi-
cating that semantic representations obtained from
our semantic analysis satisfied the Semantic Felic-
ity Condition (SFC) and were well-formed. The
inference component correctly answered 24 out of
the 36 problems. Compared to ccg2lambda, our
system demonstrated superior performance across
all evaluation metrics: accuracy, recall, precision,
and F1 score.

Although GPT-4o achieves the highest scores on
all metrics, these results should be interpreted as
reference values rather than a direct comparison.
This is because our research aims at transparent and
linguistically grounded inference, which contrasts
with the black-box nature GPT-4o. In our frame-
work, a prediction is considered correct only if the
system can successfully parse the input, assign a
consistent semantic representation, and construct
a formal proof. From this perspective, predictions
made without a derivable proof, such as GPT-4o’s
“yes” without an explicit reasoning trace, cannot be
fully trusted as valid inferences. Thus, our system
prioritizes explainability and credibility based on
evidence, over mere surface-level agreement with
the correct label.
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System ccg2lambda Our System GPT-4o Majority
Parsing - 0.90 - -
Type Check - 1.0 - -
Accuracy 0.556 0.667 0.861 0.806
Precision (macro | weighted) 0.250 | 0.806 0.342 | 0.877 0.438 | 0.951 0.201 | 0.806
Recall (macro | weighted) 0.172 | 0.556 0.397 | 0.667 0.349 | 0.861 0.250 | 1.000
F1 (macro | weighted) 0.204 | 0.658 0.319 | 0.700 0.382 | 0.897 0.223 | 0.892

Table 2: Performance comparison with other systems. Among ccg2lambda and our system, the higher value for each
metric is underlined. The “Majority” baseline, which assignes the most frequent label (“yes”) to all the problems, is
also included for reference. For GPT-4o model, we set the temperature to 0.7 and the maximum token limit to 1000.
The confusion matrix and the precise prompt used for inference are shown in Table 3 and Figure 2 in the Appendix.

4.4 Error Analysis

Out of the 12 problems with incorrect answers,
7 were attributed to the lack of external world
knowledge, 2 to current limitations in Wani’s proof
search, and the remaining 3 to parsing errors.

4.4.1 External world knowledge
An example of an error attributed to a lack of world
knowledge is the following problem:3

P: ITEL owned APCOM from 1988 to 1992.

H: ITEL owned APCOM in 1990.

To Correctly infer the hypothesis from the premise,
the system requires temporal world knowledge –
that 1990 falls within the range from 1988 to 1992
– which is not explicitly encoded.

Incorporating external knowledge presents a well-
known challenge. While several studies have ex-
plored integrating knowledge bases into their in-
ference systems (Martínez-Gómez et al., 2017;
Yoshikawa et al., 2019), these approaches often
involve a trade-off where improving recall can lead
to a decrease in precision. Therefore, simply inject-
ing more knowledge into the system is insufficient
to increase the number of provable cases.

4.4.2 Parsing Error
In our system, we observed parsing errors related to
the interpretation of case marks. A representative
example is the following sentence4:

P: Taro-wa
Taro-NOM

Jiro-kara
Jiro-from

Hanako-o
Hanako-ACC

syookaisa
introduce

-re
PASSIVE

-ta
PST

‘Taro was introduced to Hanako by Jiro.’

3JSeM ID: #698
4JSeM ID: #717

In this case, the parser failed to correctly recog-
nize that kara (“from”) in the passive construction
semantically corresponds to the dative argument in
the active counterpart. It is known that kara-NP is
not fully interchangeable with the dative NP, and
is not always licensed as a verbal argument. Con-
sequently, resolving such errors requires a deeper
linguistic analysis of selectional restrictions and
case-marking behavior for specific verbs, rather
than a simple modification or addition of lexical
entries for kara.

5 Conclusion

This paper has presented a linguistically-grounded
natural language inference system, which inte-
grates syntactic parsing, semantic composition,
type checking, and proof search. Our proposed
pipeline demonstrated improved inference accuracy
over existing formal systems.

This system offers a promising avenue for bridg-
ing the gap between linguistic theory and large
language models. Given that all of its technical
components are based on hypotheses from formal
linguistics, improvements to the system directly con-
tribute to the refinement of theoretical assumptions.
Furthermore, lightblue can serve as a novel tool
for verifying the outputs of LLMs, thereby facili-
tating systematic comparisons between data-driven
inferences and theory-driven predictions.
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A Appendix

GPT 4o ccg2lambda lightblue
Yes No Unk Other Yes No Unk Other Yes No Unk Other

Ground
Truth

Yes 28 0 1 0 20 0 1 8 17 0 12 0
No 0 0 0 0 0 0 0 0 0 0 0 0
Unk 0 4 3 0 0 0 0 7 0 0 7 0
Other 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Confusion matrix of inference systems

与えられた文のペアについて、文Aが文Bを含意するかどうかを判定し、そのペア
に〈DATASET_LABEL〉を付けてください。〈DATASET_LABEL〉は以下のいずれかです：
yes：前提が仮説を含意する
no：前提が仮説の否定を含意する
unknown：前提が仮説を含意せず、その否定も含意しない
undef：与えられた情報のみからは判断ができない

文A：〈PREMISE_SENTENCE〉
文B：〈HYPOTHESIS_SENTENCE〉
####
〈DATASET_LABEL〉のみ出力してください。

—- English Translation —–
Given a pair of sentences, determine whether Sentence A entails Sentence B, and assign a
〈DATASET_LABEL〉 to the pair.〈DATASET_LABEL〉 must be one of the following:
yes: the premise entails the hypothesis
no: the premise entails the negation of the hypothesis
unknown: the premise entails neither the hypothesis nor its negation
undef: it is not possible to determine based on the given information alone

Sentence A: 〈PREMISE_SENTENCE〉
Sentence B: 〈HYPOTHESIS_SENTENCE〉

####
Only output 〈DATASET_LABEL〉.

Figure 2: Prompt designed for LLMs to assign the entailment relation label <DATASET_LABEL>, and its English
translation
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