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Abstract

We investigate the impact of center embedding
and selectional restrictions on neural latent tree
models’ tendency to induce self-embedding
structures. To this aim we compare their be-
havior in different controlled artificial environ-
ments involving noun phrases modified by rela-
tive clauses, with different quantities of avail-
able training data. Our results provide evi-
dence that the existence of multiple center self-
embedding is a stronger incentive than selec-
tional restrictions alone, but that the combina-
tion of both is the best incentive overall. We
also show that different architectures benefit
very differently from these incentives.

1 Introduction

Grammar induction is the task of inducing hier-
archical syntax trees from indirect observations,
most often provided by the string yields of those
trees (raw sentences)!. The most common type
of approach parametrizes a joint distribution over
(observed) strings and (latent) trees, and fit it to
the data by optimizing a language modeling objec-
tive, i.e. minimizing the cross entropy between the
model’s marginal distribution over strings and the
observed distribution. We will refer to approaches
of this kind as latent tree models. Latent tree mod-
els are interesting because they can provide dis-
tributional evidence for (or counter arguments to)
the structures stipulated by linguistic theories, help
investigate inductive biases and language model
pretraining, or build bridges between neural mod-
els and symbolic ones.

Grammar induction, however, is a rather dif-
ficult task. For the longest time, models were
mostly trained and tested on very short sentences
of about 10 words, struggled to beat baselines

" At least in one of its common usages in machine learning.
Other usages include the task of inferring a specific form of
formal grammar, or a recognizer from example sentences of a
language.
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such as right- or left-linear grammars (Carroll and
Charniak, 1992), heavily relied on heuristics for
clustering (Clark, 2001), initialization (Klein and
Manning, 2001, 2002, 2004) and/or assumed part-
of-speech tagged inputs (Bisk and Hockenmaier,
2013). Whereas several potential culprits like an
ill-shaped objective function (Klein and Manning,
2001), or data quantity (Pate and Johnson, 2016)
have been named, a comprehensive explanation of
the underlying difficulties is still lacking.

More recently, neural grammar induction mod-
els surfaced (Shen et al., 2018; Htut et al., 2018;
Shen et al., 2019; Kim et al., 2019b,a; Yang et al.,
2021; Zhu et al., 2020), which substitute the dis-
crete features of their predecessors with continuous
representations of input words and models’ states,
and parametrize the joint probability over tree struc-
tures and strings using a neural network. While
these models considerably improved the state of
the art for phrase structure induction from words
alone, there remains a large gap between their per-
formances and those of supervised parsers. An
important question is why a language modeling
objective would align well with some (let alone
all) of the intended structural patterns. More-
over, the answer to this question might well be
negative, because better unsupervised parsers are
often worse language models and vice versa (Kim
et al., 2019a).

In hope to improve our understanding of the
matter, this paper investigates the combinations of
training signal and neural models able to induce
self-embedding structures, and the generalization
capabilities of the learned models to larger phrases.
We focus on the case of noun phrases, whose lin-
guistic analysis is tied to phenomena such as (long-
distance) subject-verb agreement, commonly used,
across different languages, in benchmarking lan-
guage models’ syntactic awareness (Linzen et al.,
2016; Marvin and Linzen, 2018; Li et al., 2023).
We are specifically interested in the relative impact
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of categorical incentives based on the sequences
of coarse-grained part of speech categories, and
lexical incentives based on more fine-grained se-
mantic distinctions between words within a given
category.

Since the complexity of natural language makes
it hard to study specific aspects of the training sig-
nal and output structures in isolation, we experi-
ment with artificial data generated with probabilis-
tic grammars. This allows us to control for the pres-
ence of different incentives in the training signal,
as well as the quantity of available training data. It
also guarantees that at least one optimal model ex-
ists which leverages the intended structures. Unlike
other works evaluating grammar induction systems
on formal languages (Lari and Young, 1990; Lan
et al., 2022), we focus on the strong learning of
the intended structures, and use larger grammars
with a sizeable lexicon to make learning syntac-
tic categories and representing lexical features an
integral (and non-trivial) part of the task. We do
not consider alternative objectives (such as Mini-
mum Description Length), because we precisely
want to assess to what extent the (currently) more
scalable language modeling objective aligns with
theoretical patterns, if it does.

In §2 we discuss two incentives for inducing a
self-embedding analysis of noun-phrases and rela-
tive clauses (henceforth, RC). §3 then presents how
these incentives are implemented into four different
artificial training signals. §4 details the experimen-
tal setup leveraging these data, and §5 discusses
our findings and conclusions.

2  Why would a language model build
noun phrases?

2.1 Distributional considerations

Linguists argue (across a variety of languages) that
a noun, like people, can merge with a restrictive
modifier, like in a blue shirt to form a noun phrase
(NP), like people in a blue shirt (e.g. Baker, 1995;
Tellier, 2003, for English and French, respectively).
This would for instance happen twice when form-
ing the English sentence these [np people in a [xp
blue shirt with a collar]] are staff members.

This analysis is often justified by a similarity in
distribution between longer sequences (people in a
blue shirt) and shorter ones (people). For instance,
both are good candidates to fill the blanks in the
following context: these __ are staff members.

It is thus compelling to assume that people in a
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blue shirt with a collar forms a constituent which
inherits the morphosyntactic features (in particu-
lar, the number) and combinatorial properties of its
head (people), because it explains why it combines,
and agrees, with verbs as the bare noun people does.
An important contribution of the hierarchical struc-
ture to that argument, is that it brings heads and
dependents (the verb and subject in the above ex-
ample) closer by grouping the intervening material
inside a substructure who contributes little to the
purpose of predicting agreement or the surounding
context, and can therefore be pruned”. Formally,
this process can (for instance) be equivalently artic-
ulated in a dependency framework, or in a headed
constituency framework (Eisner and Satta, 1999;
Nederhof and Satta, 2011).

2.2 An expected empirical difficulty

We have however no theoretical insurance that con-
siderations like the above are sufficient for latent
tree models to succeed. An important problem is
raised by Klein and Manning (2002): the distribu-
tion of contexts in which a sequence occur is not
necessarily a good indicator as to whether it is a
constituent or not. Consider these two sequences:

A the student who frequently questions the pro-
fessor caused a problem

B the professor caused a problem

A and B could plausibly occur in a lot of similar
contexts, in which there are indeed constituents
of the same type’. However, considered as a sub-
sequence of A, B is not a constituent under any
linguistic standard.

The problem is emphasized if one expects mod-
els to leverage a rather coarse notion of syntac-
tic category (such as POS), because we can easily
imagine such models to learn a right-linear gram-
mar with a rule S — det noun who verb S.
This grammar would generate sentences and parses
such as [g The student who questions [g the pro-
fessor who questions |s the professor caused a
problem]]]. While we might find the induced string
language somewhat reasonable, treating RCs as
embedding sentence types is linguistically very un-
conventional.

20r receive less attention, in a more relaxed, continuous
vision of sentence processing.

3For instance in the context Do you know whether . .. ?:
C":Do you know whether the student who frequently questions

the professor caused a problem? D:Do you know whether the
professor caused a problem?.



2.3 Two possible incentives

Of course, an accurate language model needs to
leverage more than categorical information. Thus,
we might hope that semantic concerns, such as se-
lectional restrictions (or, selectional preferences
in a probabilistic view), can help break unwanted
symmetry. For instance, the respective contexts
of A’: the student who eats a cookie with sugar
sprinkles passed the test and B’: a cookie with
sugar sprinkles passed the test are probably more
distinguished than those of A and B since, unlike
B, B’ is very unlikely to appear as a standalone
sentence, as cookie violates the selectional restric-
tions of the verb pass. If a model is able to find
a middle ground between relying on purely cate-
gorical and semantic knowledge, then we can hope
that i) it makes a symmetric treatment of A and A’
(based on categorical similarity) and ii) it makes
the expected analysis of A’ (based on semantic
knowledge), hence of A (based on i). Moreover,
selectional restrictions introduce a rich diversity of
long-distance dependencies (such as between stu-
dent and pass in A”), thus reinforcing the linguistic
argument developed above.

Independently, it has been argued (Chomsky,
1956; Partee et al., 1990) that the set of ‘gram-
matical’ sentences of many languages are not rep-
resentable by a right- or left-linear grammar be-
cause it involves unbounded center-embedding
(or equivalently, unbounded well-nested projective
dependencies). In English or French, this can for
instance be argued through self-embedding of ob-
ject RCs: the student [that the professor [that your
friend [(that ... )] had]] dislikes] passed the test.
The set of sentences of this form is related* to the
formal language {a"b" | n € N*}, a canonical
example of non-regular set. The possibility that
this empirically affects latent tree models might
however seem more remote, because it rests on
an abstract notion of competence and an infinite
set of sentences of arbitrary complexity, most of
which are not attested (Karlson, 2007) or are re-
jected by speakers (Christiansen and MacDonald,
2009). Nevertheless, levels of center-embedding
below four are attested (Karlson, 2007). Jin et al.
(2018) introduced a grammar-based system that

*Formally: a™b" is an homomorphic image of the consid-
ered set of SVO sentences with arbitrary nesting of relative
object in the subject position, and it follows from well-known
closure properties that the former is regular (and thus repre-
sented by a right- or left-linear grammar) only if the latter
(proven not regular) is.
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outperformed its contemporary competitors on En-
glish unsupervised parsing, and found that their
system also achieved better performances on syn-
thetic data with bounded center embeddings. This
suggests that the ability to infer such bounded depth
center-embedding, even on synthetic data with a
very small lexicon, might be important for achiev-
ing good unsupervised parsing performances on
natural language benchmarks. Moreover, state of
the art neural language models’ architectures have
been theoretically and empirically demonstrated
able to learn such bounded-depth occurrences (Yao
et al., 2021).

Based on the above discussion, our objective
will therefore be to assess the respective effect of
selectional restrictions and multiple center em-
bedding on different latent models.

3 Artificial Data

3.1 Target self-embedding

Our experiments are built around examples of self-
embedding provided by French noun-phrases mod-
ified by subject, or object RC. These structures
feature two types of self-embedding: final self-
embedding (when the embedding constituent does
not yield any material to the right of the embedded
constituent), and center self-embedding (when the
embedding constituent yields material to the left
and right of the embedded constituent). In Figure 1,
[vp journaliste qui cherche le [y p succes]] illus-
trates a case of final self-embedding, whereas [y p
article que le journaliste qui cherche le [y p succes
] écrit] illustrates a case of center self-embedding.
In particular, subject and object RC respectively
involve final and center self-embedding of NP. Ad-
ditionally, RCs nested within object RC involve
center self-embedding of CP and RCs nested within
subject RCs involve final self-embedding of CP.

3.2 Four types of training signals

Our training data is artificially generated using
PCFG (Probabilistic Context-Free Grammar). We
first describe the (ideal) defining properties of the
different training signals compared in our experi-
ments, postponing the implementation’s specifics
to §3.3. All signals involve simple transitive or
oblique sentences, with exactly one direct or ex-
actly one oblique object. Every noun can be modi-
fied by exactly one RC which ensures that the data
features examples of self-embedding.

This common basis is declined into four different



-sr -sr +sr +sr
sentence
-mce +mce -mce +mce
1 | 1 I le projet qui intéresse le journaliste qui écrit I’article présente un progres
‘the project which interesses the journalist who writes the article displays progress’
le projet qui parle au journaliste qui mange I’article regarde un progres
1 1 0 0 ‘ . . - . . ,
the project which talks to the journalist who eats the article watches progress
le projet auquel le journaliste qui écrit I’article contribue présente un progres
0 1 0 1 . . . . - . . : . ,
the project to which the journalist who writes the article contributes displays progress
0 1 0 0 le projet auquel le journaliste qui mange 1’article parle regarde un progres

‘the project to which the journalist who eats the article talks watches progress’

Table 1: Type of sentences and compatibility with each configuration.

D
| | | | | | | | | |

N C D N Pro \

I" article
the article

que le
that the

journaliste
journalist

qui  cherche le succes écrit
who seek.3sg the success write.3sg

‘the article that the journalist who seeks success writes’

Figure 1: French example with phrase structure tree and
English gloss. Dashed edges indicate self-embedding,
blue circles center embedded constituents and red
squares final embedded constituents.

signals, depending on whether or not we simulate
the two incentives discussed in the previous sec-
tion. -sr means that the data does not simulate
selectional restrictions in the probabilistic sense
that all verbs, prepositions and nouns are condition-
ally independent of other words given their POS.
This condition should thus assign equal probability
to article (article) and journaliste (journalist) as
subject of écrire (write). +sr, in contrast, means
that the verb more likely selects semantically plau-
sible subjects and objects. +/-mce means that the
data exhibit / does not exhibit multiple center-
embedding, according to whether noun phrases
can be modified by either an (oblique) object RC
or subject RC / can only be modified by a subject
RC. Remark that the -sr and +mce configurations
respectively allow selectional preference violations
and object RCs, but do not require these to occur in
every sentence. Thus, one may still observe some
semantically sound sentences in the -sr configura-
tions if appropriate verbal arguments are randomly
selected (though, this will be unlikely if there are
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more lexical items violating a verb’s selectional
preferences than items respecting them), as well
as sentences without multiple center-embeddding
in the +mce configuration. Table 1 presents four
example sentences and their compatibility with the
four configurations: the first sentence neither vi-
olates selectional preferences nor features multi-
ple center-embedding, hence could be observed
under all four training configurations. The sec-
ond sentence violates selectional preferences, and
should thus only be observed in the two -sr con-
figurations. The third sentence does not violate
selectional preferences, but has multiple clausal
and NP center-embedding due to the oblique ob-
ject RC. It therefore can be observed only in the
two +mce configurations. The fourth sentence both
violates selectional preferences and has multiple
center-embedding, and can therefore only be ob-
served in the -sr+mce configuration. Note how-
ever, that table 1 presents a somewhat idealized
picture: in practice, because the lexicon is acquired
semi-automatically and the data generated proba-
bilistically (see §3.3), selecting an inappropriate
verbal argument will be unlikely rather than strictly
impossible in the +sr configurations.

In line with the discussion in §2.2, we expected
-sr-mce to provide the weakest signal for the induc-
tion of self-embedding structures and the condition
+sr+mce to provide the strongest incentives.

3.3 Data generation

We used probabilistic context free grammars to
generate the data for each configuration. More
specifically, we used lexicalized PCFGs (Neder-
hof and Satta, 2011, henceforth LPCFG) to encode
selectional preferences. Rather than the standard
bilexical LPCFG, we used trilexical ones, with up
to two anchors per nonterminal (this allows to keep
the verb, preposition and object interdependent
in oblique object constructions). We handcrafted
delexicalized rules with anchor variables like the



following (used for the generation of a preposition
x1 and oblique object x2, conditionally to a verb

l‘g):

VObl/(xg) — V0b1<x0>PP<x17x2> [O_Obj(.%'l, 9 ’ 1‘0)}

()
In this example, the symbols Vobl’, Vobl, PP are
called delexicalized nonterminals and the sym-
bols xg,x1 and z9 are variables used as place-
holders for terminal symbols. The expression
o_obj(z1,x2 | xo) is an abstract weight, formally
representing a function associating a real-valued
weight to concrete values for the variables x, 1
and x> (in this case, the joint conditional probabil-
ity of preposition and object, given verb).

To generate data, a delexicalized grammar needs
to be combined with a set of terminal symbols,
and concrete functions instantiating the abstract
weights (henceforth, a lexicon). This allows to turn
each delexicalized rule into a set of concrete rules.
For instance, assuming that o_obl(to, journalist |
talk) = 0.3 and o_obl(about, project | talk) = 0.7,
the rule in (1) would yield the following lexicalized
rules:

VObl/(talk) = VObl(talk) PP(to,journalist) [03] 2

V0b1/<talk> = VObl(talk) PP(about,projeCt} [07] (3)
The resulting LPCFG can then be used to generate
sentences with both a constituency structure and a
dependency structure’.

The remaining difficulty is to craft a lexicon suf-
ficiently large for models to be ‘forced’ into some
kind of categorization, while reasonably simulating
the +sr configuration. To achieve this, we lever-
aged CamemBERT (Martin et al., 2020), a French
masked language model. We manually fixed the
sets of functional categories (prepositions P and
determiners D), as well as two sets of 34 transitive
verbs and 20 intransitive oblique verbs. We then
bootstrapped a lexicon of nouns and probability
distributions using CamemBERT. To this effect,
we made a set of requests to the masked language
model. Let us examplify this with parler (talk). To
obtain both oblique object (o_obl(z1, x2 | parler)
above) and subject probabilities, we used a set of
masked requests of the form

“

For dependency structures, a few adaptations are needed
from the bilexical to trilexical case. Since the paper focuses
on constituency, we do not expand on these technical matters.

d1 <mask>; parle x1 dy <mask>,
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where dy /5 range over determiners and z; over
prepositions. For instance, d; = un, 1 = a and
dy = la corresponds to the masked request:

(&)

un <mask>, parle a la <mask>,
a.m <mask>; talk.prs.3sg to the.f <mask>,

For each request, CamemBERT outputs two con-
ditional distributions Py /,(w2 | d1, 71, d2, parler),
one for each of the two masked positions (sub-
ject and object). From there, we simply assumed
uniform prior and marginalized over any extra
variable (like the determiners). For instance, we
obtained o_obl(xy,ze | parler) by computing
W > dy.dy Po(x2 | di, 71, do, parler). We pro-
ceeded similarly for the other verb-noun distribu-
tions, then performed some additional filtering,
keeping only the top 100 nouns for each condi-
tional distribution, and only nouns that are both
subject and object of some verbs (to ensure that
they support both kind of modification by RC), and
finally re-normalizing. After normalization, the
resulting sentences are inflected using the French
and English surface realizer PyRealB (Molins and
Lapalme, 2015; Lapalme, 2020).

To simulate the four configurations, we com-
bined the same delexicalized grammar with differ-
ent concrete weights. The above procedure yielded
a lexicon of 951 nouns, as well as the verb selec-
tional distributions for the +sr configuration. For
the -sr configuration, we replaced these distribu-
tions with uniform distributions on the relevant
domains. In both cases, we used a uniform distribu-
tion for the choice of the main verb, and relied on
Bayes’ theorem to generate the verb in object and
subject RC depending on the modified noun. In
all configurations, we set a fixed probability (0.3)
for modifying each noun. The nesting of RCs on a
given noun thus follows a geometric law, and the
number of generated sentences decays exponen-
tially with the depth of nested RCs. Each training
dataset therefore contains very rare instances of
deeply nested embeddings. The grammar used for
+mce condition has equal chances of attaching an
object and subject RC, while the one for -mce only
attaches subject RC. The probability of attachment
and the expected degree of nesting are controlled
and remain the same across configurations.

Note that, in the -sr configurations, the lexical
anchors of the LPCFG can be safely deleted with-
out changing the language (the anchors’ only pur-
pose is to implement selection restrictions). This
operation leaves grammars in Chomsky Normal



Form with less than 30 nonterminal symbols. In
contrast, in the +sr configurations, the generating
grammars have over 17000 nonterminals, most of
which are probably® necessary. In addition, these
conditions involve long-distance dependencies be-
tween (at least) the subject of the main clause and
the main verb. Note also, that both -mce configu-
rations make it theoretically possible to perfectly
fit the ground-truth distribution with a right-linear
PCFG or a left-linear PCFG whereas the +mce con-
ditions theoretically require branching structures
for a perfect fit.

We might question whether our implementation
of the +sr condition matches its definition, given
the semi-automatic acquisition of the lexicon. How-
ever, looking at the verb-argument distributions, we
found that the top subject and objects are generally
semantically sound. For instance, the top 5 sub-
jects of investir (invest) are groupe (group), banque
(bank), compagnie (company), region (region) and
ville (city) (covering about 75% of the probabil-
ity mass), while the top 5 subject of eat are femme
(woman), chien (dog), homme (man), fille (girl) and
chat (cat) (covering about 40% of the probability
mass). We also checked that the overall distribu-
tion of nouns follows Zipf’s law, and estimated the
mutual information between subject and main verb
from the generated data to be approximately 2 bits
(against 0 in -sr configurations).

4 Experiments

4.1 Training and test data

Using the procedure described in § 3.3, we gen-
erated over one million sentences for each of the
four configurations and removed duplicates. The
remaining data were split into training and de-
velopment sets. From each training set, we con-
structed four subsets of approximately 3k, 12k,
100k, and 400k sentences by recursive halving, en-
suring that all smaller subsets are prefixes of the
larger ones (e.g., the first 3k sentences appear in all
four datasets). This resulted in 16 training sets and
four development sets of 3k sentences each.

Since the models trained under -mce never ob-
serve object RC, it would be unfair to compare their
ability to parse sentences with object RC to model
which have. We thus mainly compare models on
their performance on data from the -mce config-
uration, i.e. their ability to analyze noun phrases

®1t is hard to give a lower bound since PCFG minimization
is undecidable.
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modified by subject RC. We use the +sr-mce con-
figuration for evaluation, because none of the four
configurations are biased against any of its sen-
tences: sentences from the +sr-mce are as likely
as any other sentence with the same sequence of
POS to occur in the -sr training data, whereas the
converse is not true. We therefore generated an
(out-of-domain) test containing 5000 sentences for
each sentence length up to 23 words (this corre-
sponds to a maximal nesting depth of four RC), for
a total of 75000 test sentences.

4.2 Models

We experimented with three strong neural latent
constituency tree baselines: Neural PCFG and
Compound PCFG (Kim et al., 2019a, henceforth,
NPCFG and CPCFG) and Unsupervised Recurrent
Neural Networks Grammars (URNNG, Kim et al.,
2019b). Since the full parametrization of these
three models would take too much space, we re-
fer the interested reader to the original papers and
recall only their most salient features.

NPCFG and CPCFG These models are based
on a neural parametrization of PCFGs in Chomsky
normal form. Both assume the number of non-
terminal symbols of the grammar to be fixed as
a hyperparameter. To generate a sentence, these
models start from a designated nonterminal symbol
S and recursively apply rewrite rules of the form
X — o, replacing some nonterminal X with a se-
quence o of one or two (terminal or nonterminal)
symbols, until there remains only terminal sym-
bols. The difference between NPCFG and CPCFG
lies in how they model the choice of a rewrite rule.
NPCFG parametrizes the probability of rewriting
X with X — o as proportional to e/ (4x:%) where
ux and v, are learned embeddings for the left-
hand side and right-hand side of the rule, and f is
a neural network. CPCFG aims at weakening the
context-free assumptions by making each step in
the derivation dependent on a global context vector
z. It thus generates z from a gaussian prior before
applying the rewriting process. z is then shared
between every rewriting decision, and the probabil-
ity of X — o becomes proportional to ef(4x2v7)
where - is vector concatenation.

URNNG URNNG does not involve a discrete
space of symbols and rules. It relies instead on a
transition-based system inspired from shift-reduce
parsers. A sentence is generated by successively
applying SHIFT or REDUCE actions to a stack of



tree fragments, until an end-of sentence symbol is
generated. SHIFT generates a word and moves it on
top of the stack, while REDUCE merges the two top
elements of the stack into a single tree fragment.
At every step, the model also maintains a stack
of hidden states. The choice of the next action is
parametrized as a function of the top-element of
the stack of hidden states, and each action updates
the stack of hidden states using a stack recurrent
neural network (Kuncoro et al., 2017).

The tested models thus have important differ-
ences: URNNG, unlike the two others, generates
words in a strict left-to-right order and does not
involve symbolic rules. NPCFG is the only model
whose decisions depend only on a finite set of
configurations. CPCFG and URNNG stand on
opposite sides of the parsing/language modeling
tradeoff, with NPCFG and CPCFG achieving bet-
ter parsing performance but much worse perplexity
than URNNG on natural language. Unlike NPCFG,
CPCFG and URNNG most likely have expressive
capabilities beyond PCFG, though this has (to our
knowledge) not be formally established. In particu-
lar, URNNG’s use of stack LSTM suggests (Merrill
et al., 2020; Weiss et al., 2018) that it could model
data from the +mce conditions without branching
structures, which lies beyond PCFG’s strong ex-
pressive power’. Finally, the models use distinct
strategies to marginalize over latent trees and esti-
mate the probabilities of sentences: NPCFG and
CPCFG use dynamic programs® whereas URNNG
uses REINFORCE with control variate.

We tested the three models under the best set
of hyperparameters’ respectively reported in Kim
et al. (2019a) and Kim et al. (2019b), using the
authors’ orginal implementation. In particular, we
used CPCFG with 30 nonterminal symbols and 60
preterminal symbols, which means that, for the -sr
configuration, a perfect language model and parser
lies within the searched class of CPCFG models
(cf §3.3), hence, that perfect parsing accuracy can
be achieved on the test set.

We trained four instances of each model
(CPCFG, NPCFG and URNNG) on a machine with
a single RTX4090 GPU. Each run was initialized
with a different random seed, on every training

"URNNG essentially reduces to a standard LSTM lan-
guage model when operating on linear tree structures.

8CPCFG uses variational inference to marginalize over z.

“Hyperparameters mainly involve embedding dimensions,
hidden state dimensions, number of preterminals and nonter-
minals (when relevant), and number of KL annealing step for
variational inference in URNNG.
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dataset. Training duration was controlled by the
number of steps, to enable fair comparisons across
datasets of different sizes. We trained for a max-
imum of 10° steps, performing validation every
500 steps, stopping early when perplexity on the
development set failed to improve for three con-
secutive validations. Early stopping always trig-
gered before the maximum number of steps was
reached. Detailed hyperparameters are provided
in Appendix A, and selected training, develop-
ment and testing datasets, code and parsed test data
are available at https://github.com/suzuyuta/
BriGap-2_2025.

4.3 Metrics

We measured performances according to sentence-
level (unlabeled) F1 score, the standard metrics
for unsupervised constituency parsing. However,
since our training data is designed around specific
incentives for self-embedding of NP and CP, it
does not reflect common linguistic arguments e.g.
the positioning of the subject above VP, which are
nevertheless evaluated by F1. We therefore report
the recall on constituents of type NP and CP.

5 Results and discussion

Figure 2 presents the results achieved by the three
models under the four configurations and four data
sizes. The reported numbers are the mean perfor-
mance and standard deviation across all four runs.
Detailed results for each run are available in the
appendix B (Table 3, 4, and 5).

Overall impact of sr and mce The +sr+mce
configuration (light blue) achieves the best results
across the board, and the -sr-mce (pink) the worst
results, confirming intuitions. The -sr+mce (light
green) configuration tends to yield better result
than the +sr-mce (orange), though there are ex-
ceptions for URNNG. This suggests that, to the
extent that these phenomena are captured in our
data, latent tree models are more sensitive to multi-
ple center embedding than selectional restrictions.
Furthermore, +sr configulations had the effect of
increasing the number of preterminal symbols used
in NPCFG and CPCFG models.

Model comparison URNNG seems to consis-
tently achieve either comparable, or better perfor-
mance than CPCFG, across all data sizes and con-
figurations. This is rather surprising: for English,
Kim et al. (2019a) reports a performance of 60.1


https://github.com/suzuyuta/BriGap-2_2025
https://github.com/suzuyuta/BriGap-2_2025

0.8 0.8

0.6 0.6

0.8

0.6

0.4 0.4

0.2 0.2

0.4

0.2

100k
Data Size

Data Sz

100k 12k 100k
e Data Size

o

o

e 0 Bwrge BB | BB Baraal B |5 mt LN BN

S T M J l S0 Tl | J

S SRR DERSREc- BEESEE S SN SRl DERERE--  FEEERM - EE SN SO DERERE--  FEEERM-- TR
(d) CPCFga;el’ Recall (e) NPCFET;} Recall ) URNNDca: ?\IRP Recall

4<
° °

o

°
®

°
@

CP Recall (%)

0.4
0.2

CP Recall (%)

|

° °
N S

400k

12k 100k 400k
Data Size

(g) CPCFG CP Recall

Data Siz

(h) NPCFG CP Recall

100k 400k 100k
e Data Size

(1) URNNG CP Recall

Figure 2: Sentence-level F1, NP and CP recall for CPCFG and URNNG. Dashed lines show the right-branching

(red) and left-branching baseline scores (green)

for the best PCFG model against a performance
of 52.6 for the best URNNG model on the Penn
Treebank (Marcus et al., 1993). Hence, the (em-
pirically) worse natural language parser achieved
the better score on our artificial data. URNNG also
provides the best language models across configu-
rations, which is less surprising (perplexity scores
estimated on training data are available in the ap-
pendix). Both models show a tendency to induce
linear structures in the configuration -sr-mce, es-
pecially when less data is available. However, they
seem to have opposite biases with CPCFG prefer-
ing left-branching structures, and URNNG right-
branching ones.

Differences in mce impact mce strongly impacts
all three models, but the impact on CPCFG is par-
ticularly dramatic, as no model ever beats the right-
branching baseline in any of the -mce configuration.
We find it remarkable, that despite plausibly able
to express mce without branching structure (see
§ 4.2), the -sr+mce configuration pushes URNNG
towards inducing NP constituents (though, not CP
constituents).
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Differences in sr impact The effect of selec-
tional restrictions alone (+sr-mce) varies across
models: CPCFG and NPCFG improve NP induc-
tion but not CPs, whereas URNNG shows the
opposite pattern, especially excelling at CP re-
call with 100k data. Interestingly, NPCFG’s F1
score drops sharply under -sr, though NP re-
call remains relatively stable. The contrast be-
tween +sr+mce and -sr+mce is more pronounced
in NPCFG and URNNG than in CPCFG, proba-
bly because CPCFG cannot explicitly model selec-
tional restrictions with its context vector z. Since z
uniformely affects every occurence of a nontermi-
nal symbol, lexical items generated from the same
symbol share the same distribution, and CPCFG
must assign different symbols to nouns with dif-
ferent semantic features. Consequently it has to
encode semantic variation within a fixed inventory
of 30 nonterminals and 60 preterminals. In contrast,
URNNG may exploit its hidden state to model such
distinctions more flexibly.

Performance correlations We used Spearman’s
rank correlation to assess the relationship between
perplexity, training size, and syntactic performance
(F1, NP/CP/VP recall; see Appendix C). CPCFG



and URNNG showed strong negative correlations
between perplexity and performance, especially
NP recall, suggesting that lower perplexity often
aligns with better parsing. This trend was less clear
for NPCFG. In contrast, correlations with training
size were weaker. With small datasets, models typ-
ically saw the full data multiple times before con-
verging, so seed-related variation mainly reflected
data ordering. For larger datasets, perplexity often
plateaued early, leading to convergence before full
data exposure and greater sensitivity to the specific
subset encountered.

Robustness to semantic and syntactic variation
We further evaluated our models using test sets
from the -sr-mce configuration and, for the mod-
els trained on +mce, -sr+mce configurations. Pars-
ing performance remained consistent across these
settings, suggesting that models do not rely on se-
mantic cues, and that (when exposed to both kind
of RCs) they learn to treat subject and object RC
similarly. This indicates that self-embedding struc-
tures are either jointly acquired or jointly missed.

6 Limitations

The tested latent tree models obviously have very
high variance under most configurations (URNNG
on +sr+mce being an exception). Though the
problem is pervasive in grammar induction, ad-
ditional runs could help increase statistical signif-
icance. Second, comparison with more models
would be very informative. In particular a com-
parison between the recent Tensor Decomposition
PCFG model (Yang et al., 2021), since the for-
mer increased number of symbols could maybe
overcome CPCFG apparently limitation to bene-
fit from sr. Another limitation lies in the latent
non/preterminal symbols in CPCFG and NPCFG,
which we did not analyze in detail; future work
is needed to better understand how these symbols
relate to syntactic and semantic categories. Finally
verbs and nouns are very unbalanced in our lexicon
(more than in reality) and this asymmetry could
have some effects, e.g. on some models’ prefer-
ences for a given flow of information (from subject
to verb vs. from verb to subject).

7 Conclusion

We have designed a controlled experimental set-
ting to assess the respective effect of two linguistic
phenomena (one categorical, multiple center em-
bedding and one semantic, selectional restrictions)
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on latent tree models induction. Testing three well
established latent tree baselines in these settings
allows to make general observations on the relative
strength of the two phenomena, and report differ-
ences in their impact on the tested models. While
we focused on constituency models in this study,
our methodology and data are readily applicable
to the dependency setting, and testing dependency
latent models is one of our future avenues of re-
search.
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A Hyperparameters

The hyperparameters used in our experiments
largely follow those reported in prior work (Kim
et al., 2019a,b). We conducted four runs for each
model (CPCFG, NPCFG, and URNNG) with
the following randomly selected seeds: 3435,
648708704, 1320159950, and 603135965. Table 2
summarizes the hyperparameter settings. In the
experiments with the NPCFG, the z_dim parameter
of the CPCFG was set to 0.

Table 2: Hyperparameters

CPCFG (NPCFG)

Description Value Flag

latent dimension 64 -z_dim

number of preterminal states 60 -t_states
number of nonterminal states 30 -nt_states
symbol embedding dimension 256 -state_dim
hidden dim for variational LSTM 512 ~h_dim
embedding dim for variational LSTM 512 —w_dim

starting learning rate 0.001 -1r

gradient clipping 3 -max_grad_norm
max sentence length cutoff start 30 -max_length
increment max length each epoch 1 -len_incr

final max length cutoff 40 —-final_max_length
Adam (3 0.75  -betal

Adam [y 0.999 -beta2

which GPU to use 0 -gpu

validation every N steps 3000 -val_every
increment max length every N steps 3000 -incr_step
early stopping patience (epochs) 5 —-early_stopping_patience
minimum training steps 10000 -min_steps
URNNG

Description Value Flag

hidden dim (LM/RNNG) 650  -w_dim

hidden dim (LM/RNNG) 650  —h_dim

hidden dim (variational RNN) 256 —-q_dim

number of layers (LM & stack LSTM) 2 -num_layers
dropout rate 0.5 —-dropout
include EOS in val PPL (0/1) 0 —-count_eos_ppl
no LR decay before this 8 -min_epochs
IWAE samples (eval) 5 -mc_samples
samples for score-function grads 8 —-samples
starting learning rate 1 -1r

LR for inference network ¢ 0.0001 -q_1r

LR for action layer 0.1 -action_lr

LR decay factor 0.5 —decay

KL warmup steps 10000 -k1_warmup
steps to train ¢ 10000 -train_g_steps
uniform init range 0.1 —param_init
grad clipping (model) 5 —-max_grad_norm
grad clipping (q) 1 —-q_max_grad_norm
validation every N steps 3000 -val_every
minimum training steps 1500 -min_steps
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Table 3: CPCFG Results

Data Type Size Seed ValPPL LastStep F1 NP CP VP nbNT nb PreT

0 2493 9000 051 042 0.58 0.65 10 30
s 1 2441 10000 058 0.6 066 072 10 28
2 2343 11000 023 052 00 00 10 33
32203 9000 054 048 0.63 0.75 14 32

0 2063 13000 0.73 0.71 092 095 16 30

bk L 1897 12000 061 066 0.7 08 9 22
2 2018 9500 077 0.75 1.0 1.0 10 23
rsremee 3 2174 8000 022 049 0.0 00 11 33
0 20.11 11500 0.78 0.72 092 095 12 28

ook L 221410500 026 063 0.0 0.0 11 25
2 2213 8000 022 049 00 0.0 11 30

3 2043 12500 024 0.54 0.0 0.0 7 24

0  20.17 13500 0.67 054 0.89 0.93 11 32
sook | 1887 11000 077 075 10 10 11 25
2 1929 13000 026 0.62 0.0 00 10 28

3 185 14000  0.84 0.99 0.99 0.99 8 29

0 1854 8500 062 039 1.0 1.0 13 28

s 12156 7000 015 025 0.0 00 7 21
2 194 9000 023 051 00 00 6 26

3 1834 9000 052 0.5 0.56 0.73 7 30

0 1979 11000 0.16 027 00 00 8 32

b L 166 15500 026 063 0.0 00 8 34
2 1936 10000  0.16 028 0.0 0.0 7 29
rsr-mce 3 1864 10500 02 041 00 0.0 7 25
0 1971 8500 017 03 00 00 6 24

ook L 164317500 027 064 0.0 00 7 38
2 1938 10500  0.15 027 0.0 0.0 7 29
32005 9500  0.I5 026 00 0.0 8 25

0 19.17 7000  0.I5 025 00 0.0 7 22
g0k L 20016500 015 026 00 00 7 22
2 1922 10000  0.16 029 0.0 0.0 7 30
31975 8500  0.16 0.28 0.0 0.0 6 26

0 3923 10000 0.64 061 072 081 13 29

s L 4751 7000 059 0.5 049 066 7 22
2 4674 6500 059 0.5 049 0.66 7 18

3 3458 11500 085 1.0 1.0 1.0 9 23

0 4303 8000 059 05 049 0.66 7 16

ok L 457 6500 059 05 049 066 6 16
2 4468 6500 059 0.5 049 0.66 6 15
—sremee 33525 10000  0.79 0.94 0.89 0.93 7 14
0 4493 8000 059 05 049 0.66 7 4

ook L 4164 7000 062 0.64 0.49 0.85 11 12
2 4421 8000  0.59 0.5 0.49 0.66 8 16

3 446 7500 059 0.5 049 0.66 6 12

0 3449 14000 0.62 0.64 049 085 12 25
sook | 3242 12000 085 1.0 10 10 9 20
2 4495 7000 059 0.5 0.49 0.66 7 12

3 4475 8000 059 0.5 0.49 0.66 8 18

0 4217 6500  0.15 025 00 00 6 19

s L3725 7000 015 025 00 00 7 22
2 427 6500  0.15 025 0.0 0.0 6 16

3 4231 6500  0.15 025 00 0.0 6 18

0  28.14 13000 027 0.64 00 00 7 17

bk L 395 7000 015025 0.0 00 6 23
2 3891 6500  0.I5 025 00 0.0 6 18
ermce 33206 14500 027 0.64 0.0 0.0 7 19
0 3856 8000 0.5 025 00 00 6 27
ook L 3883 6500 015025 00 00 6 22
2 3887 7000  0.15 025 0.0 0.0 6 23

3 3474 6500  0.15 025 00 0.0 6 18

0 3856 7500  0.I5 025 00 00 6 25
sook | 3872 8000 015 025 00 00 7 21
2 3236 9500 024 056 00 0.0 7 21

3 3444 8000  0.15 025 0.0 0.0 7 22

85



Table 4: NPCFG Results

Data Type Size Seed ValPPL LastStep F1 NP CP VP nbNT nb PreT

0 2067 9000 072 0.81 0.77 0.85 9 28
s 1 2558 6500 02506 00 00 9 23
2 2548 6500 027 0.64 0.0 00 7 25

3 2328 8500 078 09 09 094 11 25

0 2598 7000 02 042 00 00 7 22

bk L2191 10000 082 097 0.95 0.97 7 23
2 2442 7500 027 0.64 0.0 0.0 7 29
rsr+mee 3 2101 10500  0.67 0.69 0.82 0.83 10 24
0 2271 10000 027 0.64 0.0 00 8 23
ook L 2036 9000 062 048 1.0 089 12 22
2 2051 11500  0.64 055 092 094 10 18

3 252 8000 075 0.73 0.95 0.96 8 22

0 2074 12500 069 0.1 0.77 0.85 10 34
g0k | 2065 9000 077 087 09 093 11 26
2 2119 9500 073 088 0.77 0.81 10 20
32025 14000 056 076 0.0 077 14 33

0 2232 9500 022 05 00 00 8 26

s 11956 9500 025 058 0.0 00 8 28
2 1999 8500 024 054 0.0 00 8 23
32252 6500 0.6 029 0.0 0.0 7 28

0 215 850 021 047 00 00 8 27

b L 1872 9500 022 049 0.0 00 8 24
2 186 12000 022 049 00 00 12 27
rsr-mce 31895 10000 022 049 00 00 12 24
0 1865 10500 022 049 00 0.0 8 26
ook | 1881 8500 024 054 0.0 00 8 31
2 1884 12000 022 049 00 00 11 24
32126 11000 025 058 0.0 0.0 8 26

0 1883 7500 022 049 00 00 8 21
sook | 1863 12000 022 048 00 00 9 31
2 1872 11000 027 0.64 0.0 0.0 8 22

3 1945 8500 023 053 0.0 0.0 8 24

0 3607 9500 022 049 00 00 8 17

s 1 3145 10000 023 052 00 00 8 16
2 3844 8000 026 061 00 00 12 20
33633 10000 022 05 00 00 6 16

0 4374 8000 027 0.64 0.0 00 6 13

bk L3522 10000 022 049 0.0 0.0 6 17
2 4896 7500 024 057 0.0 0.0 6 18
—sremee 3342 9500 024 056 0.0 0.0 9 18
0 359 10500 027 066 0.0 00 13 13
ook L 3526 10000 022 05 00 00 8 16
2 4302 8000 023 053 0.0 00 8 15
34046 7000 024 057 00 0.0 8 19

0 4092 8000 027 0.64 0.0 0.0 7 12
sook | 3578 8000 022 049 00 00 7 16
2 4369 7000 022 049 0.0 0.0 9 16

3 3354 11000 023 052 00 0.0 8 14

0 272 8000 025 059 00 00 10 20

s L3907 7000 015 025 00 00 6 19
2 3122 10000 021 046 0.0 0.0 8 14

3 3533 6500 015 025 00 00 5 10

0 2704 8000 026 0.63 0.0 00 7 15

K L 3263 8000 022 049 00 00 11 IS
2 3411 6500 015 025 00 00 5 14
sr-mce 3 2657 9000 022 049 00 00 10 16
0 2712 10000 031 0.79 0.0 0.0 8 13
ok L 3306 6500 023 054 0.0 00 7 13
2 3446 6500 015 025 0.0 00 8 12
32679 7500 022 049 00 0.0 9 15

0 335 7000 0.5 025 00 00 6 3
g0k L 33137500 015 025 00 00 6 19
2 3373 8000 0.5 025 0.0 0.0 6 25
33398 8000 015 025 0.0 00 7 12
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Table 5: URNNG Results

Data Type Size Seed Val PPL LastStep F1 NP CP VP
0 1596 3500 043 05 0.0 0.66

3K 1 14.25 4500 0.91 0.85 0.99 0.99
2 16.24 3500 0.42 0.47 0.01 0.63

3 14.53 4500 0.79 0.81 0.77 0.82

0 11.78 8500 091 0.84 1.0 1.0

12k 1 1245 6000 09 0.84 0.99 0.97
2 12.64 6000 0.89 0.83 0.95 0.97
+sr+mce 3 11.84 8500 0.89 0.82 0.98 0.99
0 12.54 6000 0.87 0.85 0.99 0.82

100k 1 11.69 8000 091 0.85 1.0 0.98
2 11.47 9000 091 0.85 1.0 0.98

3 12.48 7000 0.44 0.5 0.06 0.66

0 11.71 7500 091 0.85 1.0 0.98
400k 1 11.57 8500 091 0.85 1.0 0.98
2 11.87 7500 091 0.85 1.0 0.98

3 12.2 8500 0.52 0.53 0.46 0.67

0 13.27 5500 0.59 0.5 049 0.66

3K 1 13.32 4500 0.51 0.5 0.27 0.66
2 13.58 3500 0.58 0.5 0.49 0.66

3 12.86 5500 0.65 0.74 0.49 0.62

0 11.59 6000 0.57 0.5 0.45 0.66

12k 1 11.34 6000 0.58 0.5 049 0.66
2 11.75 5500 0.58 0.5 0.49 0.66
+sr-mce 3 10.88 6500 0.66 0.74 0.49 0.66
0 10.28 9000 091 0.85 1.0 1.0
100k 1 10.71 8000 0.59 0.5 0.49 0.66
2 10.37 8000 0.89 0.85 1.0 0.89

3 1091 7000 0.59 0.5 0.49 0.66

0 10.84 7500 0.59 0.5 0.49 0.66
400k 1 11.09 7000 046 0.5 0.15 0.66
2 11.53 6000 0.53 0.5 0.34 0.66

3 10.83 7500 0.59 0.5 0.49 0.66

0 42.06 3500 043 049 0.0 0.64

3K 1 42.11 4000 0.75 0.82 0.63 0.74
2 39.79 4500 0.62 0.75 0.59 0.42

3 50.4 4500 0.56 0.66 0.63 0.34

0 37.71 5000 0.67 0.76 0.52 0.63

12k 1 35.82 6000 0.54 0.63 0.34 0.68
2 35.84 6000 0.62 0.81 0.42 042
—sr+mee 3 35.61 6000 0.63 0.79 0.66 0.37
0 3552 7000 0.95 0.98 0.92 0.92

100K 1 35.54 7000 0.67 0.82 04 0.64
2 35.37 7000 046 0.5 0.16 0.66

3 3545 6500 0.64 0.86 0.45 0.7

0 3538 8000 0.84 0.99 0.72 0.69
400k 1 3532 9000 0.76 0.91 0.63 0.61
2 3536 8000 0.76 0.89 0.64 0.63

3 3542 7500 0.63 0.75 0.48 0.52

0 44.85 3500 046 0.5 0.16 0.66

3K 1 35.63 3500 0.43 0.48 0.03 0.64
2 44.61 3500 0.65 0.74 0.49 0.61

3 36.76 5500 046 0.5 0.16 0.66

0 3337 6500 046 0.5 0.16 0.66

12k 1 43.12 5000 046 0.5 0.16 0.66
2 3341 6000 046 0.5 0.16 0.66
—sr-mce 3 36.63 5000 0.58 0.73 0.37 0.46
0 3333 6000 046 0.5 0.15 0.66

100k 1 43.01 5000 0.66 0.74 0.49 0.66
2 35.19 5000 0.54 0.72 0.36 0.38

3 33.2 7500 046 0.5 0.16 0.66

0 35.73 5000 046 0.5 0.16 0.66

400k 1 3325 8500 0.57 0.78 0.55 0.28
2 3321 7500 0.53 0.68 0.34 0.41

3 38.0 6500 0.66 0.74 0.49 0.66
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C Spearman’s Test Results

Table 6: Spearman’s Test Results: CPCFG

Table 7: Spearman’s Test Results: NPCFG

Data Type Pair Spearman’s p p-value Significance Data Type Pair Spearman’s p p-value Significance
PPL-Size -0.7276 0.0014  *x PPL-Size -0.5457 0.0288
F1-Size  0.2795 0.2944 n.s. F1-Size 0.1946 0.4702 n.s.
F1-PPL  -0.6013 0.0137 = F1-PPL  -0.3392 0.1987 n.s.
NP-Size 0.4983 0.0495 = NP-Size 0.1216 0.6536 n.s.
+sr+mce NP-PPL -0.7119 0.002  *x +sr+mce NP-PPL -0.2094 0.4363 n.s.
CP-Size 0.1933 0.4732 n.s. CP-Size 0.1814 0.5014 n.s.
CP-PPL  -0.5535 0.0261 = CP-PPL -0.4111 0.1137 n.s.
VP-Size 0.1933 0.4732 n.s. VP-Size 0.1788 0.5077 n.s.
VP-PPL -0.5656 0.0224 VP-PPL -0.3902 0.1351 n.s.
PPL-Size 0.1576 0.5598 n.s. PPL-Size -0.5461 0.0286
F1-Size -0.5209 0.0385 F1-Size 0.2271 0.3977 n.s.
F1-PPL  -0.728 0.0014 *x F1-PPL  -0.111 0.6823 n.s.
NP-Size -0.3588 0.1723 n.s. NP-Size 0.0873 0.7479 n.s.
+sr-mce  NP-PPL -0.733 0.0012  *x +sr-mce NP-PPL 0.031 0.9092 n.s.
CP-Size -0.506 0.0455 = CP-Size NaN NaN n.s.
CP-PPL  -0.4065 0.1182 n.s. CP-PPL NaN NaN n.s.
VP-Size -0.506 0.0455 VP-Size NaN NaN n.s.
VP-PPL  -0.4065 0.1182 n.s. VP-PPL NaN NaN n.s.
PPL-Size -0.2183 0.4167 n.s. PPL-Size 0.097 0.7208 n.s.
F1-Size -0.0489 0.8574 n.s. F1-Size 0.0189 0.9447 n.s.
F1-PPL  -0.8415 0.0 * ok * F1-PPL  0.314 0.2363 n.s.
NP-Size 0.0209 0.9386 n.s. NP-Size -0.0061 0.982 n.s.
-sr+mce NP-PPL -0.8483 0.0 * ok % -sr+mce NP-PPL 0.3403 0.1972 n.s.
CP-Size -0.2153 0.4231 n.s. CP-Size NaN NaN n.s.
CP-PPL  -0.6712 0.0044  *x CP-PPL NaN NaN n.s.
VP-Size 0.0209 0.9386 n.s. VP-Size NaN NaN n.s.
VP-PPL  -0.8483 0.0 * % % VP-PPL NaN NaN n.s.
PPL-Size -0.4672 0.068 n.s. PPL-Size 0.0243 0.929 n.s.
F1-Size 0.0356 0.8958 n.s. F1-Size -0.2534 0.3436 n.s.
F1-PPL  -0.6811 0.0037 *x F1-PPL  -0.8164 0.0001 * * *
NP-Size 0.0356 0.8958 n.s. NP-Size -0.2534 0.3436 n.s.
-sr-mce NP-PPL -0.6811 0.0037  *x -sr-mce NP-PPL -0.8164 0.0001  * % *
CP-Size NaN NaN n.s. CP-Size NaN NaN n.s.
CP-PPL  NaN NaN n.s. CP-PPL NaN NaN n.s.
VP-Size NaN NaN n.s. VP-Size NaN NaN n.s.
VP-PPL NaN NaN n.s. VP-PPL NaN NaN n.s.
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Table 8: Spearman’s Test Results: URNNG

Data Type Pair Spearman’s p p-value Significance
PPL-Size -0.7155 0.0018 *x
F1-Size 0.4054 0.1193 n.s.
F1-PPL  -0.7405 0.001  *x
NP-Size 0.4818 0.0588 n.s.
+sr+mce NP-PPL -0.6258 0.0095  *x
CP-Size 0.5371 0.0319 =
CP-PPL  -0.8149 0.0001 * * *
VP-Size 0.1543 0.5682 n.s.
VP-PPL -0.6229 0.01 Kk
PPL-Size -0.7155 0.0018 *x
F1-Size 0.0 1.0 n.s.
F1-PPL  -0.5779 0.019 =
NP-Size -0.0799 0.7688 n.s.
+sr-mce  NP-PPL -0.4339 0.0931 n.s.
CP-Size -0.0349 0.898 n.s.
CP-PPL -0.5142 0.0416 =
VP-Size 0.3202 0.2266 n.s.
VP-PPL  -0.5911 0.0159 =
PPL-Size -0.9459 0.0 * % ok
F1-Size  0.5595 0.0242
F1-PPL  -0.4381 0.0897 n.s.
NP-Size 0.5769 0.0193 =
-sr+mce NP-PPL -0.4875 0.0554 n.s.
CP-Size 0.2433 0.364 n.s.
CP-PPL -0.174 0.5192 n.s.
VP-Size 0.2005 0.4565 n.s.
VP-PPL -0.1975 0.4635 n.s.
PPL-Size -0.4972 0.0501 n.s.
F1-Size 0.3824 0.1438 n.s.
F1-PPL  0.2374 0.376 n.s.
NP-Size 0.4289 0.0974 n.s.
-sr-mce NP-PPL 0.1261 0.6417 n.s.
CP-Size 0.381 0.1454 n.s.
CP-PPL 0.1756 0.5154 n.s.
VP-Size -0.1602 0.5533 n.s.
VP-PPL 0.2585 0.3336 n.s.
D Statistics of Non-/Pre-terminal

Symbols for CPCFG and NPCFG

Table 9: Mean number of Non-/Pre-terminal

symbols

Model Data Type Meannb NT (std) Mean nb PreT (std)
+sr+mce 10.69 (2.05) 28.25 (3.44)
+sr-mce 7.38 (1.58) 27.56 (4.49)

CPCFG g1 e 812 (209 1762 (4.83)
-sr-mce 6.38 (0.48) 20.69 (2.93)
+sr+mce 9.38 (1.96) 24.81 (4.22)
+sr-mce 8.69 (1.49) 25.75 2.8)

NPCFG _grimce 806  (1.95) 160 (215
-sr-mce 7.44 (1.77) 15.62 (3.66)
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