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Abstract

Human communication routinely relies on plu-
ral predication, and plural sentences are of-
ten ambiguous (see, e.g., Scha, 1984; Dal-
rymple et al., 1998a, to name a few). Build-
ing on extensive theoretical and experimen-
tal work in linguistics and philosophy, we ask
whether large language models (LLMs) exhibit
the same interpretive biases that humans show
when resolving plural ambiguity. We focus on
two lexical factors: (i) the collective bias of
certain predicates (e.g., size/shape adjectives)
and (ii) the symmetry bias of predicates. To
probe these tendencies, we apply two comple-
mentary methods to premise–hypothesis pairs:
an embedding-based heuristic using OpenAI’s
text-embedding-3-large/small (OpenAI,
2024, 2025) with cosine similarity, and
supervised NLI models (bart-large-mnli,
roberta-large-mnli) (Lewis et al., 2020; Liu
et al., 2019; Williams et al., 2018a; Facebook
AI, 2024b,a) that yield asymmetric, calibrated
entailment probabilities. Results show partial
sensitivity to predicate-level distinctions, but
neither method reproduces the robust human
pattern, where neutral predicates favor entail-
ment and strongly non-symmetric predicates
disfavor it. These findings highlight both the
potential and the limits of current LLMs: as
cognitive models, they fall short of capturing
human-like interpretive biases; as engineering
systems, their representations of plural seman-
tics remain unstable for tasks requiring precise
entailment.

1 Introduction

Plural sentences permit multiple readings. For ex-
ample, the boys lifted the table allows a collective
reading (acting together) or a distributive reading
(each acted separately). Even without context, hu-
man listeners show robust preferences, making plu-
rality a rich testbed for evaluating whether language
models track the same interpretive pressures.

We ask two questions. As cognitive models, do
LLMs exhibit human-like interpretive biases in out-
of-the-blue contexts? As engineering systems, do
they represent plural semantics robustly enough
for tasks requiring precise entailment? If such bi-
ases emerge, they may be encoded in linguistic
distributions; if not, it shows the limits of text-only
training.

We focus on two tendencies: the collective
bias, where predicates vary in supporting col-
lective over distributive readings, and the sym-
metry bias, where reciprocals differ in favor-
ing symmetric interpretations. To probe these,
we apply two methods to premise–hypothesis
pairs: (i) cosine similarity with OpenAI’s
text-embedding-3-large/small, a simple but
symmetric and uncalibrated proxy for entail-
ment, and (ii) NLI models (bart-large-mnli,
roberta-large-mnli), which provide asymmet-
ric, probabilistic entailment judgments. We treat
both as entailment-strength signals and compare
their agreement and fit to human data.

2 Background

2.1 Collective Bias

Pluralities like the students, John and Mary are
widely used in natural language. However, the se-
mantics and pragmatics of predicating properties
on plural entities is a complex issue. The complex-
ity comes from the ambiguity of plural predications
(Beck and Sauerland, 2000; Beck, 2001; Landman,
1989a,b; Link, 1983; Scha, 1984; Schwarzschild,
1996).

For example, for a sentence the boys lifted the
table, a plural entity the boys is involved. The sen-
tence allows for various interpretations. The first
and most intuitive reading of the sentence is that
all the boys lifted the table together. The property
of table lifting applies to the plural entity the boys
as a whole. This is commonly referred to as the
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collective reading of plural predications. Another
possible reading of the sentence is that the boys
each lifted the table. The property of table lifting
applies to each atom of the plural entity the boys.
This is commonly referred to as the distributive
reading of plural predications. In addition to the
collective and distributive readings, there are also
many intermediate readings. For example, the sen-
tence is also true in a scenario where the boys were
separated into groups, each group of boys lifted the
table together.

Plural predication sentences are inherently am-
biguous. However, this ambiguity does not hinder
the efficiency or effectiveness of human commu-
nication. Rather than causing confusion, certain
interpretation is usually prominent.

Experimental work has shown that collective
readings are generally easier to access than dis-
tributive readings (Frazier et al., 1999; Dotlačil and
Brasoveanu, 2021). However, this preference is not
uniform: many special cases reveal a weak collec-
tive bias. For instance, Dotlačil and Brasoveanu
(2021) find that the preference for collective inter-
pretations disappears in cases of lexical distribu-
tivity, where the distributive meaning is encoded
directly in the predicate. A well-documented ex-
ample arises with adjectives of size and shape,
which strongly promote distributive interpretations
(Quine, 1960; Schwarzschild, 2011; Scontras and
Goodman, 2017; Syrett, 2015; Maldonado, 2012;
Zhang, 2013). Syrett (2015) show that this bias
emerges early, in children as young as three. For
example, the adjective large strongly favors a dis-
tributive reading: when interpreting the boxes are
big, the most natural construal is that each box is
big. By contrast, predicates such as heavy allow
both collective and distributive interpretations: the
boxes are heavy may mean that each box is heavy,
or that the boxes are heavy as a group, even if no
individual box is particularly heavy.

Why the preference arises remains an open ques-
tion in the literature. One line of explanation at-
tributes the interpretive bias to lexical semantics,
certain predicates are argued to be semantically
incompatible with collective readings due to their
scalar or gradable nature, as in the case of size
adjectives like big or tall (Schwarzschild, 2011;
Maldonado, 2012; Zhang, 2013). Another line of
research suggests that the preference is shaped by
pragmatic reasoning or contextual factors; for in-
stance, when interpreting size predicates, compar-
isons are naturally drawn at the level of each ob-

ject. However, when the discourse context is set
up appropriately, collective readings can emerge
even for predicates that are otherwise known to
strongly favor distributive interpretations (Scon-
tras and Goodman, 2017). Scontras and Goodman
(2017) collect natural-occurring examples of plural
predications from the British National Corpus. For
frequent plural sentences, Scontras and Goodman
(2017) tests people’s judgment of the salient inter-
pretations of these sentences. The authors also ma-
nipulate the contexts of the same plural sentences
and show that contexts can influence how salient
the distributive reading is, thus refuting the lexical
views mentioned above.

2.2 Symmetric Bias
The second generalization is that certain predicates
evoke a symmetric bias, making the salient inter-
pretations of plural sentences stronger compared to
those without a symmetric bias (Beck, 2001; Dal-
rymple et al., 1998b; Gleitman et al., 1996; Poort-
man et al., 2018). For example, for the sentence
John, Mary and Bill knew each other, the most
salient reading is that John knew Mary, Mary knew
John, John knew Bill, Bill knew John, Mary knew
Bill and Bill knew Mary. In other words, every
person knew every other person. The salient inter-
pretation is symmetric between the atoms of the
individual. For the sentence John, Mary and Bill
were hitting each other, the most salient reading is
not as strong as the one described just now. The
most salient reading is that every person was either
hitting or was being hit by some other person. The
reading is weaker than the reading for the knew
sentence. The reading is not symmetric between
atoms of the plural.

To explain the difference in the strength of
salient readings, many works focus on the use of
contextual and lexical information for the selec-
tion between different readings (Dalrymple et al.,
1998b; Sabato and Winter, 2012; Mari, 2013). In
an influential paper, Dalrymple et al. (1998b) intro-
duces a principle named the Strongest Meaning Hy-
pothesis. The principle predicts that the strongest
possible interpretation will be salient in case of am-
biguity. According to the principle, the predicate
hit was more non-symmetric to know. In a hitting
event, a person most likely either hit someone or
was hit by someone, but not both. In a knowing
event, a person can both know someone and be
known by someone. Thus, in the reciprocal sen-
tences mentioned above, John, Mary and Bill knew
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each other has a reading which is stronger than
John, Mary and Bill were hitting each other.

Some predicates exhibit a higher degree of sym-
metry than others, a generalization supported by
various strands of empirical and theoretical work.
Gleitman et al. (1996) observes that predicates like
be similar are interpreted more symmetrically than
predicates like love or help, suggesting that con-
ceptual representations influence perceived sym-
metry. Winter (2018) provides a formal semantic
account of such variability, arguing that reciprocal
alternations reflect systematic differences in pred-
icate symmetry, with certain predicates favoring
reciprocal interpretations more naturally. Comple-
menting these perspectives, Poortman et al. (2018)
propose the Maximal Typicality Hypothesis, show-
ing through experimental evidence that the inter-
pretation of reciprocal expressions depends on how
typically symmetrical a predicate is perceived to
be, with more symmetrical predicates leading to
stronger reciprocal inferences.

More specifically, Poortman et al. (2018) inves-
tigates how verb concepts influence the interpre-
tation of plural reciprocal sentences in Dutch and
Hebrew. Building on prior work, they first exam-
ine Hebrew data to evaluate the Strongest Mean-
ing Hypothesis (SMH). Contrary to this prediction,
their results show that participants often opt for
weaker interpretations. Poortman et al. (2018) ar-
gue that this pattern reflects the sensitivity of recip-
rocal quantification to the underlying verb concept,
and propose the Maximal Typicality Hypothesis.
According to the hypothesis, a reciprocal sentence
is most acceptable in a “core situation”, one that is
both maximally extensive and maximally typical
for the verb concept—and may also be acceptable
in supersets of that situation, but not in others. They
conducted two experiments in Dutch, one typical-
ity ranking task assessing symmetry preferences
across different verbs, and a truth-value judgment
task with plural sentences using those verbs. The
findings reveal systematic variation in how many
patients are typically associated with each agent
across verb types, and this variation significantly
affects reciprocal interpretation. The stronger the
verb’s bias toward non-symmetric scenarios, the
more likely participants are to adopt a weaker re-
ciprocal reading.

Collectively, these studies support the view that
symmetry is a graded and conceptually grounded
property of predicates, with consequences for both
interpretation and grammatical alternation.

2.3 Goals

Prior experimental work has not examined how
LLMs resolve these plural ambiguities. Using the
two-method framework above (embedding similar-
ity vs. NLI probabilities), we ask whether model
signals reflect human biases for distributivity and
symmetry. Our main questions are:

1. In out-of-the-blue contexts, do model-based
entailment signals reflect the human collective
bias?

2. In out-of-the-blue contexts, do model-based
entailment signals reflect the human symmetry
bias?

3. Do the two methods agree—cosine similarity
vs. NLI p(entailment)—on which readings
are preferred, and where do they diverge?

We operationalize these questions by applying
cosine similarity with OpenAI embeddings
and by estimating p(entailment | P,H) with
bart-large-mnli and roberta-large-mnli,
then comparing model outputs with prior human
data (Scontras and Goodman, 2017; Poortman
et al., 2018).

3 Data Collection

3.1 Collective Bias

To test the collective bias, we use the same dataset
from Scontras and Goodman (2017). The authors
selected the 40 most frequent combinations of the
form "the nouns were adjective" from the British
National Corpus, ensuring ecological validity by
using naturally occurring language patterns. Par-
ticipants were asked to judge what each sentence
meant on a slider bar, with one end representing
the paraphrase "the nouns each were adjective"
(distributive interpretation) and the other end rep-
resenting "the nouns together were adjective" (col-
lective interpretation). This dataset is particularly
valuable for our purposes because it provides a
systematic comparison of human interpretive pref-
erences across a range of predicate types, allowing
us to assess whether language models capture the
same semantic distinctions that guide human com-
prehension. The full list of sentences is provided
in the appendix.

Participants showed a wide range of ratings
across the 40 sentences, as shown in Figure 1. The
figure displays the collective endorsement rate with
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95% confidence intervals for each sentence tested.
The x-axis shows the 40 sentences, and the y-axis
indicates the proportion of responses toward the
collective end of the slider bar. The results reveal
systematic variation in how strongly participants fa-
vored collective versus distributive interpretations,
with some sentences (e.g., "results disappointing")
showing high collective endorsement and others
(e.g., "classes small") showing low collective en-
dorsement.

Figure 1: Results of Scontras and Goodman (2017). Col-
lective endorsement rates with 95% confidence intervals
for 40 sentences of the form "the nouns were adjective."
Higher values indicate stronger preference for collective
interpretations.

In our experiments, we adapt these same sen-
tences as input to large language models to exam-
ine whether similar interpretive biases emerge in
model predictions.

3.2 Symmetric Bias
To test the symmetric bias, we use the same dataset
from Poortman et al. (2018). In the original paper,
the authors tested 18 Dutch verbs among Dutch
speakers. The 18 verbs are categorized into three
types based on their patient preference.

• Type 1 (neutral): envy, know, understand, ad-
mire, miss, hate

• Type 2 (non-symmetric-preference): pinch,
hit, caress, stab, shoot, grab

• Type 3 (strong non-symmetric-preference):
kiss, dress, kick, lash out, bite, lick

Each verb was embedded in a sentence of the
form "A, B and C Verb each other", where A, B,
and C were random proper names. Participants
were asked to perform truth value judgment tasks
for these sentences under two types of scenarios:
one depicting a symmetric action and the other a
non-symmetric action. From a generalized linear

mixed model (GLMM) logistic regression analy-
sis, it was observed that in the symmetric scenar-
ios, sentences with neutral verbs were rated sig-
nificantly better than non-symmetric verbs, and
non-symmetric verbs were rated as significantly
better than strongly non-symmetric verbs. In the
non-symmetric scenarios, the reverse pattern was
observed.

In our experiments, we adapt these same sen-
tences as input to large language models to exam-
ine whether similar interpretive biases emerge in
model predictions.

4 Experiment 1

In Experiment 1, we ask whether an embedding-
based metric recovers two human tendencies in
plural interpretation: the collective–distributive
preference and symmetry effects. We compute
cosine similarity between bare and explicitly
marked paraphrases using sentence embeddings
from OpenAI’s text-embedding-3-large and
text-embedding-3-small.

4.1 Method
Experiment 1a: collective bias In this experi-
ment, we examine the semantic similarity between
two types of plural sentences: (i) bare plural sen-
tences (Sentence 1), which lack explicit distributive
or collective markers, and (ii) marked plural sen-
tences (Sentence 2), which contain overt markers
indicating distributive or collective interpretations.
Examples of the tested sentences are as below.

1. Sentence 1: the classes were small.

2. Sentence 2 (distributive): the classes each
were small.

3. Sentence 2 (collective): the classes together
were small.

We use OpenAI’s text-embedding-3-large
and text-embedding-3-small to compute sen-
tence embeddings and evaluate how similarly the
two sentence types are represented.

Experiment 1b: symmetric bias In this experi-
ment, we examine the semantic similarity between
two types of plural sentences: (i) bare plural recip-
rocal sentences (Sentence 1), which lack explicit
symmetric markers, and (ii) marked symmetric sen-
tences (Sentence 2), which contain overt markers
indicating symmetric interpretations. Examples of
the tested sentences are as below.
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1. Sentence 1: the children knew each other.

2. Sentence 2 (symmetric): every child knew ev-
ery other child.

We use OpenAI’s text-embedding-3-large
and text-embedding-3-small to compute sen-
tence embeddings and evaluate how similarly the
two sentence types are represented.

We embed two sentences as vectors u,v in the
same semantic space and compute their cosine sim-
ilarity,

cos(u,v) =
u · v

∥u∥ ∥v∥ ∈ [−1, 1].

The embeddings for each pair of sentences are
passed into a cosine similarity function, which re-
turns a similarity score that is first linearly rescaled
to [0, 1], then passed through a sigmoid transfor-
mation to smooth the scale. Cosine similarity is
a measure used to quantify how similar two vec-
tors are, regardless of their magnitude. Because
cosine is scale-invariant and bounded, it is a con-
venient, single-number proxy for semantic related-
ness. Some recent discussions on the application
of the methods can be found in Steck et al. (2024)
and You (2025), to name a few. It calculates the
cosine of the angle between the two vectors in a
multi-dimensional space, which reflects their orien-
tation rather than their length. The resulting value
ranges from –1 to 1, where 1 indicates that the vec-
tors are pointing in the same direction (i.e., they
are very similar), 0 means they are orthogonal (i.e.,
unrelated), and –1 means they are diametrically op-
posed. In natural language processing and informa-
tion retrieval, cosine similarity is commonly used
to compare text documents represented as word or
sentence embeddings, allowing for efficient com-
parison of semantic content.

Our stimuli come in minimally different para-
phrase sets that make the target interpretation ex-
plicit. For each bare sentence (e.g., the classes
were small), we compare its similarity to a dis-
tributive paraphrase (the classes each were small)
versus a collective paraphrase (the classes together
were small). If a model encodes the collective bias
that humans show for size/shape predicates, the
bare sentence should be closer (higher cosine) to
the distributive paraphrase than to the collective
one. Analogously, for reciprocals, we compare a
bare reciprocal (e.g., A, B and C knew each other)
to stronger, fully symmetric paraphrases versus
weaker, non-symmetric paraphrases. If the model

encodes a symmetry bias, the bare reciprocal should
sit closer to the fully symmetric paraphrase. Cosine
similarity thus provides a simple, model-agnostic
diagnostic that turns these preferences into ranked
distances.

We use OpenAI’s dedicated embedding mod-
els rather than hidden states from general-purpose
LMs for three practical reasons. (i) Task fit: these
models are trained explicitly to produce sentence
embeddings whose geometry reflects semantic sim-
ilarity, making cosine a meaningful signal out of
the box. (iii) Sensitivity analysis: using two sizes
(*-large and *-small) lets us check whether con-
clusions depend on embedding capacity: conver-
gent patterns across sizes increase confidence that
findings are not an artifact of a single representa-
tion. We still analyze limitations below: cosine
is symmetric (cos(P,H) = cos(H,P )) and un-
calibrated, so it cannot by itself model directional
entailment—hence our complementary NLI experi-
ment.

4.2 Result
We compared similarity scores across model con-
ditions using paired t-tests, Wilcoxon signed-rank
tests, and OLS regressions with item fixed effects.
These analyses test whether mean differences be-
tween conditions are reliably different from zero
while accounting for within-item variation. The
results show that for the large model, distributive
sentences were judged slightly more similar to their
base forms than collective sentences (Mean Diff
≈ 0.01, p < .05), whereas the small model showed
no significant distributive–collective difference. In
contrast, collective scores from the small model
were systematically higher than those from the
large model (Mean Diff ≈ 0.03, p < 10−10), a
large and robust effect. Overall, the large model
appears sensitive to subtle distributive–collective
contrasts, confirms the similarity between the bare
sentences and their distributive/collective marked
counterparts.

Figure3 ranks the cosine similarity scores of col-
lective sentences in the large model from low to
high. It serves as a language model analogue to Fig-
ure1. Comparing Figure1 and Figure3, we see that
although both humans and the language model dis-
play a gradient of bias, the specific patterns of bias
are not the same. The x-axis, which corresponds
to item numbers, highlights the relative ranking
of sentences, and this ranking for humans differs
substantially from that of the language model. This
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Figure 2: Comparison of similarity scores of the col-
lective condition across the large and small embedding
models.

indicates that while the large language model is
sensitive to collective bias, its behavior diverges
markedly from human judgments.

Figure 3: Comparison of similarity scores between col-
lective and distributive conditions in the large embed-
ding model.

Figure 4 presents the average scores of the large
and small models across sentences with three verb
types: neutral, non-symmetric, and strongly non-
symmetric. The large model shows a steady rise
across the three types, with the highest average
score for strongly non-symmetric items. This in-
dicates that the more non-symmetric a verb is, the
greater the similarity between the original sentence
and its symmetric paraphrase. However, this pat-
tern contradicts the results observed in human ex-
periments. By contrast, the small model exhibits
a flatter trend, showing only minimal improve-
ment between neutral and non-symmetric cases and
even a slight decrease for strongly non-symmetric
items—again diverging from human results. Over-
all, these findings demonstrate a clear difference
between human judgments and model behavior.

Interim summary In this section, we
used a cosine similarity task to test col-
lective and symmetric biases in OpenAI’s
text-embedding-3-large/small. The large
model shows slight collective–distributive con-
trasts, but overall neither model reproduces the
collective bias observed in humans.

Figure 4: Comparison of average similarity scores for
each verb type across the large and the small models.

5 Experiment 2

Whereas Experiment 1 employed a cosine similar-
ity task with sentence embeddings, which measures
the degree of semantic closeness between original
sentences and their variants, Experiment 2 relies
on supervised NLI models that explicitly calcu-
late entailment probabilities between a premise
and a hypothesis. In this way, the two exper-
iments complement each other: cosine similar-
ity offers an indirect, gradient measure of inter-
pretive bias, while NLI provides a direct, cat-
egorical assessment of whether one interpreta-
tion is supported by another. Each pair con-
sisted of a base sentence (premise) and a vari-
ant reflecting a collective/ symmetric interpreta-
tion (hypothesis). To evaluate whether the hypoth-
esis was entailed by the premise, we employed
two supervised NLI models: bart-large-mnli
and roberta-large-mnli, both fine-tuned on the
Multi-Genre Natural Language Inference (MNLI)
corpus (Williams et al., 2018b). The results show
that, unlike human participants, language models
do not show the collective/symmetric bias observed
in human language use.

5.1 Method

We complement the cosine similarity experiments
with a second paradigm based on supervised Natu-
ral Language Inference (NLI) models, specifically
bart-large-mnli and roberta-large-mnli. In
this setup, we calculate entailment probabilities
between the same sentence pairs tested in Experi-
ment 1. Namely, sentences and their corresponding
collective, distributive or symmetric paraphrases.
Whereas cosine similarity captures geometric close-
ness in embedding space without reference to spe-
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cific inference relations, the NLI framework ex-
plicitly asks whether one sentence (the premise)
entails another (the hypothesis). This difference
is crucial: cosine similarity measures general se-
mantic similarity, while NLI probes whether the
model recognizes logical inference patterns such
as symmetry.

The logic of the NLI experiments is as follows.
We take each sentence as the premise and the col-
lective/distributive or symmetric paraphrase as the
hypothesis, and then use the supervised NLI mod-
els to compute the probability that the hypothesis is
entailed. If a model assigns high entailment prob-
ability to the symmetric hypothesis, this suggests
that it encodes a collective/distributive or symmet-
ric bias for that predicate. Thus, these experiments
go beyond the embedding-based cosine similarity
approach by directly testing whether models treat
symmetric interpretations as logically following
from collective descriptions. Together, the two
approaches provide complementary perspectives:
cosine similarity reveals gradient semantic affini-
ties, while NLI directly assesses whether symmet-
ric readings are licensed as inferences.

We select bart-large-mnli and
roberta-large-mnli because both are strong,
widely used supervised NLI models that have been
fine-tuned on the Multi-Genre Natural Language
Inference (MNLI) dataset, which covers a broad
range of sentence types and inference relations.
roberta-large-mnli represents a transformer
model trained with a robust masked-language-
modeling objective, while bart-large-mnli
combines an encoder–decoder architecture with
denoising pretraining, making it particularly
effective for classification tasks like NLI. Using
these complementary models allows us to test
whether our findings hold across different archi-
tectures, ensuring that observed patterns are not
idiosyncratic to a single model design.

5.2 Result
Figure 5 reveal strikingly different patterns be-
tween the two models. For BART, there is a strong
positive correlation between collective and distribu-
tive entailment probabilities (r = 0.713): items
that score higher in the collective condition also
tend to score higher in the distributive condition.
The scores are the probability assigned to entail-
ment, i.e., how strongly the model believes the
collective/distributive interpretation logically fol-
lows from the original sentence. The regression

line lies close to the 45-degree reference, suggest-
ing that BART treats the two conditions as related
and often raises both probabilities together. By
contrast, for RoBERTa, the relationship is essen-
tially flat (r = 0.061). The regression slope is
close to zero, and the points are scattered broadly
around the vertical axis, indicating that collective
scores have little predictive value for distributive
scores. This divergence suggests that BART en-
codes a stronger link between collective and dis-
tributive interpretations, whereas RoBERTa treats
them as largely independent dimensions. More-
over, RoBERTa strongly favors the distributive in-
terpretations, while BART, in contrast, treats the
two interpretations as positively correlated without
systematically preferring one over the other.

Figure 5: Comparison of the probabilities for collec-
tive/distributive pairs of BART and RoBERTa.

Figure 5 presents the RoBERTa counterpart to
Figures 1 and 3, showing the collective scores
ranked from low to high. While the model exhibits
a gradient of scores, the ranking of items diverges
considerably from the human rankings reported in
Scontras and Goodman (2017). Notably, the pat-
tern resembles the results obtained from the cosine
similarity task, suggesting that the two approaches
capture similar model-internal preferences rather
than human-like biases.

Figure 6: Sentences ranked by their RoBERTa collective
scores.

Figure 7 compares the average symmetric
scores of BART and RoBERTa across three verb
types: neutral, non-symmetric, and strongly non-
symmetric. BART consistently assigns high sym-

96



metric scores across all categories, with means
ranging from 0.78 to 0.90, suggesting a strong ten-
dency to treat symmetric paraphrases as entailed re-
gardless of verb type. RoBERTa, in contrast, yields
substantially lower scores (around 0.33–0.41), but
exhibits a clearer distinction between categories:
symmetric scores rise for strongly non-symmetric
verbs relative to neutral and non-symmetric verbs.
Again, as in the cosine similarity tasks, the human
inference results are not shown here, which predict
that neutral verbs should have the highest proba-
bility of entailment, while strongly non-symmetric
verbs should have the lowest. BART flattens the dif-
ferences almost entirely, while RoBERTa reverses
the expected trend.

Figure 7: Average symmetric scores by verb types.

Interim summary In this section, we used an
NLI task to test collective and symmetric bi-
ases. The models show slight sensitivity to plural-
interpretation contrasts, but their behavior remains
very different from human processing. Overall, the
results are similar to those from the cosine simi-
larity task, with neither method reproducing the
robust biases observed in human judgments.

6 Limitations

Cosine similarity and NLI are imperfect proxies for
human interpretation—the former symmetric and
uncalibrated, the latter shaped by model-specific
biases—so our results show alignment with hu-
man judgments but not competence. Stimulus de-
sign was limited to single agent–patient pairs (e.g.,
the boys with the table), reducing contextual vari-
ability to which human interpretation is sensitive.

More broadly, by abstracting from discourse, world
knowledge, and prosody, our study offers only
coarse approximations. Future work should use
richer behavioral methods and newer open-source
models to assess alignment more fully.

7 Conclusion

This study asked whether large language models
exhibit the same interpretive pressures that guide
human comprehension of plural sentences. Us-
ing cosine similarity and NLI models, we probed
collective and symmetry biases in out-of-the-blue
contexts. The results show partial sensitivity to
predicate-level distinctions, but neither method re-
produced the robust human pattern—neutral verbs
favoring entailment and strongly non-symmetric
verbs disfavoring it. As cognitive models, LLMs
therefore fall short of capturing human-like biases;
as engineering systems, their representations of plu-
ral semantics remain unstable for tasks requiring
precise entailment. These findings mark the lim-
its of text-only training and point to future work in
which we plan to incorporate visual cues, alongside
richer context and more nuanced evaluation met-
rics, to better align model semantics with human
judgments.
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used in this paper are openly available at the follow-
ing repository: https://github.com/ziaren/
plurals-human-lm
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