@inproceedings{senichev-etal-2025-gradient,
title = "Gradient Flush at {S}lavic {NLP} 2025 Task: Leveraging {S}lavic {BERT} and Translation for Persuasion Techniques Classification",
author = "Senichev, Sergey and
Boriskin, Aleksandr and
Krayko, Nikita and
Galimzianova, Daria",
editor = "Piskorski, Jakub and
P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Nakov, Preslav and
Yangarber, Roman and
Marcinczuk, Michal",
booktitle = "Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bsnlp-1.19/",
doi = "10.18653/v1/2025.bsnlp-1.19",
pages = "171--176",
ISBN = "978-1-959429-57-9",
abstract = "The task of persuasion techniques detection is limited by several challenges, such as insufficient training data and ambiguity in labels. In this paper, we describe a solution for the Slavic NLP 2025 Shared Task. It utilizes multilingual XLM-RoBERTa, that was trained on 100 various languages, and Slavic BERT, a model fine-tuned on four languages of the Slavic group. We suggest to augment the training dataset with related data from previous shared tasks, as well as some automatic translations from English and German. The resulting solutions are ranked among the top 3 for Russian in the Subtask 1 and for all languages in the Subtask 2. We release the code for our solution - https://github.com/ssenichev/ACL{\_}SlavicNLP2025."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="senichev-etal-2025-gradient">
<titleInfo>
<title>Gradient Flush at Slavic NLP 2025 Task: Leveraging Slavic BERT and Translation for Persuasion Techniques Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sergey</namePart>
<namePart type="family">Senichev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Boriskin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Krayko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daria</namePart>
<namePart type="family">Galimzianova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Piskorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Přibáň</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Marcinczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-1-959429-57-9</identifier>
</relatedItem>
<abstract>The task of persuasion techniques detection is limited by several challenges, such as insufficient training data and ambiguity in labels. In this paper, we describe a solution for the Slavic NLP 2025 Shared Task. It utilizes multilingual XLM-RoBERTa, that was trained on 100 various languages, and Slavic BERT, a model fine-tuned on four languages of the Slavic group. We suggest to augment the training dataset with related data from previous shared tasks, as well as some automatic translations from English and German. The resulting solutions are ranked among the top 3 for Russian in the Subtask 1 and for all languages in the Subtask 2. We release the code for our solution - https://github.com/ssenichev/ACL_SlavicNLP2025.</abstract>
<identifier type="citekey">senichev-etal-2025-gradient</identifier>
<identifier type="doi">10.18653/v1/2025.bsnlp-1.19</identifier>
<location>
<url>https://aclanthology.org/2025.bsnlp-1.19/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>171</start>
<end>176</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Gradient Flush at Slavic NLP 2025 Task: Leveraging Slavic BERT and Translation for Persuasion Techniques Classification
%A Senichev, Sergey
%A Boriskin, Aleksandr
%A Krayko, Nikita
%A Galimzianova, Daria
%Y Piskorski, Jakub
%Y Přibáň, Pavel
%Y Nakov, Preslav
%Y Yangarber, Roman
%Y Marcinczuk, Michal
%S Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 978-1-959429-57-9
%F senichev-etal-2025-gradient
%X The task of persuasion techniques detection is limited by several challenges, such as insufficient training data and ambiguity in labels. In this paper, we describe a solution for the Slavic NLP 2025 Shared Task. It utilizes multilingual XLM-RoBERTa, that was trained on 100 various languages, and Slavic BERT, a model fine-tuned on four languages of the Slavic group. We suggest to augment the training dataset with related data from previous shared tasks, as well as some automatic translations from English and German. The resulting solutions are ranked among the top 3 for Russian in the Subtask 1 and for all languages in the Subtask 2. We release the code for our solution - https://github.com/ssenichev/ACL_SlavicNLP2025.
%R 10.18653/v1/2025.bsnlp-1.19
%U https://aclanthology.org/2025.bsnlp-1.19/
%U https://doi.org/10.18653/v1/2025.bsnlp-1.19
%P 171-176
Markdown (Informal)
[Gradient Flush at Slavic NLP 2025 Task: Leveraging Slavic BERT and Translation for Persuasion Techniques Classification](https://aclanthology.org/2025.bsnlp-1.19/) (Senichev et al., BSNLP 2025)
ACL