@inproceedings{piskorski-etal-2025-slavicnlp,
title = "{S}lavic{NLP} 2025 Shared Task: Detection and Classification of Persuasion Techniques in Parliamentary Debates and Social Media",
author = "Piskorski, Jakub and
Dimitrov, Dimitar and
Dobrani{\'c}, Filip and
Ernst, Marina and
Haneczok, Jacek and
Koychev, Ivan and
Ljube{\v{s}}i{\'c}, Nikola and
Marcinczuk, Michal and
Modzelewski, Arkadiusz and
Moravski, Ivo and
Yangarber, Roman",
editor = "Piskorski, Jakub and
P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Nakov, Preslav and
Yangarber, Roman and
Marcinczuk, Michal",
booktitle = "Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.bsnlp-1.27/",
doi = "10.18653/v1/2025.bsnlp-1.27",
pages = "254--275",
ISBN = "978-1-959429-57-9",
abstract = "We present SlavicNLP 2025 Shared Task on Detection and Classification of Persuasion Techniques in Parliamentary Debates and Social Media. The task is structured into two subtasks: (1) Detection, to determine whether a given text fragment contains persuasion techniques, and (2) Classification, to determine for a given text fragment which persuasion techniques are present therein using a taxonomy of 25 persuasion technique taxonomy. The task focuses on two text genres, namely, parliamentary debates revolving around widely discussed topics, and social media, in five languages: Bulgarian, Croatian, Polish, Russian and Slovene. This task contributes to the broader effort of detecting and understanding manipulative attempts in various contexts. There were 15 teams that registered to participate in the task, of which 9 teams submitted a total of circa 220 system responses and described their approaches in 9 system description papers."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="piskorski-etal-2025-slavicnlp">
<titleInfo>
<title>SlavicNLP 2025 Shared Task: Detection and Classification of Persuasion Techniques in Parliamentary Debates and Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Piskorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitar</namePart>
<namePart type="family">Dimitrov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Dobranić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marina</namePart>
<namePart type="family">Ernst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacek</namePart>
<namePart type="family">Haneczok</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Koychev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Marcinczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arkadiusz</namePart>
<namePart type="family">Modzelewski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivo</namePart>
<namePart type="family">Moravski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Piskorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Přibáň</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Marcinczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-1-959429-57-9</identifier>
</relatedItem>
<abstract>We present SlavicNLP 2025 Shared Task on Detection and Classification of Persuasion Techniques in Parliamentary Debates and Social Media. The task is structured into two subtasks: (1) Detection, to determine whether a given text fragment contains persuasion techniques, and (2) Classification, to determine for a given text fragment which persuasion techniques are present therein using a taxonomy of 25 persuasion technique taxonomy. The task focuses on two text genres, namely, parliamentary debates revolving around widely discussed topics, and social media, in five languages: Bulgarian, Croatian, Polish, Russian and Slovene. This task contributes to the broader effort of detecting and understanding manipulative attempts in various contexts. There were 15 teams that registered to participate in the task, of which 9 teams submitted a total of circa 220 system responses and described their approaches in 9 system description papers.</abstract>
<identifier type="citekey">piskorski-etal-2025-slavicnlp</identifier>
<identifier type="doi">10.18653/v1/2025.bsnlp-1.27</identifier>
<location>
<url>https://aclanthology.org/2025.bsnlp-1.27/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>254</start>
<end>275</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SlavicNLP 2025 Shared Task: Detection and Classification of Persuasion Techniques in Parliamentary Debates and Social Media
%A Piskorski, Jakub
%A Dimitrov, Dimitar
%A Dobranić, Filip
%A Ernst, Marina
%A Haneczok, Jacek
%A Koychev, Ivan
%A Ljubešić, Nikola
%A Marcinczuk, Michal
%A Modzelewski, Arkadiusz
%A Moravski, Ivo
%A Yangarber, Roman
%Y Piskorski, Jakub
%Y Přibáň, Pavel
%Y Nakov, Preslav
%Y Yangarber, Roman
%Y Marcinczuk, Michal
%S Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 978-1-959429-57-9
%F piskorski-etal-2025-slavicnlp
%X We present SlavicNLP 2025 Shared Task on Detection and Classification of Persuasion Techniques in Parliamentary Debates and Social Media. The task is structured into two subtasks: (1) Detection, to determine whether a given text fragment contains persuasion techniques, and (2) Classification, to determine for a given text fragment which persuasion techniques are present therein using a taxonomy of 25 persuasion technique taxonomy. The task focuses on two text genres, namely, parliamentary debates revolving around widely discussed topics, and social media, in five languages: Bulgarian, Croatian, Polish, Russian and Slovene. This task contributes to the broader effort of detecting and understanding manipulative attempts in various contexts. There were 15 teams that registered to participate in the task, of which 9 teams submitted a total of circa 220 system responses and described their approaches in 9 system description papers.
%R 10.18653/v1/2025.bsnlp-1.27
%U https://aclanthology.org/2025.bsnlp-1.27/
%U https://doi.org/10.18653/v1/2025.bsnlp-1.27
%P 254-275
Markdown (Informal)
[SlavicNLP 2025 Shared Task: Detection and Classification of Persuasion Techniques in Parliamentary Debates and Social Media](https://aclanthology.org/2025.bsnlp-1.27/) (Piskorski et al., BSNLP 2025)
ACL
- Jakub Piskorski, Dimitar Dimitrov, Filip Dobranić, Marina Ernst, Jacek Haneczok, Ivan Koychev, Nikola Ljubešić, Michal Marcinczuk, Arkadiusz Modzelewski, Ivo Moravski, and Roman Yangarber. 2025. SlavicNLP 2025 Shared Task: Detection and Classification of Persuasion Techniques in Parliamentary Debates and Social Media. In Proceedings of the 10th Workshop on Slavic Natural Language Processing (Slavic NLP 2025), pages 254–275, Vienna, Austria. Association for Computational Linguistics.