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Abstract

Linguistic fieldwork is an important component
in language documentation and the creation
of comprehensive linguistic corpora. Despite
its significance, the process is often lengthy,
exhaustive, and time-consuming. This paper
presents a novel model that guides a linguist
during the fieldwork and accounts for the dy-
namics of linguist-speaker interactions. We
introduce a novel framework that evaluates the
efficiency of various sampling strategies for
obtaining morphological data and assesses the
effectiveness of state-of-the-art neural models
in generalising morphological structures. Our
experiments highlight two key strategies for
improving the efficiency: (1) increasing the di-
versity of annotated data by uniform sampling
among the cells of the paradigm tables, and
(2) using model confidence as a guide to en-
hance positive interaction by providing reliable
predictions during annotation.

1 Introduction

According to UNESCO, around 2,000 languages
are currently classified as endangered and over half
of the languages spoken today might disappear by
the end of the century.1 In 2022, the organisation
has declared the start of the decade of indigenous
languages, and many linguists increased their
efforts in documentation and revitalisation. But
language documentation is a drawn-out, iterative,
and exhausting process. A linguist would normally
visit a language community several times to
interview speakers and collect the data. During
each visit, she or he would focus on tasks such
as elicitation of words and language rules by
offering them questionnaires or asking them to tell
stories. Between visits, the linguist would focus on
processing, revising the data, and forming working
linguistic hypotheses that will be further revised

1https://www.un.org/development/desa/
indigenouspeoples/indigenous-languages.html

Figure 1: Illustration of the proposed word elicitation
process model.

during the next face-to-face sessions. The amount
of time spent in interaction with speakers is an
important limiting resource, as native speakers
often get tired in lengthy sessions, leading to a
decline in their attention and interest, and, as a
result, in poorer data quality (Bowern, 2015).

In this paper, we introduce a neural system that
guides the linguist, making the process of data
collection more efficient.2 The proposed model
takes into account pre-collected data, identifies po-
tential gaps in it, and informs the linguist of the
(most informative) parts that should be collected
in the next iteration. In contrast to existing ap-
proaches, we for the first time incorporate a mea-
sure that reflects an important ergonomic aspect of
linguist-speaker interactions: we explicitly distin-
guish the following two cases of “atomic” linguist-
to-speaker interactions: (1) either a linguist makes
a correct guess satisfying the speaker, or (2) seeks
more information (e.g., upon producing ungram-
matical utterances). The latter action tires the in-
formant more than the former. Therefore, assum-
ing that much greater cost associated to case (2)
compared to case (1), we frame the planning of
interaction sequences as an optimisation task.

As a case study, we focus on morphological in-
2You can find all the code for this paper at https://

github.com/Aso-UniMelb/neural-fieldwork-guide

https://www.un.org/development/desa/indigenouspeoples/indigenous-languages.html
https://www.un.org/development/desa/indigenouspeoples/indigenous-languages.html
https://github.com/Aso-UniMelb/neural-fieldwork-guide
https://github.com/Aso-UniMelb/neural-fieldwork-guide
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flection data as it is characterised by high regularity
and systematicity (Vylomova, 2018) and neural
models are particularly good at capturing regular
patterns in data and have previously demonstrated
high accuracy on morphological inflection shared
tasks (Cotterell et al., 2017, 2018; McCarthy et al.,
2019; Vylomova et al., 2020; Pimentel et al., 2021;
Kodner et al., 2022; Goldman et al., 2023). As we
aim to identify more data-efficient approaches, we
also provide a comparative analysis of a variety
of sampling strategies (1) under a variety of data
conditions as well as (2) in terms of their relevance
and utility for the fieldwork pipeline. For the first
aspect, we include typologically diverse languages
representing major morphological processes (fu-
sion, agglutination), a variety of morphological
complexities, and with ranging amounts of data
available. For the second, we evaluate the models’
ability to capture paradigm cell inter-predictability
(discussed in Section 4.2).

Our main contributions are:
1. A novel approach to evaluate neural mod-

els that takes into account the nature of linguist-
speaker interactions;

2. Evaluation of state-of-the-art models and sam-
pling approaches for data-efficiency and ability to
capture inter-cell predictability.

2 Background

2.1 Motivation for the Word-and-Paradigm
Model

A key task in linguistic data collection involves
the development and management of interlin-
ear glossed texts, where morphological forms
are broken down into units that carry meaning.
While tools like “FieldWorks Language Explorer
(FLEx)”3 offer some semi-automated assistance,
interlinear glossing remains a highly time-intensive
task for field linguists. The SIGMORPHON 2023
shared task on interlinear glossing (Ginn et al.,
2023) highlighted efforts to automate this process
and demonstrated that the availability of morpho-
logical segmentation plays a crucial role in achiev-
ing high accuracy. Still, morphological segmenta-
tion itself is a non-trivial task and a complicated
problem in computational morphology (Batsuren
et al., 2022a).

An alternative method for morphological anno-
tation is to adopt a model which does not necessi-
tate segmentation. Copot et al. (2022) also recom-

3https://software.sil.org/fieldworks/

mend a word-based approach to morphological an-
notation, especially for under-resourced and under-
described languages. When working on a new lan-
guage, a linguist collects and analyses wordforms,
making generalisations about their relationships,
and trying to identify morphological organisation,
i.e., the structure and the size of the morphological
paradigm (the number of paradigm cells). Having
the paradigm structure, the linguist can then study
the inter-predictability of the paradigm cells, try-
ing to identify principal parts, the minimal subset
of paradigm cells that provides all the necessary
information to generate the other cells within the
paradigm (Finkel and Stump, 2007). In the well-
known case of Latin, for example, all forms of the
verb can be generated from just 4 forms (Finkel
and Stump, 2009). Such knowledge allows for a
more compact representation of linguistic rules and
higher efficiency in data collection.

Many typical tasks in morphology such as
paradigm discovery (Erdmann et al., 2020a),
paradigm completion (Durrett and DeNero, 2013),
paradigm cell filling problem (Ackerman et al.,
2009), and morphological inflection (Kodner et al.,
2022) are often approached using a word-based
model. In theoretical linguistics, the Word-and-
Paradigm model (Blevins, 2016) offers a founda-
tional framework for this word-based approach.

2.2 Making the Data Collection Process More
Efficient

What is the best strategy to collect language data?
As this process is time-consuming, it is essential
to increase its efficiency. We explore active learn-
ing approaches in this paper. Active Learning
(AL) has a well-established history in different
NLP tasks (Zhang et al., 2022) and fits well with
the language documentation process, where field
linguists periodically consult with informants. For
instance, Palmer (2009) used AL for real fieldwork
experiments of a morpheme labelling task with
two native speakers by examining three sequential,
random, and uncertainty sampling strategies. Mu-
radoglu and Hulden (2022) studied the simulated
AL for a morphological inflection task on differ-
ent languages with different sampling strategies.
Muradoglu et al. (2024) found that the success of
an inflection model on a test set largely depends
on the entropy of the edit operations (required to
transform a lemma into a target form) in the train-
ing data, and higher entropy which can be obtained
by a uniform sampling across paradigm cells tends

https://software.sil.org/fieldworks/
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to improve the model’s performance. Erdmann
et al. (2020b) proposed an approach to automate
the paradigm cell filling problem task by manually
providing a few forms. However, their method is
impractical in real fieldwork settings because it re-
quires the speaker (oracle) to frequently review the
entire paradigm table.

3 A Model of the Word Elicitation Process

Word Elicitation is a technique used in linguistics
to gather lexical and morphosyntactic data from na-
tive speakers with minimal contextual information.
While corpora show what people say, elicitation un-
covers what can be said (Meakins et al., 2018). To
discover the morphological features, linguists usu-
ally change one feature at a time (Bowern, 2015).
Elicitation cannot be sustained for an extended pe-
riod in fieldwork, so it is recommended to limit
it to around 20 hours spread across multiple ses-
sions (Abbi, 2001). In each session, the speaker
is asked carefully designed short questions, and
the linguist analyses the responses to generalise
potential patterns.

This study focuses on modelling word elicitation
during morphological data collection (as is illus-
trated in Figure 1), with an emphasis on optimising
process efficiency.

3.1 Main Task and Initial Assumptions

The task involves filling in all plausible cells of
the paradigm tables with correct inflected word
forms. Cells that do not apply to specific lemmas
are excluded from the process.

We assume the availability of pre-existing data,
either gathered during early fieldwork stages or
sourced from previous descriptive resources.

This data should include:
1) a basic word list (similar to the Swadesh list)

consisting of verbs, nouns, adjectives, and other
parts of speech provided in their dictionary forms
(lemmas), and

2) a range of morphosyntactic features for each
part of speech, which may be derived from prior
studies or inferred from closely related languages,
where applicable. We assume the knowledge
of possible morphosyntactic feature combinations
(tagsets such as “N;ACC;PL”).

3.2 Linguist–Speaker Interactions

We now turn to the model of linguist-speaker in-
teractions during the word elicitation process in

morphological data collection. We model a native
speaker as an oracle system that has access to com-
plete paradigms for all lemmas (labelled data pool).
As an input, it receives (1) a lemma and (2) a tar-
get feature combination (tags corresponding to a
paradigm cell).4 The linguist model is a neural
system that can send requests to the speaker model.
The requests might come at a certain cost as the
process of word elicitation is exhausting, especially
for native speakers (Bowern, 2015). Whenever the
linguist model retrieves a form or makes an incor-
rect prediction (in both cases the speaker model
needs to return a valid form), it gets a penalty score
of 1. In the case the linguist model checks a form
and it is correct, the speaker is satisfied, and the lin-
guist model does not get any penalty score. Hence,
the linguist model has to optimise the retrieval pro-
cess in order to minimise the penalty and increase
the prediction accuracy.

At some point, the linguist has to decide to stop
the data collection process and return to their office.
This means that they assume that the collected data
is informative enough to accurately predict all the
missing parts. Hence, at the final step, the linguist
model predicts all the missing cells for each lemma.
Whenever the prediction is incorrect, the model
receives a penalty of 1 as well.

3.3 The Data Collection Model
Once the initial data described in Section 3.1 is pre-
pared, the linguist model generates for each lemma
in the word list an unlabelled data pool. The pool
consists of possible empty cells in the paradigm
that correspond to plausible morphosyntactic fea-
ture combinations.

As mentioned above, given the potentially large
number of forms, it is impractical to ask the speaker
model for all of them. Instead, a small subset of
cells is selected over several rounds (cycles) of
elicitation, and the linguist model is trained to gen-
eralise from that subset. The key here is to identify
and target the most informative cells early on to
gain a better understanding of the morphological
structure.

Inspired by the 20-hour elicitation timeframe ad-
vised in fieldwork (Abbi, 2001), and assuming 100
items are asked per hour, we limit our interaction
to approximately 2,000 speaker (oracle) queries
spread over five sessions, with 400 data wordforms
retrieved in each cycle.

4In this work, we assume some linguistic expertise and
knowledge of the features.
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Language Code Family Typology POS Forms Lemmas APS
English eng Germanic analytic V 5,120 1280 4
Latin lat Romance fusional V 240,078 5,185 89
Russian rus Slavic fusional N 208,198 18,008 16
Central Kurdish ckb Iranic fusional V 21,375 375 57
Turkish tur Turkic agglutinative V 80,264 380 295
Mongolian khk Mongolic agglutinative N 14,396 2057 8
Central Pame pbs Oto-Manguean fusional V 12,528 216 58
Murrinh-patha mwf Southern Daly polysynthetic V 1,110 30 37

Table 1: Total number of wordforms, lemmas and average paradigm size (APS) for the selected part-of-speech
(POS) across examined languages.

In the first cycle, the linguist model has no prior
knowledge about the informativeness of each cell
for facilitating generalisation and predicting other
cells. At this stage, the model may either sample
cells uniformly from the pool or start by gather-
ing a few complete paradigms. Note that in the
latter option, the number of tables that can be col-
lected from 400 queries will depend on their size
in the corresponding language. In some languages
such as English, it might cover 100 paradigm tables,
while in others, like Turkish, it might represent only
two full paradigms (their average verbal paradigm
size is greater than 200). Importantly, the availabil-
ity of complete paradigms allows a linguist to infer
cell inter-predictability and estimate the predictive
power of each cell in paradigm tables and identify
the principal parts. In our experiments, we explore
both strategies.

Once the initial processing is complete, the lin-
guist needs to decide on the next cells to request
from the speaker. Several strategies can be em-
ployed here: only checking the cells the linguist
is most confident about (this reduces penalty but
might be uninformative), exploring the most infor-
mative parts of the paradigm, or retrieving the cells
with the highest uncertainty. We employ active
learning (Ren et al., 2021) to optimise the sampling
process. Each cycle here involves training a neural
inflection model (a linguist model) to make gen-
eralisations about the data. While neural models
typically require large amounts of data for training,
they can generate predictions with varying levels
of confidence at each training stage. We leverage
this evolving capability to streamline interactions.

After several cycles of data collection, when
we reach the approximate limit of 2,000 oracle
queries, the trained neural model is used to predict
the remaining pool data and its accuracy on these
final predictions is evaluated.

4 Experimental Setup

4.1 Datasets

For this study, we selected 8 typologically diverse
languages: English, Latin, Central Kurdish, Rus-
sian, Turkish, Khalkha Mongolian, Central Pame,
and Murrinh-patha. The languages range in their
morphological organisation, paradigm sizes, and
levels of documentation. Table 1 provides a sum-
mary of the dataset specifications organised by lan-
guage. The datasets are derived from UniMorph
(Batsuren et al., 2022b) and VeLePa (Herce, 2024,
Central Pame). The data samples are presented
in the form of triplets consisting of a lemma (e.g.,
“dog”), a target form (“dogs”), and morphosyntactic
tags (“N;PL”).

4.2 Experiments

In our simulated data collection procedure, the ora-
cle (speaker) is provided with access to the entire
morphological dataset (labelled data pool). Addi-
tionally, for the remainder of the process, it also
stores the forms that the linguist retrieved along
with their predictions (if applicable). The linguist
model has access to the data pool excluding the
target form (i.e. unlabelled data). The linguist
model, using its sampling strategy, selects a subset
of lemma-target tag set combinations (a paradigm
cell) from the pool and requests the corresponding
target forms. When making a request to the oracle,
the linguist model includes a predicted form if it
has sufficient confidence in the prediction. If the
prediction is correct, the oracle does not apply a
penalty.

To evaluate sampling strategies and the interac-
tion model, we design four experimental setups,
which are described as follows. In all experiments,
the labelled data were collected over five cycles
of AL, with 400 target forms gathered per cycle.
The only exception is Murrinh-patha, where limited
data availability required reducing the collection to
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100 forms per cycle. Please note that whenever a
neural model was trained, it was initialised from
scratch and trained using all the data collected up
to that point.

Exp. 1: In the first experiment, we model a base-
line scenario when a linguist only asks a speaker
to provide forms, without any particular strategy
to select the most informative ones. Thus, here we
uniformly sample a fixed number of cells from the
pool in each of the five cycles. No suggestions were
provided to the oracle throughout the experiment.

Exp. 2: In the second experiment, the linguist
still does not have any particular sampling strat-
egy but after the initial session, the linguist can
make predictions with varying degrees of confi-
dence based on observations from previous ses-
sions and suggests the confident predictions to the
speaker (hence reducing the chances of penalty).
We modelled this case by using uniform sampling
for each cycle and training a neural model on the
collected data to provide confident predictions. The
model predicted forms for all cells in the pool to de-
termine an average confidence level. Subsequently,
it retrieved the forms of randomly selected sam-
ples from the oracle and passed a prediction if its
confidence surpasses the average confidence level.

Exp. 3: In the third experiment, a linguist col-
lects some data, then studies it, and tries to fill
in all the remaining cells in the whole data pool.
Then they check with the speaker the forms they
are most confident about and ask the speaker to pro-
vide forms they are puzzled about. This experiment
follows a similar approach to the second, where a
model was trained after the first cycle using ran-
dom sampling. However, in the subsequent cycles,
the sampling strategy was not random. The model
generated predictions for the remaining pool data
and ranked them based on confidence. Predictions
with the highest confidence were queried from the
oracle accompanied by a prediction, while the least
confident predictions were obtained without one.

Exp. 4: The fourth experiment illustrates a sce-
nario where the linguist first asks the speaker to
complete full paradigms for a few lemmas. Then,
the linguist assesses the inter-predictability of the
cells to focus primarily on the cells with higher pre-
dictive power. We describe this experiment in more
detail as it introduces a novel method not previously
explored. In the first cycle, the linguist model se-
lects a small list of lemmas and asks the oracle for
their complete paradigm table. The number of lem-
mas depends on the average size of the paradigm

Figure 2: A heatmap showing the accuracy of predic-
tions for English verbs.

per language (assuming approximately 400 forms
were queried). These data are used to identify the
inter-predictability of cells in the paradigm tables.

We illustrate this process using English verbal
paradigms due to its relatively small size. If we
exclude the syncretic and non-morphologically re-
alised forms, English paradigm tables would con-
tain one lemma (the infinitive) and four inflected
forms (present tense third person singular, simple
past, past and present participle). Thus, we retrieve
400 English forms by requesting 100 paradigm
tables, generate a dataset of all 2,000 possible re-
inflection permutations (20 for each of the 100
verbs) and divide it into training, development,
and test sets, with 45%, 45%, and 10% of the
data in each set, respectively. To explore the inter-
predictability of cells, only once before the second
cycle, we train a neural re-inflection model (details
in Appendix A) considering each cell as a source,
aiming to predict from it the remaining forms in
the corresponding paradigm table. We consider
all possible source–target cell combinations, e.g.
“went + V;PST + V;PRS;3;SG” was used as the
input and “goes” as the output of the model to
measure the predictability of “V;PST” with respect
to “V;PRS;3;SG” for the lemma “go”. Figure 2
shows a heatmap that indicates the model accu-
racy on the test set for different source and tar-
get tag combinations. The heatmap reveals that,
in English, the lemma is generally a more infor-
mative source for predicting third-person singular
present tense (“V;PRS;3;SG”) and present partici-
ple (“V;PTCP;PRS”) forms, compared to past tense
(“V;PST”) or past participle (“V;PTCP;PST”) forms.
Additionally, there is greater inter-predictability be-
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Figure 3: A simplified overview of sampling strategies
used in the second cycle of the experiments. Blue cells
represent samples retrieved without any predictions or
confidence checks. Dark green cells denote confident
ones retrieved with predictions, while dark red cells
indicate low confidence cells with no predictions sent to
the oracle. Orange cells indicate those that were selected
in the first cycle and removed from the pool.

tween simple past tense and past participle forms.
The predictive power of an individual cell can be
estimated from the average accuracy across the tar-
get cells. The system did not rely only on the most
predictive cell. Instead, it employed these weights
as fuzzy values in a weighted random sampling
process. Based on these estimations, the system as-
signed weights for the remaining cells of the pool.

The sampling strategy for the following cycles
of Exp.4 was similar to Exp.2, with the key dif-
ference being that in the second experiment, the
sampling was uniform whereas in the fourth it was
weighted random. The weights were determined
by the estimated predictive power of each tagset.
Like in Exp.2, a model was trained to predict the
wordforms, and its predictions were passed to the
oracle if the model had higher confidence in them.

To summarise the differences between the ex-
periments, consider the second cycle illustrated in
Figure 3. In Exp.1, cells were randomly selected
for retrieval without any prediction. In Exp.2, the
model passed predictions for confident cells, while
no predictions for low confidence cells. In Exp.3,
the most confident predictions were selected for
retrieval with prediction, while the least confident
ones were retrieved without prediction. Exp.4 fol-
lowed a similar approach to Exp.2 but gave higher
selection priority to more informative cells.

5 Evaluation

We evaluate the performance across the four exper-
iments in terms of the accuracy of the final model
and the efficiency of the process, using the follow-
ing measures:

Accuracy on unseen data After the final cycle
of the AL process, we calculate the accuracy of
the inflection model trained on all retrieved sam-
ples in predicting the target form for the remaining
samples in the pool (considering it as the test set).

Normalised Efficiency Score We define a
penalty score as an integer number by summing
the number of times we call the oracle (excluding
the times we propose a correct guess for the target
form) and the number of incorrect predictions of
the final model on the unseen test set. Since the size
of the datasets is not the same, we normalised the
penalty by the total number of forms per language.
To better capture the efficiency of the elicitation
process, we introduce a new metric—the comple-
ment of the normalised penalty—referred to as the
Normalised Efficiency Score (NES). This score is
calculated as follows:

NES = 1− P1 + P2 + P3

N
(1)

where P1 is the number of forms retrieved from the
oracle without a suggestion, P2 is the number of
forms retrieved with an incorrect suggestion, P3 is
the number of incorrect predictions in the final test
set, and N is the total number of target forms in
the dataset.

6 Results and Discussion

We conducted evaluation of the four experiments
described in Section 4.2, across all the languages in
our datasets. For each iteration of active learning,
the data labelled by the oracle was split into 90%
for training and 10% for development. This data
was used to train an inflection model from scratch
using a neural character-level transformer, follow-
ing the hyper-parameters from Wu et al. (2021). At
the end of each experiment, all remaining data in
the pool was used as the test set and the final model
predicted the corresponding target forms.

6.1 Model Accuracy

Table 2 provides the target form prediction ac-
curacy on the test set (the remaining samples in
the pool) of examined languages. Among the
various sampling strategies tested in our experi-
ments—uniform sampling, weighted random sam-
pling based on estimated inter-predictability val-
ues, and sampling based on the model’s confi-
dence—uniform sampling yielded the highest pre-
diction accuracy. Our findings are consistent with
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lang Exp.1 Exp.2 Exp.3 Exp.4
tur 98.2 97.6 93.5 95.7
ckb 97.5 97.6 90.3 95.5
eng 89.2 89.0 89.0 90.9
khk 83.3 85.1 77.8 84.9
rus 84.2 85.8 71.1 84.3
lat 72.3 71.3 49.1 67.3
pbs 72.2 73.8 62.9 64.7
mwf 80.0 78.4 62.1 79.6
Average 84.6 84.8 74.5 82.9

Table 2: Accuracy of the final model on remaining pool
after the final cycle. Experiments 1 and 2 used identical
sampling and their results are almost equal according to
this evaluation metric.

previous studies (Muradoglu and Hulden, 2022;
Muradoglu, 2024), confirming that random sam-
pling across all paradigm cells is an effective strat-
egy that cannot be outperformed easily when using
smaller amounts of data, demonstrating its effi-
ciency in the elicitation process.

Next, we analyse the model’s performance
across active learning cycles. In all experiments, ap-
proximately 2,000 forms (500 for Murrinh-patha)
were retrieved in total. Figure 4 shows the accuracy
of the inflection models on the remaining pool data
in each cycle of the experiments. It demonstrates
that accuracy improves with each cycle, initially
increasing rapidly and then rising more slowly in
the later cycles. However, Exp.3 shows limited
accuracy gains for languages like Latin, Kurdish,
and Russian. These languages have slots in their
paradigms that either copy the lemma or exhibit
regular consistent inflections. Confidence-based
sampling tends to select these slots for providing
suggestions, which restricts the diversity of the
training data. This limitation is particularly evident
in our Latin data, given its larger number of unique
lemmas.

Due to the extremely low accuracy in the first
cycle of Exp.4, we excluded them from Figure 4.
This poor performance can be attributed to the lim-
ited lexical diversity of the training data, as most of
it comes from just a few paradigm tables. However,
in the third cycle, the accuracy in Exp.4, which
used a weighted random sampling, improves sig-
nificantly and approaches the performance of the
uniform random sampling used in Exp.1 and Exp.2.

6.2 Interaction Efficiency

We now turn to an analysis of interaction efficiency.
We observe that incorporating the confidence val-
ues of the inflection model for its predictions leads

lang Exp.1 Exp.2 Exp.3 Exp.4
tur 95.8 96.3 92.5 94.1
ckb 88.4 92.4 87.0 90.3
eng 54.2 68.7 72.9 66.1
khk 71.7 78.2 72.0 76.4
rus 83.4 85.2 70.9 83.7
lat 71.7 70.9 49.2 66.9
pbs 60.7 66.0 58.2 57.3
mwf 44.0 54.4 48.3 49.6
Average 71.2 76.5 68.9 73.2

Table 3: Normalised Efficiency Score of each experi-
ment on different languages.

to sending more accurate predictions to the oracle,
further enhancing the process’s overall efficiency.
Table 3 shows the normalised efficiency score for
the experiments per language.

To better understand the interaction efficiency,
we analyse the outcomes as follows: The linguist
models (except in Exp.1), to minimise penalties,
submitted their predictions with queries when suf-
ficiently confident. Nonetheless, these predictions
were not always accurate. Figure 5 illustrates the
number of data samples retrieved from the ora-
cle, segmented by the correctness of the submitted
prediction. Exp.3 outperformed the others by em-
ploying a non-random sampling strategy based on
the model’s confidence. Overall, this demonstrates
that, to some extent, we can rely on the model’s
confidence to enhance the efficiency of the interac-
tion process.

To evaluate the impact of prioritising the com-
pletion of a few paradigm tables over the rest of
the elicitation process, we designed Exp.4, where
cell informativeness within paradigms was esti-
mated and influenced the proportion of data re-
trieval. However, the results indicate that this ap-
proach does not significantly enhance the model’s
performance or efficiency, as successful generalisa-
tion in neural models largely depends on the lexical
diversity and entropy of the training data.

7 Conclusion

In this paper, we evaluated neural models in their
ability to guide fieldwork by accounting for the
nature of linguist–speaker interactions in the pro-
cess of language documentation. Focusing on mor-
phological data collection, we investigated various
strategies for data sampling. Our results showed
that uniform random sampling across paradigm
cells results in more representative data and yields
better generalisation in low-resource scenarios.
Furthermore, we discovered that incorporating the
model’s confidence levels enhances interaction by
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Figure 4: Accuracy on remaining pool data in each cycle of the active learning process for each language.

Figure 5: Submitted predictions along the requests to the oracle in each experiment. Exp.1 is omitted as all its
requests were without a prediction.

guiding decisions on whether to send a prediction.
This approach improves the process by offering
predictions as suggestions during data annotation
tasks.

8 Future Work

This study employed a simulated active learning
approach for morphological data collection. To
translate this into a real-world application, two user
interfaces would be necessary: one for linguists
to input existing data and another one for native
speakers to provide the desired information.

Since native speakers may find complex tasks
that require linguist knowledge tedious, we sug-
gest that the linguist prepares a variety of simple
sentences to change the user interface into fill-in-
the-blank tasks. Naturally, designing these sen-
tences is a challenging task that varies for each
part of speech and requires some preliminary un-
derstanding of the language, which can be in-
formed by the morphosyntactic features collected
earlier. During the system’s elicitation process, the
speaker can fill in or correct the relevant part of
the paradigm by considering the context and the
lemma. For instance, to elicit the past tense of the
verb ‘sleep’ in English, the prompt could be “I
[sleep] yesterday." This approach resembles

the SIGMORPHON 2018 shared task 2 (Cotterell
et al., 2018).

In addition, to speed up the speaker data entry in
the first cycle, the linguist can write some general
rules as regular expressions to generate suggestions
for each cell. Instead of typing from scratch, the
speaker can accept the suggestion or make minor
corrections where necessary.

If a required cell is not available for a word, the
speaker should let the linguist know through the
interface. The cell should be removed from the
data pool and should be reviewed by the linguist
later. For instance, if a noun is incorrectly labelled
as a verb and the system requests its past form, its
part of speech should be corrected.

Future studies could explore using inflection
classes in evaluation or sampling strategies, though
significant challenges remain. Defining the exact
number of classes in each language requires consid-
erable granularity, such as determining how many
of them would be necessary to accurately predict
irregular English verb forms —– a matter on which
linguists and educators may disagree. Additionally,
resource limitations, especially in low-resource
languages lacking comprehensive dictionaries or
grammatical descriptions, hinder the identification
of inflection classes for all lemmas.
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Limitations

We evaluated our method in a simulated man-
ner across a variety of languages with different
amounts of available data. We are assuming that
our existing data (a wordlist, parts of speech, and
morphological tags) are accurate and do not require
any modifications during data collection. Addition-
ally, we are assuming that the speaker does not
make any errors during data entry. In real-life field-
work scenarios, any type of error can occur, and a
linguist should address them by making corrections
as early as possible.
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Stella Markantonatou, George Pavlidis, Matvey Plu-
garyov, Elena Klyachko, Ali Salehi, Candy An-
gulo, Jatayu Baxi, Andrew Krizhanovsky, Natalia
Krizhanovskaya, Elizabeth Salesky, Clara Vania, Sar-
dana Ivanova, Jennifer White, Rowan Hall Maud-
slay, Josef Valvoda, Ran Zmigrod, Paula Czarnowska,
Irene Nikkarinen, Aelita Salchak, Brijesh Bhatt,
Christopher Straughn, Zoey Liu, Jonathan North
Washington, Yuval Pinter, Duygu Ataman, Marcin
Wolinski, Totok Suhardijanto, Anna Yablonskaya,
Niklas Stoehr, Hossep Dolatian, Zahroh Nuriah,
Shyam Ratan, Francis M. Tyers, Edoardo M.
Ponti, Grant Aiton, Aryaman Arora, Richard J.
Hatcher, Ritesh Kumar, Jeremiah Young, Daria
Rodionova, Anastasia Yemelina, Taras Andrushko,
Igor Marchenko, Polina Mashkovtseva, Alexandra
Serova, Emily Prud’hommeaux, Maria Nepomni-
ashchaya, Fausto Giunchiglia, Eleanor Chodroff,
Mans Hulden, Miikka Silfverberg, Arya D. Mc-
Carthy, David Yarowsky, Ryan Cotterell, Reut Tsar-
faty, and Ekaterina Vylomova. 2022b. UniMorph
4.0: Universal Morphology. In Proceedings of the
Thirteenth Language Resources and Evaluation Con-
ference, pages 840–855, Marseille, France. European
Language Resources Association.

James P Blevins. 2016. Word and paradigm morphol-
ogy. Oxford University Press.

Claire Bowern. 2015. Linguistic fieldwork: A practical
guide. Springer.

Maria Copot, Sara Court, Noah Diewald, Stephanie
Antetomaso, and Micha Elsner. 2022. A Word-and-
Paradigm Workflow for Fieldwork Annotation. In
Proceedings of the Fifth Workshop on the Use of
Computational Methods in the Study of Endangered
Languages, pages 159–169, Dublin, Ireland. Associ-
ation for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sabrina J. Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The
CoNLL–SIGMORPHON 2018 Shared Task: Uni-
versal Morphological Reinflection. In Proceedings
of the CoNLL–SIGMORPHON 2018 Shared Task:
Universal Morphological Reinflection, pages 1–27,
Brussels. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. 2017. CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection in 52 Languages. In Pro-

https://doi.org/10.1093/acprof:oso/9780199547548.003.0003
https://doi.org/10.1093/acprof:oso/9780199547548.003.0003
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://aclanthology.org/2022.lrec-1.89
https://aclanthology.org/2022.lrec-1.89
https://doi.org/10.18653/v1/2022.computel-1.20
https://doi.org/10.18653/v1/2022.computel-1.20
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001


71

ceedings of the CoNLL SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection, pages
1–30, Vancouver. Association for Computational Lin-
guistics.

Greg Durrett and John DeNero. 2013. Supervised Learn-
ing of Complete Morphological Paradigms. In Pro-
ceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1185–1195, Atlanta, Georgia. Association for Com-
putational Linguistics.

Alexander Erdmann, Micha Elsner, Shijie Wu, Ryan
Cotterell, and Nizar Habash. 2020a. The Paradigm
Discovery Problem. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7778–7790, Online. Association
for Computational Linguistics.

Alexander Erdmann, Tom Kenter, Markus Becker, and
Christian Schallhart. 2020b. Frugal paradigm com-
pletion. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8248–8273.

Raphael Finkel and Gregory Stump. 2007. Principal
parts and morphological typology. Morphology,
17(1):39–75.

Raphael Finkel and Gregory Stump. 2009. What your
teacher told you is true: Latin verbs have four princi-
pal parts. Digital Humanities Quarterly, 3(1).

Michael Ginn, Sarah Moeller, Alexis Palmer, Anna
Stacey, Garrett Nicolai, Mans Hulden, and Miikka
Silfverberg. 2023. Findings of the SIGMORPHON
2023 Shared Task on Interlinear Glossing. In Pro-
ceedings of the 20th SIGMORPHON workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 186–201, Toronto, Canada.
Association for Computational Linguistics.

Omer Goldman, Khuyagbaatar Batsuren, Salam Khal-
ifa, Aryaman Arora, Garrett Nicolai, Reut Tsar-
faty, and Ekaterina Vylomova. 2023. SIGMOR-
PHON–UniMorph 2023 Shared Task 0: Typologi-
cally Diverse Morphological Inflection. In Proceed-
ings of the 20th SIGMORPHON workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology, pages 117–125, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Borja Herce. 2024. VeLePa: Central Pame verbal in-
flection in a quantitative perspective. Morphology,
34(3):281–319.

Jordan Kodner, Salam Khalifa, Khuyagbaatar Bat-
suren, Hossep Dolatian, Ryan Cotterell, Faruk Akkus,
Antonios Anastasopoulos, Taras Andrushko, Arya-
man Arora, Nona Atanalov, Gábor Bella, Elena
Budianskaya, Yustinus Ghanggo Ate, Omer Gold-
man, David Guriel, Simon Guriel, Silvia Guriel-
Agiashvili, Witold Kieraś, Andrew Krizhanovsky,
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A Model details

You can find all the code associated with this
paper at https://github.com/Aso-UniMelb/
neural-fieldwork-guide. The implementation
and setup details of the neural architectures used

in this study are provided below for clarity and
reproducibility.

1) Re-inflection Models (used only in Exp.4):
These models are one-layer Bidirectional Long
Short-Term Memory (BiLSTM) networks imple-
mented using PyTorch. The key hyperparameters
used for training are:

• Batch size: 16

• Hidden dimension: 256

• Learning rate: 0.005

• Training duration: 20 epochs

The training process utilises a specific method for
embedding morphosyntactic tags. Instead of em-
bedding each tag individually, the tags for each data
sample are embedded as a single unit. This method
ensures compact representations. The source tag
set, input word, and target tag set are then encoded
into a dense vector representation.

2) Inflection Models (All Experiments): A neu-
ral character-level transformer architecture was em-
ployed to train the inflection models used across
all experiments. This architecture follows the hy-
perparameters detailed in Wu et al. (2021). Trans-
formers are particularly suited for this task due to
their ability to capture long-range dependencies
and complex relationships in inflection data. The
character-level approach ensures a fine-grained un-
derstanding of morphological patterns at the sub-
word level.
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