@inproceedings{kongqiang-peng-2025-wangkongqiang,
title = "wangkongqiang@{CASE} 2025: Detection and Classifying Language and Targets of Hate Speech using Auxiliary Text Supervised Learning",
author = "Kongqiang, Wang and
Peng, Zhang",
editor = {H{\"u}rriyeto{\u{g}}lu, Ali and
Tanev, Hristo and
Thapa, Surendrabikram},
booktitle = "Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.case-1.7/",
pages = "62--70",
abstract = "Our team was interested in content classification and labeling from multimodal detection of Hate speech, Humor, and Stance in marginalized socio-political movement discourse. We joined the task: Subtask A-Detection of Hate Speech and Subtask B-Classifying the Targets of Hate Speech. In this two task, our goal is to assign a content classification label to multimodal Hate Speech. Detection of Hate Speech: The aim is to detect the presence of hate speech in the images. The dataset for this task will have binary labels: No Hate and Hate. Classifying the Targets of Hate Speech: Given that an image is hateful, the goal here is to identify the targets of hate speech. The dataset here will have four labels: Undirected, Individual, Community, and Organization. Our group used a supervised learning method and a text prediction model. The best result on the test set for Subtask-A and Subtask-B were F1 score of 0.6209 and 0.3453, ranking twentieth and thirteenth among all teams."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kongqiang-peng-2025-wangkongqiang">
<titleInfo>
<title>wangkongqiang@CASE 2025: Detection and Classifying Language and Targets of Hate Speech using Auxiliary Text Supervised Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Kongqiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhang</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hürriyetoğlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hristo</namePart>
<namePart type="family">Tanev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our team was interested in content classification and labeling from multimodal detection of Hate speech, Humor, and Stance in marginalized socio-political movement discourse. We joined the task: Subtask A-Detection of Hate Speech and Subtask B-Classifying the Targets of Hate Speech. In this two task, our goal is to assign a content classification label to multimodal Hate Speech. Detection of Hate Speech: The aim is to detect the presence of hate speech in the images. The dataset for this task will have binary labels: No Hate and Hate. Classifying the Targets of Hate Speech: Given that an image is hateful, the goal here is to identify the targets of hate speech. The dataset here will have four labels: Undirected, Individual, Community, and Organization. Our group used a supervised learning method and a text prediction model. The best result on the test set for Subtask-A and Subtask-B were F1 score of 0.6209 and 0.3453, ranking twentieth and thirteenth among all teams.</abstract>
<identifier type="citekey">kongqiang-peng-2025-wangkongqiang</identifier>
<location>
<url>https://aclanthology.org/2025.case-1.7/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>62</start>
<end>70</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T wangkongqiang@CASE 2025: Detection and Classifying Language and Targets of Hate Speech using Auxiliary Text Supervised Learning
%A Kongqiang, Wang
%A Peng, Zhang
%Y Hürriyetoğlu, Ali
%Y Tanev, Hristo
%Y Thapa, Surendrabikram
%S Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F kongqiang-peng-2025-wangkongqiang
%X Our team was interested in content classification and labeling from multimodal detection of Hate speech, Humor, and Stance in marginalized socio-political movement discourse. We joined the task: Subtask A-Detection of Hate Speech and Subtask B-Classifying the Targets of Hate Speech. In this two task, our goal is to assign a content classification label to multimodal Hate Speech. Detection of Hate Speech: The aim is to detect the presence of hate speech in the images. The dataset for this task will have binary labels: No Hate and Hate. Classifying the Targets of Hate Speech: Given that an image is hateful, the goal here is to identify the targets of hate speech. The dataset here will have four labels: Undirected, Individual, Community, and Organization. Our group used a supervised learning method and a text prediction model. The best result on the test set for Subtask-A and Subtask-B were F1 score of 0.6209 and 0.3453, ranking twentieth and thirteenth among all teams.
%U https://aclanthology.org/2025.case-1.7/
%P 62-70
Markdown (Informal)
[wangkongqiang@CASE 2025: Detection and Classifying Language and Targets of Hate Speech using Auxiliary Text Supervised Learning](https://aclanthology.org/2025.case-1.7/) (Kongqiang & Peng, CASE 2025)
ACL