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Abstract

Linguistic acceptability judgments are essential for evaluating how language models internalize
human-like grammatical knowledge. Though some studies have evaluated large language mod-
els (LLMs) in this context, existing research lacks systematic exploration of diverse learning
paradigms in a multilingual setting. In this paper, we present the first multilingual evaluation
of LLMs across four languages (English, Chinese, Japanese, and Russian) in the field of lin-
guistic acceptability. Our evaluation spans both general-purpose (i.e., GPT-40, GPT-40 mini,
DeepSeek-V3, GLM-4-32B, and the Qwen series) and reasoning-oriented (QwQ-32B-Preview
and DeepSeek-R1-32B) models under zero-shot and monolingual, cross-lingual and multilingual
fine-tuning settings, with comparisons to pre-trained language model (PLM) baselines. Our anal-
ysis highlights the strong generalizability of large-scale LLMs through zero-shot prompting, the
challenges of fine-tuning small-sized LLMs with skewed training data, the effectiveness of mul-
tilingual fine-tuning for low-resource languages, the scaling law exhibited on the task, and the
limitation of reasoning-oriented models on the task, even when “aha moments” occur during the
reasoning process.
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1 Introduction

Measuring the linguistic capability of language models (LMs) is crucial for gaining insights into how
they develop human-like linguistic generalizations. A key component of this evaluation involves lin-
guistic acceptability judgments, which evaluate the well-formedness and naturalness of sentences from
the perspective of native speakers (Fabb, 2019), as examples depicted in Table 1. These judgments
are regarded as a fundamental tool in generative linguistics, offering insights into human grammatical
knowledge (Chomsky, 1957). Recently, the linguistic competence of LMs has significantly emerged,
driven by the advancement of pre-trained models with large-scale architectures, such as pre-trained lan-
guage models (PLMs, e.g., BERT (Devlin et al., 2019)) and large language models (LLMs, e.g., GPT-40
(Hurst et al., 2024) and DeepSeek (Liu et al., 2025)). These models, pre-trained on vast corpora, have
demonstrated superior capability to capture complex linguistic patterns across syntax, semantics, and
pragmatics and generate sentences with high grammaticality.

Existing research on the evaluation of linguistic acceptability is still in its infancy. To date, numerous
benchmarks have been built for this task, particularly in English (Warstadt et al., 2019; Warstadt et al.,
2020), Asian (Hu et al., 2023; Someya et al., 2024), and Indo-European (Trotta et al., 2021; Mikhailov
et al., 2022) languages. While these corpora offer valuable insights into models’ linguistic abilities, they
are predominantly tailored for monolingual evaluations. Therefore, though LLMs have demonstrated
promising performance in multilingual, human-like tasks (Chen et al., 2024; He et al., 2024a; Wang
et al., 2024a), it remains underexplored whether they can effectively serve as multilingual judges of
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Label Sentence

X Usually, any lion is majestic.
v The men would have been all working.

Table 1: Example linguistic acceptability judgments from the CoLLA dataset (Warstadt et al., 2019). v
denotes acceptable and X denotes unacceptable.

linguistic acceptability across different evaluation paradigms (Hada et al., 2024; Zhang et al., 2024),
highlighting a significant gap in this research field.

In this paper, we present the first comprehensive evaluation to assess the ability of LLMs in multi-
lingual linguistic acceptability. Our evaluation encompasses zero-shot learning as well as fine-tuning in
monolingual, cross-lingual, and multilingual settings. Specifically, we select four representative datasets
across different languages: CoLA (Warstadt et al., 2019) for English, CoLAC (Hu et al., 2023) for Chi-
nese, JCoLA (Someya et al., 2024) for Japanese, and RuCoLA (Mikhailov et al., 2022) for Russian.
In our experiments, we first apply in-context learning (Brown et al., 2020; Peng et al., 2023) on these
datasets to evaluate the zero-shot performance of LLMs. We then fine-tune the models using LoRA (Hu
et al., 2022) to assess their performance in a more controlled setting. To conduct a comprehensive mul-
tilingual evaluation, we further examine the cross-lingual performance by fine-tuning models on English
data and evaluating them on the other datasets. Additionally, we assess the multilingual performance to
determine whether incorporating more diverse data sources leads to improved results.

We conduct experiments using the following LLMs: GPT-4o0 (Hurst et al., 2024), GPT-40 mini,
DeepSeek-V3 (Liu et al., 2025), GLM-4-32B (Zeng et al., 2024), Qwen2.5-32B (Yang et al., 2025),
and Qwen2.5-72B for zero-shot evaluation, and Suzume-Llama-3-8B (Devine, 2024) and Qwen2.5-7B
for fine-tuning experiments. Additionally, motivated by the success of reasoning-oriented models, we
also include experiments with QwQ-32B-Preview and DeepSeek-R1-32B, both based on the Qwen2.5-
32B architecture. Furthermore, we conduct an additional analysis on scaling laws, examining how model
performance correlates with model parameters, as well as the impact of reasoning models on this task.

The key findings of this study can be summarized as follows:

* Zero-shot prompting with large-scale LLMs (e.g., GPT-40 and DeepSeek-V3) demonstrates supe-
rior performance compared with PLM baselines, particularly in out-of-domain evaluation. It high-
lights the strong generalizability of LLMs, particularly in tasks such as detecting journal articles
and machine-generated content when detecting linguistic acceptability.

* Fine-tuning small-sized LLMs (e.g., Suzume-Llama-3-8B and Qwen2.5-7B) does not consistently
outperform PLM baselines across all languages and generally underperforms larger LLMs when
directly prompted. These models are also more sensitive to imbalanced label distributions in the
training data, and cross-lingual fine-tuning tends to exacerbate label prediction skew.

* Multilingual fine-tuning does not benefit high-resource languages like English and Chinese. How-
ever, it can substantially outperform monolingual fine-tuning for low-resource languages such as
Japanese and Russian.

* Scaling up model parameters consistently leads to improved performance with some exceptions.
Reasoning-oriented models do not exhibit enhanced performance, and incorrect judgments remain
unresolved, even after “aha moments.”

2 Related Work

Traditional Approaches for Linguistic Acceptability Judgments. Linguistic acceptability judg-
ments have traditionally been formulated as a binary classification task, leveraging PLMs, such as BERT
(Devlin et al., 2019) and RoBERTa (Liu et al., 2019), to the exploration in both monolingual settings.
Central to this progress are large-scale linguistic acceptability datasets, such as CoLA (Warstadt et al.,
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Please determine the linguistic acceptability of the sentence based on the given choices, output
the option only.

Sentence: {sentence}

Options: (A) Acceptable (B) Unacceptable

Answer: Prompt
Training Corpus @ l
Evaluation Corpus #42 LLM
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Figure 1: Overall pipeline of the linguistic acceptability evaluation with LLMs, including monolingual,
cross-lingual, and multilingual settings. Training corpus is not included in zero-shot evaluations.

2019) for English, CoLAC (Hu et al., 2023) for Chinese, JCoLA (Someya et al., 2024) for Japanese, and
RuCoLA (Mikhailov et al., 2022) for Russian, which have provided the foundation for evaluating and im-
proving model performance. This line of work, particularly the adaptation of PLMs through fine-tuning
techniques, demonstrates promising potential for addressing the task by integrating linguistic features
into the prediction process, equipping the models to capture the nuanced characteristics required for ac-
curate judgment, especially in languages with rich morphological or syntactic variations (Cherniavskii
et al., 2022; Proskurina et al., 2023).

LLMs in Linguistic Acceptability Judgments. Motivated by the promising performance of LLMs
on various downstream tasks (Qian et al., 2024; Wang et al., 2024b; Ma et al., 2025), they have also
been adopted in linguistic acceptability judgments. Vanroy (2024) introduces a German LLM, Feitje,
and evaluates the linguistic acceptability performance on the Dutch CoLLA dataset. Srinivasan et al.
(2024) investigates few-shot tuning and LoRA fine-tuning on OPT models. He et al. (2024b) introduces
Consistent Proxy Tuning (CPT), a black-box optimization method to demonstrate improved accuracy on
CoLA. However, these efforts remain confined to monolingual settings, and address neither cross-lingual
nor multilingual generalizability of LLMs on the task.

Cross-lingual and Multilingual Fine-tuning. In the field of multilingual NLP, methods like InfoXLM
(Chi et al., 2021) and Cross-Lingual-Thought Prompting (XLT) (Huang et al., 2023) advance cross-
lingual transfer but often overlook linguistic acceptability. In this specific domain, Trotta et al. (2021)
pioneers cross-lingual experiments showing that fine-tuning on bilingual data improves performance for
Italian acceptability tasks. Hu et al. (2023) further demonstrates acceptability concepts transfer across
typologically distinct languages (e.g., English CoLA to Chinese CoLAC). While the MELA benchmark
(Zhang et al., 2024) evaluates multilingual linguistic acceptability and establishes zero-shot/few-shot
LLM baselines, it overlooks fine-tuned LLM capabilities in cross-lingual and multilingual settings. To
bridge this gap, we conduct the first comprehensive evaluation of LLMs with diverse paradigms, provid-
ing distinct insights to the development of this field.
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CoLA CoLAC JCoLA RuCoLA
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Figure 2: Label distribution of the CoLA, CoLAC, JCoLA, and RuCoLA datasets.

3 Evaluation Settings

Datasets and Evaluation Metrics. We evaluated our approach across four linguistically diverse
datasets, each corresponding to a different language. These datasets collectively enable a comprehensive,
multilingual assessment of linguistic acceptability judgments. The datasets we utilized are as follows,
and the distributions on acceptable and unacceptable samples are organized in Figure 2:

* Corpus of Linguistic Acceptability (CoLLA) (Warstadt et al., 2019) is used for English evalua-
tion, comprising 8, 551 sentences, with 527 designated for in-domain validation and 516 for out-of-
domain validation, each corresponds to different sources and topics.

* Corpus of Linguistic Acceptability in Chinese (CoLAC) (Hu et al., 2023) is employed for Chi-
nese evaluation, which includes 6, 072 sentences, of which 492 are reserved for in-domain valida-
tion.

» Japanese Corpus of Linguistic Acceptability (JCoLA) (Someya et al., 2024) is considered for
Japanese evaluation, consisting of 6,919 sentences, with 865 in-domain and 685 out-of-domain
validation instances. The in-domain sources are textbooks and handbooks on Japanese syntax,
while out-of-domain sources are journal articles published in JEAL.

* Russian Corpus of Linguistic Acceptability (RuCoLA) (Mikhailov et al., 2022) is utilized for
Russian evaluation, which contains 7, 870 sentences, including 983 for in-domain and 1, 804 for out-
of-domain development. The in-domain sentences are collected from linguistic literature, whereas
out-of-domain sentences are produced by machine translation and paraphrase generation models.

For evaluation, we employ two widely used metrics for binary classification tasks: Accuracy (ACC)
and the Matthews Correlation Coefficient (MCC). These metrics are standard in assessing model per-
formance in acceptability judgment tasks. Their respective formulations are provided below:

TP +TN
ACC = 1
TP+ TN+ FP+ FN’ M
(TP-TN)— (FP-FN)

V(TP +FP)(TP+ FN)(TN + FP)(TN + FN)’

MCC = @)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative, respec-
tively.

Prompt Design. Figure 1 presents the prompt design utilized in our evaluation, alongside the proce-
dural framework employed for assessing linguistic acceptability in this study. Generally, the prompt
consists of four primary components: an instruction of conducting linguistic acceptability evaluation,
an input sentence, a pair of binary options, and a placeholder for the response. We framed the linguis-
tic acceptability task as a multiple-choice question, where LLMs are required to choose between two
options—*“Acceptable” or “Unacceptable.”
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| CoLA CoLAC JCoLA RuCoLA
Model

‘ IN ouT DEV IN ouT IN ouT
Baseline ‘ 88.6 82.1 — 86.4 82.2 85.7 80.1

General-Purpose LLMs
GPT-40 85.6 86.6 82.7 81.3 87.0 81.1 79.5
GPT-40 mini 86.5 85.4 79.3 81.6 84.8 79.7 79.0
DeepSeek-V3 86.9 84.5 86.4 78.6 85.8 79.3 81.9
GLM-4-32B 85.7 85.2 74.6 85.1 80.4 77.3 73.7
Qwen2.5-32B 87.1 85.4 78.7 82.2 82.2 78.5 77.9
Qwen2.5-72B 88.8 85.8 83.1 83.8 85.3 77.2 76.6
Reasoning-Oriented LLMs

QwQ-32B-Preview 83.8 85.6 78.3 80.0 79.0 76.8 78.1
DeepSeek-R1-32B 85.0 82.9 77.9 81.0 80.6 76.2 77.3

Table 2: Zero-shot evaluation results of LLMs against PLM-based baselines in Accuracy (ACC). The
best and the second-best results are in bold and underlined, respectively. (IN: in-domain validation,
OUT: out-of-domain validation, DEV: validation set of CoLAC)

Experimental Setup. We conducted experiments across a range of LLMs, including both general-
purpose and reasoning-oriented models, under zero-shot and fine-tuning settings. For the zero-shot eval-
uation, we assessed several prominent general-purpose LLMs, such as GPT-40 (2024-08-06) (Hurst et
al., 2024), GPT-40 mini (2024-07-18), DeepSeek-V3 (0324) (Liu et al., 2025), GLM-4-32B (0414)
(Zeng et al., 2024), Qwen2.5-32B (Yang et al., 2025), and Qwen2.5-72B, with temperatures being set as
0 to ensure output stability. Additionally, motivated by the success of reasoning-oriented models in tasks
requiring long chains of reasoning, we included experiments with QwQ-32B-Preview' and DeepSeek-
R1-32B (Distill-Qwen) (Guo et al., 2025), both based on the Qwen2.5-32B architecture. This al-
lowed us to investigate whether these models, which excel in providing more granular, step-by-step
analysis, could yield improved predictions for linguistic acceptability.

We also fine-tuned several multilingual LLMs, including Suzume-Llama-3-8B (Devine, 2024) and
Qwen2.5-7B, using LoRA (Hu et al., 2022) across various settings. First, we performed monolingual
fine-tuning on language-specific datasets to evaluate model performance within individual languages.
Subsequently, we explored cross-lingual fine-tuning by training on English data and evaluating on other
languages to assess knowledge transfer. Finally, we performed multilingual fine-tuning using a combined
dataset encompassing all languages to investigate whether incorporating more diverse data sources leads
to improved results. During the fine-tuning process, we set the number of epochs to 10, the learning rate
to le — 4, the batch size to 4, and the gradient accumulation steps to 4. All experiments were conducted
on 2 NVIDIA GeForce RTX 3090 graphic cards.

Baselines. We compared the performance of LLMs on linguistic acceptability in comparison to the
following state-of-the-art PLM-based models across different languages:

* English (CoLA): We employed the fine-tuned BERT model (Devlin et al., 2019) integrated with
topological data analysis (TDA) as the baseline, as reported by Cherniavskii et al. (2022).

e Chinese (CoLAC): We adopted a direct LLM evaluation approach, as no existing baseline model
has been established for the CoLAC dataset.

s Japanese (JCoLA): We utilized Waseda RoOBERTa?, a Japanese RoOBERTa model pre-trained on
Japanese Wikipedia and the Japanese portion of CC-100.

'"https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/nlp-waseda/roberta-large- japanese
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| CoLA CoLAC JCoLA RuCoLA
Model

‘ IN ouT DEV IN ouT IN ouT
Baseline ‘ 72.5 56.5 — 46.6 50.6 594 55.8

General-Purpose LLMs
GPT-40 66.6 68.2 62.2 40.5 66.0 44.4 54.3
GPT-40 mini 69.1 65.9 54.0 35.5 60.0 39.5 53.4
DeepSeek-V3 71.1 65.4 71.1 40.0 67.5 41.2 60.3
GLM-4-32B 65.3 65.3 44.9 28.9 44.4 27.4 42.1
Qwen2.5-32B 71.6 67.5 53.7 33.6 51.1 34.2 50.7
Qwen2.5-72B 73.8 66.9 63.6 36.4 60.0 26.9 47.5
Reasoning-Oriented LLMs

QwQ-32B-Preview 63.3 68.7 51.7 31.0 46.9 32.9 51.0
DeepSeek-R1-32B 65.0 63.0 50.7 29.3 48.4 30.3 49.2

Table 3: Zero-shot evaluation results of LLMs against PLM-based baselines in Matthews Correlation
Coefficient (MCC). (IN: in-domain validation, OUT: out-of-domain validation, DEV: validation set of
CoLAC)

* Russian (RuCoLA): We implemented Ru-RoBERTa (Zmitrovich et al., 2024), enhanced with TDA
and two additional features (TDA.,.), as reported by Proskurina et al. (2023).

4 Results and Analysis

4.1 Main Results

Zero-shot Evaluation Results. Tables 2 and 3 present the Accuracy (ACC) and Matthews Correlation
Coefficient (MCC) scores for the experimented models against baseline methods. From the tables, we
observed clear differences in performance between in-domain and out-of-domain settings. For in-domain
evaluations, language-specific PLMs consistently outperformed LLMs, achieving superior results in most
languages. Notably, these models exceeded the best-performing LLMs by 1.3% in Japanese and 4.6% in
Russian. In contrast, LLMs demonstrated a significant advantage in out-of-domain scenarios, showcasing
their ability to generalize beyond the training data. For example, GPT-40 outperformed the baseline by
4.5% on English and 4.8% on Japanese datasets, while DeepSeek-V3 surpassed the Russian baseline by
1.8%. These findings highlight the strong generalization capabilities of LLMs, particularly in tasks such
as detecting journal articles and machine-generated content when detecting linguistic acceptability.

Our results also highlight the varying performance of LLMs across different languages. While GPT-40
exhibited consistent performance across languages, other models showed notable limitations in specific
languages. For instance, GPT-40 mini, GLM-4-32B, and Qwen2.5-32B struggled with Chinese judg-
ments, DeepSeek-V3 underperformed in Japanese judgments, and GLM-4-32B and Qwen2.5-72B did
not perform well on Russian judgments, limiting their generalizability across diverse languages. Ad-
ditionally, we observed that reasoning-oriented models based on Qwen2.5-32B did not outperform the
original base model. We will perform a detailed analysis in Section 4.2.

Fine-tuning Evaluation Results. Tables 4 and 5 report the Accuracy (ACC) and Matthews Correla-
tion Coefficient (MCC) results for the fine-tuned models in comparison to baseline methods. Overall, the
fine-tuned models did not consistently outperform the baselines across all languages and generally lagged
behind larger LLMs when directly prompted. Notably, Qwen2.5-7B outperformed Suzume-Llama-3-8B
in all languages except English, likely due to Llama-3’s extensive pre-training on large-scale English
corpora. In terms of training strategies, multilingual fine-tuning did not benefit high-resource languages
such as English and Chinese, leading to performance degradation. However, for low-resource languages
like Japanese and Russian, multilingual fine-tuning significantly outperformed monolingual fine-tuning.
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Model | se fup | CoLA CoLAC  JCoLA RuCoLA
| | IN OUT DEV IN OUT IN OUT
Baseline | Monolingual | 88.6  82.1 - 86.4 822 857 80.1
Monolingual | 88.8 851 795 821 781 768 720
Suzume-Llama-3-8B | Cross-lingual — — 72.2 81.2 793 73.8 70.7

Multilingual 86.7 84.1 77.9 83.0 794 773 749

Monolingual | 87.5 84.9 82.7 85.2 81.5 80.0 76.1
Qwen2.5-7B Cross-lingual — 75.6 82.1 794 755 73.2
Multilingual | 88.4 84.9 82.5 858 794 819 774

Table 4: Fine-tuning evaluation results of LLMs against PLM-based baselines in Accuracy (ACC), in
which the best result of each model is highlighted in bold. (IN: in-domain validation, OUT: out-of-
domain validation, DEV: validation set of CoLAC)

Model | Se fup | CoLA CoLAC  JCoLA RuCoLA
| | IN OUT DEV IN OUT IN OUT
Baseline ‘ Monolingual ‘ 725  56.5 — 46.6 50.6 59.4  55.8

Monolingual | 73.3 64.3 55.8 31.0 371 354 389
Suzume-Llama-3-8B | Cross-lingual - - 38.0 117 40.1 114 343
Multilingual 68.7 62.0 52.1 31.1 418 370 454

Monolingual | 70.8  63.8 62.6 42.6 478 463 48.1
Qwen2.5-7B Cross-lingual — — 46.0 246 41.3 18.7 40.0
Multilingual | 72.7 63.9 62.1 41.9 409 48.6 49.5

Table 5: Fine-tuning evaluation results of LLMs against PLM-based baselines in Matthews Correlation
Coefficient (MCC), in which the best result of each model is highlighted in bold. (IN: in-domain valida-
tion, OUT: out-of-domain validation, DEV: validation set of CoLAC)

For example, Suzume-Llama-3-8B achieved a 0.5% and 2.9% performance gain on Russian after mul-
tilingual fine-tuning, underscoring the value of diverse multilingual data in enhancing performance on
under-resourced languages.

On the other hand, the fine-tuned LLMs appeared to be more sensitive to imbalanced label distributions
in the training data, as reflected in the substantial drop in MCC scores shown in Table 5—none of the
models outperformed the baselines under these conditions. Moreover, the LLMs struggled with cross-
lingual transfer, often showing noticeable performance degradation. The most pronounced failure was
observed on the Chinese dataset, likely due to the stark structural and grammatical differences between
English and Chinese. Furthermore, cross-lingual fine-tuning also contributed to skewed label predictions,
further exacerbating the decline in MCC performance.

4.2 Additional Analysis

Scaling Law. Motivated by the performance disparity between Qwen2.5-32B and Qwen2.5-72B, as
shown in Tables 2 and 3, we further explored whether scaling up LLMs could enhance performance.
Specifically, we selected Qwen2.5 models with sizes ranging from 7B to 72B in a zero-shot learning
setup. As depicted in Figure 3, a clear positive scaling trend is evident—larger LLMs consistently out-
performed smaller counterparts, with some exceptions, such as the Qwen2.5-14B model on the Japanese
dataset. This highlights the importance of leveraging larger models with more advanced language under-
standing for optimal performance on this task.
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Figure 3: Impact of scaling law on linguistic acceptability judgements, where Qwen2.5-7B/14B/32B/72B
are selected for experiments. Results of the CoLAC dataset are illustrated in both in-domain and out-of-
domain results.

Impact of Reasoning Chains. As revealed in Tables 2 and 3, it is surprising that reasoning-oriented
models exhibited degraded performance. To better understand this phenomenon, we conducted addi-
tional case studies to examine how these models perform in the context of linguistic acceptability judg-
ments. In the first example, shown in Table 6, the reasoning model initially understood the task, devised
a plan for the judgment process (considering factors like grammar and meaning), and subsequently de-
termines the linguistic acceptability of the sentence based on various aspects (e.g., grammar, sentence
structure, punctuation, etc.), ultimately reaching a correct conclusion. However, in the second example
shown in Table 7, despite the model generating an extended reasoning chain with several “aha mo-
ments”—which are often seen as key indicators of enhanced intelligence in artificial systems (Guo et
al., 2025)—the model failed to significantly support the task at hand. It instead maintained its initial,
incorrect judgment, underscoring the limitations of reasoning-oriented models in this context.

5 Conclusion and Future Work

We conducted the first comprehensive evaluation of linguistic acceptability using LLMs across diverse
languages and learning paradigms, encompassing zero-shot learning as well as fine-tuning in monolin-
gual, cross-lingual, and multilingual settings. In our experiments, we first applied in-context learning
to evaluate the zero-shot performance of LLMs. We then fine-tuned the models using LoRA to assess
their performance in a more controlled setting. We further examined the cross-lingual performance by
fine-tuning models on English data and evaluating them on the other datasets. Furthermore, we as-
sessed the multilingual performance to determine whether incorporating more diverse data sources leads
to improved results. Our analysis highlighted the strong generalizability of large-scale LLMs through
zero-shot prompting, the challenges of fine-tuning small-sized LLMs with skewed training data, the ef-
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TEXT & LABEL:
The more pictures of him that appear in the news, the more embarrassed John becomes. (Acceptable)

REASONING CHAIN:

So I've got this sentence: [...] First, I need to understand what “linguistically acceptable” means. I
think it refers to [...] So, I should check the grammar and the meaning of the sentence.

Let’s look at the sentence structure. [...] Now, let’s check the grammar more closely. [...] Is there
any ambiguity in the sentence? [...] Are there any punctuation issues? [...] What about word choice?
[...] Is there a better way to phrase this sentence? [...] So, overall, I think the sentence is linguistically
acceptable.

Table 6: Example reasoning chain of a correctly-predicted sentence. The aspects analyzed by the model
is highlighted in red.

TEXT & LABEL:
Mary listens to the Grateful Dead, she gets depressed. (Acceptable)

REASONING CHAIN:

But they’re connected with a comma. Is that okay? [...] I think this could be a case of a comma splice,
where two independent clauses are joined only by a comma without a conjunction. [...] So, maybe
that’s why it’s unacceptable.

Wait, but I’ve seen sentences like this before, where two related clauses are connected with just
a comma. [...] Let me check some grammar rules. [...] So, according to that rule, the sentence is
unacceptable.

But, in informal writing or certain styles, you might see sentences like this where a comma is used
to join two closely related ideas. [...]

However, in standard, formal English, it’s generally considered incorrect. [...] So, in conclusion, I
think the sentence is unacceptable due to the comma splice.

Table 7: Example reasoning chain of an incorrectly-predicted sentence. The “aha moments” within the
reasoning chain is highlighted in red.

fectiveness of multilingual fine-tuning for low-resource languages, the scaling law exhibited on the task,
and the limitation of reasoning-oriented models on the task, even when “aha moments” occur during the
reasoning process. In the future, we will expand our evaluation with more languages and LLMs and
propose novel methods to improve model performance and validate their utility in practical applications.
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