@inproceedings{tofa-etal-2025-cuet,
title = "{CUET}{\_}{INS}ights@{NLU} of {D}evanagari Script Languages 2025: Leveraging Transformer-based Models for Target Identification in Hate Speech",
author = "Tofa, Farjana Alam and
Zeba, Lorin Tasnim and
Osama, Md and
Dey, Ashim",
editor = "Sarveswaran, Kengatharaiyer and
Vaidya, Ashwini and
Krishna Bal, Bal and
Shams, Sana and
Thapa, Surendrabikram",
booktitle = "Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2025.chipsal-1.29/",
pages = "267--272",
abstract = "Hate speech detection in multilingual content is a challenging problem especially when it comes to understanding the specific targets of hateful expressions. Identifying the targets of hate speech whether directed at individuals, organizations or communities is crucial for effective content moderation and understanding the context. A shared task on hate speech detection in Devanagari Script Languages organized by CHIPSAL@COLING 2025 allowed us to address the challenge of identifying the target of hate speech in the Devanagari Script Language. For this task, we experimented with various machine learning (ML) and deep learning (DL) models including Logistic Regression, Decision Trees, Random Forest, SVM, CNN, LSTM, BiLSTM, and transformer-based models like MiniLM, m-BERT, and Indic-BERT. Our experiments demonstrated that Indic-BERT achieved the highest F1-score of 0.69, ranked 3rd in the shared task. This research contributes to advancing the field of hate speech detection and natural language processing in low-resource languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tofa-etal-2025-cuet">
<titleInfo>
<title>CUET_INSights@NLU of Devanagari Script Languages 2025: Leveraging Transformer-based Models for Target Identification in Hate Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Farjana</namePart>
<namePart type="given">Alam</namePart>
<namePart type="family">Tofa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lorin</namePart>
<namePart type="given">Tasnim</namePart>
<namePart type="family">Zeba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="family">Osama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashim</namePart>
<namePart type="family">Dey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kengatharaiyer</namePart>
<namePart type="family">Sarveswaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashwini</namePart>
<namePart type="family">Vaidya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bal</namePart>
<namePart type="family">Krishna Bal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sana</namePart>
<namePart type="family">Shams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hate speech detection in multilingual content is a challenging problem especially when it comes to understanding the specific targets of hateful expressions. Identifying the targets of hate speech whether directed at individuals, organizations or communities is crucial for effective content moderation and understanding the context. A shared task on hate speech detection in Devanagari Script Languages organized by CHIPSAL@COLING 2025 allowed us to address the challenge of identifying the target of hate speech in the Devanagari Script Language. For this task, we experimented with various machine learning (ML) and deep learning (DL) models including Logistic Regression, Decision Trees, Random Forest, SVM, CNN, LSTM, BiLSTM, and transformer-based models like MiniLM, m-BERT, and Indic-BERT. Our experiments demonstrated that Indic-BERT achieved the highest F1-score of 0.69, ranked 3rd in the shared task. This research contributes to advancing the field of hate speech detection and natural language processing in low-resource languages.</abstract>
<identifier type="citekey">tofa-etal-2025-cuet</identifier>
<location>
<url>https://aclanthology.org/2025.chipsal-1.29/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>267</start>
<end>272</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CUET_INSights@NLU of Devanagari Script Languages 2025: Leveraging Transformer-based Models for Target Identification in Hate Speech
%A Tofa, Farjana Alam
%A Zeba, Lorin Tasnim
%A Osama, Md
%A Dey, Ashim
%Y Sarveswaran, Kengatharaiyer
%Y Vaidya, Ashwini
%Y Krishna Bal, Bal
%Y Shams, Sana
%Y Thapa, Surendrabikram
%S Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)
%D 2025
%8 January
%I International Committee on Computational Linguistics
%C Abu Dhabi, UAE
%F tofa-etal-2025-cuet
%X Hate speech detection in multilingual content is a challenging problem especially when it comes to understanding the specific targets of hateful expressions. Identifying the targets of hate speech whether directed at individuals, organizations or communities is crucial for effective content moderation and understanding the context. A shared task on hate speech detection in Devanagari Script Languages organized by CHIPSAL@COLING 2025 allowed us to address the challenge of identifying the target of hate speech in the Devanagari Script Language. For this task, we experimented with various machine learning (ML) and deep learning (DL) models including Logistic Regression, Decision Trees, Random Forest, SVM, CNN, LSTM, BiLSTM, and transformer-based models like MiniLM, m-BERT, and Indic-BERT. Our experiments demonstrated that Indic-BERT achieved the highest F1-score of 0.69, ranked 3rd in the shared task. This research contributes to advancing the field of hate speech detection and natural language processing in low-resource languages.
%U https://aclanthology.org/2025.chipsal-1.29/
%P 267-272
Markdown (Informal)
[CUET_INSights@NLU of Devanagari Script Languages 2025: Leveraging Transformer-based Models for Target Identification in Hate Speech](https://aclanthology.org/2025.chipsal-1.29/) (Tofa et al., CHiPSAL 2025)
ACL