@inproceedings{yadav-singh-2025-dll5143a,
title = "{D}ll5143{A}@{NLU} of {D}evanagari Script Languages 2025: Detection of Hate Speech and Targets Using Hierarchical Attention Network",
author = "Yadav, Ashok and
Singh, Vrijendra",
editor = "Sarveswaran, Kengatharaiyer and
Vaidya, Ashwini and
Krishna Bal, Bal and
Shams, Sana and
Thapa, Surendrabikram",
booktitle = "Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2025.chipsal-1.31/",
pages = "278--288",
abstract = "Hate speech poses a significant challenge on social networks, particularly in Devanagari scripted languages, where subtle expressions can lead to harmful narratives. This paper details our participation in the {\textquotedblleft}Shared Task on Natural Language Understanding of Devanagari Script Languages{\textquotedblright} at CHIPSAL@COLING 2025, addressing hate speech detection and target identification. In Sub-task B, we focused on classifying the text either hate or non-hate classified text to determine the presence of hate speech, while Sub-task C focused on identifying targets, such as individuals, organizations, or communities. We utilized the XLM-RoBERTa model as our base and explored various adaptations, including Adaptive Weighting and Gated Adaptive Weighting methods. Our results demonstrated that the Hierarchical Gated adaptive weighting model achieved 86{\%} accuracy in hate speech detection with a macro F1 score of 0.72, particularly improving performance for minority class detection. For target detection, the same model achieved 75{\%} accuracy and a 0.69 macro F1 score. Our proposed architecture demonstrated competitive performance, ranking 8th in Subtask B and 11th in Subtask C among all participants."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yadav-singh-2025-dll5143a">
<titleInfo>
<title>Dll5143A@NLU of Devanagari Script Languages 2025: Detection of Hate Speech and Targets Using Hierarchical Attention Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashok</namePart>
<namePart type="family">Yadav</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vrijendra</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kengatharaiyer</namePart>
<namePart type="family">Sarveswaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashwini</namePart>
<namePart type="family">Vaidya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bal</namePart>
<namePart type="family">Krishna Bal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sana</namePart>
<namePart type="family">Shams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hate speech poses a significant challenge on social networks, particularly in Devanagari scripted languages, where subtle expressions can lead to harmful narratives. This paper details our participation in the “Shared Task on Natural Language Understanding of Devanagari Script Languages” at CHIPSAL@COLING 2025, addressing hate speech detection and target identification. In Sub-task B, we focused on classifying the text either hate or non-hate classified text to determine the presence of hate speech, while Sub-task C focused on identifying targets, such as individuals, organizations, or communities. We utilized the XLM-RoBERTa model as our base and explored various adaptations, including Adaptive Weighting and Gated Adaptive Weighting methods. Our results demonstrated that the Hierarchical Gated adaptive weighting model achieved 86% accuracy in hate speech detection with a macro F1 score of 0.72, particularly improving performance for minority class detection. For target detection, the same model achieved 75% accuracy and a 0.69 macro F1 score. Our proposed architecture demonstrated competitive performance, ranking 8th in Subtask B and 11th in Subtask C among all participants.</abstract>
<identifier type="citekey">yadav-singh-2025-dll5143a</identifier>
<location>
<url>https://aclanthology.org/2025.chipsal-1.31/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>278</start>
<end>288</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dll5143A@NLU of Devanagari Script Languages 2025: Detection of Hate Speech and Targets Using Hierarchical Attention Network
%A Yadav, Ashok
%A Singh, Vrijendra
%Y Sarveswaran, Kengatharaiyer
%Y Vaidya, Ashwini
%Y Krishna Bal, Bal
%Y Shams, Sana
%Y Thapa, Surendrabikram
%S Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)
%D 2025
%8 January
%I International Committee on Computational Linguistics
%C Abu Dhabi, UAE
%F yadav-singh-2025-dll5143a
%X Hate speech poses a significant challenge on social networks, particularly in Devanagari scripted languages, where subtle expressions can lead to harmful narratives. This paper details our participation in the “Shared Task on Natural Language Understanding of Devanagari Script Languages” at CHIPSAL@COLING 2025, addressing hate speech detection and target identification. In Sub-task B, we focused on classifying the text either hate or non-hate classified text to determine the presence of hate speech, while Sub-task C focused on identifying targets, such as individuals, organizations, or communities. We utilized the XLM-RoBERTa model as our base and explored various adaptations, including Adaptive Weighting and Gated Adaptive Weighting methods. Our results demonstrated that the Hierarchical Gated adaptive weighting model achieved 86% accuracy in hate speech detection with a macro F1 score of 0.72, particularly improving performance for minority class detection. For target detection, the same model achieved 75% accuracy and a 0.69 macro F1 score. Our proposed architecture demonstrated competitive performance, ranking 8th in Subtask B and 11th in Subtask C among all participants.
%U https://aclanthology.org/2025.chipsal-1.31/
%P 278-288
Markdown (Informal)
[Dll5143A@NLU of Devanagari Script Languages 2025: Detection of Hate Speech and Targets Using Hierarchical Attention Network](https://aclanthology.org/2025.chipsal-1.31/) (Yadav & Singh, CHiPSAL 2025)
ACL