
Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025), pages 278–288
January 19, 2025. ©2025 International Committee on Computational Linguistics

278

Dll5143A@NLU of Devanagari Script Languages 2025: Detection of Hate
Speech and Targets Using Hierarchical Attention Network

Ashok Yadav and Vrijendra Singh
Indian Institute of Information Technology Allahabad

Prayagraj, 211015, India
rsi2021002@iiita.ac.in, vrij@iiita.ac.in

Abstract

Hate speech poses a significant challenge on
social networks, particularly in Devanagari
scripted languages, where subtle expressions
can lead to harmful narratives. This pa-
per details our participation in the "Shared
Task on Natural Language Understanding
of Devanagari Script Languages" at CHIP-
SAL@COLING 2025, addressing hate speech
detection and target identification. In Sub-task
B, we focused on classifying the text either
hate or non-hate classified text to determine
the presence of hate speech, while Sub-task C
focused on identifying targets, such as individu-
als, organizations, or communities. We utilized
the XLM-RoBERTa model as our base and
explored various adaptations, including Adap-
tive Weighting and Gated Adaptive Weighting
methods. Our results demonstrated that the
Hierarchical Gated adaptive weighting model
achieved 86% accuracy in hate speech detec-
tion with a macro F1 score of 0.72, particularly
improving performance for minority class de-
tection. For target detection, the same model
achieved 75% accuracy and a 0.69 macro F1
score. Our proposed architecture demonstrated
competitive performance, ranking 8th in Sub-
task B and 11th in Subtask C among all partici-
pants.

1 Introduction

In the age of rapid digital communication, social
media platforms have become the primary space
for people to share their opinions and engage in
discourse (Zhou et al., 2024). However, this de-
mocratization of speech has also led to the propa-
gation of hate speech, which can have severe con-
sequences for individuals and communities (Parida
et al., 2024). While hate speech detection in major
languages like English has seen significant advance-
ments, there is a pressing need to extend this effort
to languages written in Devanagari scripts, such
as Nepali, Marathi, Sanskrit, Bhojpuri, and Hindi

(Rauniyar et al., 2023). These languages, despite
their widespread use in South Asia, remain un-
derrepresented in hate speech research (Piot et al.,
2024). Devanagari script languages present unique
challenges for hate speech detection due to their lin-
guistic structure, rich cultural context, and scarcity
of labeled datasets (Parihar et al., 2021). Exist-
ing hate speech detection models, predominantly
trained in English or other high-resource languages,
often fail to capture the nuances of these languages,
leading to poor performance. Furthermore, the
intertwining of hate speech with regional socio-
political issues adds layers of complexity that exist-
ing models are not equipped to handle (Jafri et al.,
2024).

To address these challenges, (Sarveswaran
et al., 2025) introduced a shared task at CHIP-
SAL@COLING 2025 where participants’ systems
need to detect the language (Nepali, Marathi, San-
skrit, Bhojpuri, or Hindi) a given Devanagari text
belongs to, as well as identify hate speech and its
targets within the text. Subtask B of the challenge
contains tweets that were carefully classified into
two groups, hate and non-hate. Subtask C focuses
on identifying whether the hate speech targets ’Indi-
vidual’, ’Organization’, or ’Community’, allowing
for detailed tracking of hate speech communication
patterns in Devanagari. We have participated in
Subtask B and Subtask C, and achieved ranks 8th
and 11th respectively, among all participants.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the shared task and
dataset statistics. Section 3 details our hierarchical
attention-based architecture. Section 4 describes
the experimental setup and evaluation metrics. Sec-
tion 4.1 presents our model’s performance and com-
parison with other participating systems. Section 5
concludes our findings, while Section 6 discusses
the limitations and potential improvements in hate
speech detection for Devanagari script languages.



279

2 Task and Dataset Description

The ’Shared Task on Natural Language Under-
standing of Devanagari Script Languages’ at CHIP-
SAL@COLING 2025 focuses on key challenges
in processing Devanagari-scripted languages. The
first subtask, Devanagari Script Language Identifi-
cation, aims to accurately identify the language of
a given Devanagari text. Subtask B, Hate Speech
Detection, determines whether a text contains hate
speech. Building on this, Subtask C targets iden-
tifying specific hate speech targets, such as indi-
viduals or groups. This shared task promotes com-
prehensive Devanagari language understanding by
addressing script identification, hate speech detec-
tion, and hate speech target identification. (Thapa
et al., 2025).

The hate speech datasets for this shared task
were drawn from various sources. For Hindi,
the CHUNAV dataset (Jafri et al., 2024) and a
dataset on political hate speech during Indian elec-
tions (Jafri et al., 2023) were used. The Nepali
dataset, NEHATE (Thapa et al., 2023), and a multi-
aspect dataset on Nepali tweets regarding anti-
establishment election discourse (Rauniyar et al.,
2023) were also included. Datasets for Bhojpuri
(Ojha, 2019), Marathi (Kulkarni et al., 2021), and
Sanskrit (Aralikatte et al., 2021) were utilized. In
this shared task, we participated in both Subtask
B and Subtask C, achieving ranks of 8th and 11th
respectively among all participants. The dataset
for Subtask B includes binary annotations (0 for
non-hate and 1 for hate speech), while Subtask C
focuses on categorizing hate speech targets into
three classes: individual (0), organization (1), and
community (2). Table 1 provides statistics on the
dataset used for the ChiPSAL shared task for both
subtasks.

Table 1: The statistics of the used dataset in CHIP-
SAL@COLING 2025 Subtask B and Subtask C.

Category Subask B Subtask C
Hate Non-Hate Individual Organization Community

Train 2214 1,6805 1074 856 284
Val 474 3602 230 183 61
Test 475 3601 230 184 61
Total 3164 24008 1534 1223 406

3 Proposed Framework

3.1 Overview
We have proposed a model that builds on the XLM-
RoBERTa architecture, incorporating adaptive at-
tention mechanisms to improve classification per-

formance in diverse linguistic contexts. Figure 1
shows the architecture of our proposed model.

3.2 XLM-RoBERTa
XLM-RoBERTa serves as the foundation of our
model. It is a multilingual transformer with 12
layers, 768 hidden units, and 12 attention heads.
This base model processes the input text and gener-
ates contextualized word embeddings, also known
as hidden states. These hidden states, denoted as
H ∈ RB×L×D, where B is the batch size, L is the
sequence length, and D is the hidden size (768),
serve as the features extracted from the input text
and form the basis for subsequent processing in our
model.

3.3 Attention Mechanism
We implement a dual-attention mechanism con-
sisting of word-level and sentence-level attention
components.

3.3.1 Word-level Attention
The word-level attention component is a two-layer
feedforward neural network that processes the hid-
den states to generate attention weights for individ-
ual tokens. The process can be described by the
following equations:

ew = tanh(W 1
wH + b1w) (1)

αw = softmax(W 2
wew + b2w) (2)

cw =
L∑
i=1

αi
wH

i (3)

where W 1
w ∈ RD×D, W 2

w ∈ R1×D, b1w ∈ RD,
and b2w ∈ R are learnable parameters, αw ∈ RL

are the attention weights, and cw ∈ RD is the
word-level context vector.

3.3.2 Sentence-level Attention
The sentence-level attention mechanism focuses on
broader semantic structures within the input. It fol-
lows a similar structure to the word-level attention:

es = tanh(W 1
sH + b1s) (4)

αs = softmax(W 2
s es + b2s) (5)

cs =

L∑
i=1

αi
sH

i (6)

where W 1
s , W 2

s , b1s, and b2s are learnable parame-
ters with the same dimensions as their word-level
counterparts, αs ∈ RL are the sentence-level at-
tention weights, and cs ∈ RD is the sentence-level
context vector.



280

Figure 1: Architecture of the proposed transformer-based multimodal hierarchical fusion model.

3.3.3 Adaptive Weighting
The adaptive weighting component combines the
word-level and sentence-level context vectors
based on their relative importance for each input.

ccombined = [cw; cs] (7)

β = softmax(W 2
a ReLU(W 1

a ccombined + b1a) + b2a)
(8)

cfinal = β1cw + β2cs (9)

where W 1
a ∈ RD×2D, W 2

a ∈ R2×D, b1a ∈ RD,
and b2a ∈ R2 are learnable parameters, β ∈ R2 are
the adaptive weights, and cfinal ∈ RD is the final
context vector that balances word and sentence-
level information.

We also explored advanced variants of the atten-
tion mechanism including gated adaptive weight-
ing, multi-head adaptive weighting, and multi-head
gated adaptive weighting. The detailed architec-
tures and formulations of these variants are pre-
sented in Appendix 7.

3.4 Classification Head
The classification head is a three-layer MLP
with ReLU activations and dropout that takes the
weighted representation and outputs logits for both
two-way and three-way classifications. The for-
ward pass follows:

h1 = ReLU(W1cfinal + b1) (10)

h2 = ReLU(W2h1 + b2) (11)

z = W3h2 + b3 (12)

where W1 ∈ RD×D, W2 ∈ RD/2×D, W3 ∈
R2×D/2, and corresponding biases are learnable
parameters. To handle class imbalance, we use
weighted Cross-Entropy Loss:

L = −
N∑
i=1

wyi [yi log(σ(zi))+(1−yi) log(1−σ(zi))]

(13)
with class weights calculated using sklearn’s ’bal-
anced’ strategy:

wj =
N

K ·Nj
(14)

where N is total samples, K is number of classes,
and Nj is samples in class j.

4 Experimental Settings and Evaluations
Metrics

We implemented our model using PyTorch and
Hugging Face Transformers, with training con-
ducted on an Nvidia A30 GPU. The model was
trained for 10 epochs using an AdamW optimizer
with a learning rate of 2e-5 and batch size of 32.
For reproducibility, we set the manual seed to 30
and used a dropout rate of 0.3 to prevent overfitting.
Input sequences were padded to a maximum length
of 128 tokens. In our implementation, all layers
of XLM-RoBERTa were fine-tuned during train-
ing to maximize its full representational capacity
for contextual and linguistic understanding. The
system’s effectiveness was assessed using standard
metrics: precision, recall, F1-score, and accuracy.



281

The macro-averaged F1 score was selected as the
primary evaluation criterion for both subtasks.

4.1 Results and Analysis

On the validation dataset, our best performing
model, the Hierarchical Gated Adaptive Attention
model, achieved an F1 score of 0.72, precision of
0.70, recall of 0.76, and accuracy of 0.86 for hate
speech detection (Subtask B). For target identifica-
tion (Subtask C), the model attained an F1 score of
0.69, precision of 0.69, recall of 0.69, and accuracy
of 0.75. Tables 2 and 3 present our system’s perfor-
mance compared to other participating systems on
the test dataset.

For hate speech detection (Subtask B) 1, our
system achieved competitive results, ranking 8th
among all participants with an F1 score of 0.745
and an accuracy of 0.890. The best performing sys-
tem achieved an F1 score of 0.814, demonstrating
the challenging nature of hate speech detection in
Devanagari script languages. Our model showed
balanced performance between precision (0.735)
and recall (0.758), indicating its effectiveness in
handling class imbalance. In target identification

Table 2: Results comparison of top systems for Subtask
B, R(recall),P(precision),and Acc (accuracy)

System R P F1 Acc Rank
fulbutte .855 .785 .814 .914 1
Yestin .813 .746 .773 .894 2
sumanpaudel .769 .763 .766 .903 3
jebish7 .744 .793 .765 .911 4
lazyboy.blk .736 .790 .759 .910 5
MuhammadA .726 .781 .749 .907 6
mdp0999 .775 .729 .748 .886 7
Ours .758 .735 .745 .890 8

(Subtask C) 2, our system ranked 11th with an F1
score of 0.658 and accuracy of 0.714. While the
top system achieved an F1 score of 0.710, the rela-
tively small performance gap (0.052) between the
first and eleventh positions suggests the complex-
ity of the task and the effectiveness of various ap-
proaches.

Detailed performance analysis of all model vari-
ants of subtask B 8.1 and Subtask C 8.2 is presented
in Appendix 8.

1https://codalab.lisn.upsaclay.fr/
competitions/20000#results

2https://codalab.lisn.upsaclay.fr/
competitions/20000#results

Table 3: Results comparison of top systems for Subtask
C

System R P F1 Acc Rank
sumanpaudel .704 .718 .710 .768 1
Siddartha-10 .687 .741 .703 .779 2
Tofa .672 .742 .692 .766 3
sakib07 .681 .686 .683 .745 4
Dola_C .681 .679 .680 .737 5
jebish7 .669 .697 .679 .750 6
mdp0999 .669 .674 .672 .741 7
jerrytomy .667 .663 .664 .731 8
sandeep_S .657 .675 .664 .739 9
Yestin .655 .674 .661 .745 10
Ours .654 .664 .658 .714 11

5 Conclusion

In this study, we explored hate speech detection
and target identification challenges in Devanagari-
scripted languages through our participation in
CHIPSAL@COLING 2025. Our experimentation
with various attention mechanisms demonstrated
that the Hierarchical Gated Adaptive Weighting
model achieved the best performance, with macro
F1 scores of 0.72 and 0.69 for hate speech detec-
tion and target identification respectively. The in-
tegration of gating mechanisms proved crucial in
addressing class imbalance, particularly improv-
ing minority class detection in both tasks. Despite
achieving competitive rankings—8th in Subtask B
with an F1 score of 0.745 and 11th in Subtask C
with an F1 score of 0.658—our analysis revealed
persistent challenges. The model showed stronger
performance in detecting individual (F1: 0.79) and
organizational targets (F1: 0.77) but struggled with
community-targeted hate speech (F1: 0.52), high-
lighting the complexity of detecting group-targeted
hate. This performance disparity suggests the need
for more sophisticated approaches to handle the
nuanced expressions of community-targeted hate
speech in Devanagari languages.

6 Limitations

Our work contributes to the research on processing
low-resource languages, demonstrating how hier-
archical attention models with adaptive weighting
can significantly enhance performance. However,
the model struggles to detect community-targeted
hate speech (F1: 0.52) compared to individual (F1:
0.79) and organizational targets (F1: 0.77). This
performance gap highlights the model’s difficulty
in handling unbalanced data for target detection,
especially in recognizing hate speech directed at
specific communities. Community-targeted tweets

https://codalab.lisn.upsaclay.fr/competitions/20000#results
https://codalab.lisn.upsaclay.fr/competitions/20000#results
https://codalab.lisn.upsaclay.fr/competitions/20000#results
https://codalab.lisn.upsaclay.fr/competitions/20000#results


282

often employ indirect or culturally nuanced lan-
guage, as detailed in Appendix 9.2. We used
XLM-RoBERTa as our base model, which, despite
its robust multilingual capabilities, may lack the
nuanced script-specific features required for De-
vanagari. This limitation is particularly evident in
handling code-mixed language or symbolic terms.
We observed that named entities and metaphorical
phrases—common in political discourse—were fre-
quently misinterpreted, leading to false positives in
hate speech detection. Detailed examples of these
challenges can be found in Appendix 9.1. To ad-
dress these limitations, future work could include
specialized pre-training methods that better handle
linguistic and cultural elements inherent in Devana-
gari languages. Exploring script-specific models or
training strategies may also help the model distin-
guish between satirical and hateful language more
effectively, especially in community-oriented con-
texts where expression style differs significantly.

Acknowledgments

The authors express their gratitude to the Ministry
of Education, the Indian Institute of Information
Technology Allahabad, and the Deep Learning Lab
at IIITA for providing the resources necessary to
complete this work.

References
Rahul Aralikatte, Miryam De Lhoneux, Anoop

Kunchukuttan, and Anders Søgaard. 2021. Itihasa:
A large-scale corpus for sanskrit to english transla-
tion. In Proceedings of the 8th Workshop on Asian
Translation (WAT2021), pages 191–197.

Farhan Ahmad Jafri, Kritesh Rauniyar, Surendrabikram
Thapa, Mohammad Aman Siddiqui, Matloob Khushi,
and Usman Naseem. 2024. Chunav: Analyzing hindi
hate speech and targeted groups in indian election
discourse. ACM Transactions on Asian and Low-
Resource Language Information Processing.

Farhan Ahmad Jafri, Mohammad Aman Siddiqui, Suren-
drabikram Thapa, Kritesh Rauniyar, Usman Naseem,
and Imran Razzak. 2023. Uncovering political hate
speech during indian election campaign: A new low-
resource dataset and baselines.

Atharva Kulkarni, Meet Mandhane, Manali Likhitkar,
Gayatri Kshirsagar, and Raviraj Joshi. 2021.
L3cubemahasent: A marathi tweet-based sentiment
analysis dataset. In Proceedings of the Eleventh
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, pages
213–220.

Atul Kr Ojha. 2019. English-bhojpuri smt system:
Insights from the karaka model. arXiv preprint
arXiv:1905.02239.

Shantipriya Parida, Shakshi Panwar, Kusum Lata, San-
skruti Mishra, and Sambit Sekhar. 2024. Building
pre-train llm dataset for the indic languages: a case
study on hindi. arXiv preprint arXiv:2407.09855.

Anil Singh Parihar, Surendrabikram Thapa, and Sushruti
Mishra. 2021. Hate speech detection using natural
language processing: Applications and challenges.
In 2021 5th International Conference on Trends in
Electronics and Informatics (ICOEI), pages 1302–
1308. IEEE.

Paloma Piot, Patricia Martín-Rodilla, and Javier Parapar.
2024. Metahate: A dataset for unifying efforts on
hate speech detection. In Proceedings of the Interna-
tional AAAI Conference on Web and Social Media,
volume 18, pages 2025–2039.

Kritesh Rauniyar, Sweta Poudel, Shuvam Shiwakoti,
Surendrabikram Thapa, Junaid Rashid, Jungeun Kim,
Muhammad Imran, and Usman Naseem. 2023. Multi-
aspect annotation and analysis of nepali tweets on
anti-establishment election discourse. IEEE Access.

Kengatharaiyer Sarveswaran, Bal Krishna Bal, Suren-
drabikram Thapa, Ashwini Vaidya, and Sana Shams.
2025. A brief overview of the first workshop on chal-
lenges in processing south asian languages (chipsal).
In Proceedings of the First Workshop on Challenges
in Processing South Asian Languages (CHiPSAL).

Surendrabikram Thapa, Kritesh Rauniyar, Farhan Ah-
mad Jafri, Surabhi Adhikari, Kengatharaiyer
Sarveswaran, Bal Krishna Bal, Hariram Veeramani,
and Usman Naseem. 2025. Natural language under-
standing of devanagari script languages: Language
identification, hate speech and its target detection. In
Proceedings of the First Workshop on Challenges in
Processing South Asian Languages (CHiPSAL).

Surendrabikram Thapa, Kritesh Rauniyar, Shuvam Shi-
wakoti, Sweta Poudel, Usman Naseem, and Mehwish
Nasim. 2023. Nehate: Large-scale annotated data
shedding light on hate speech in nepali local election
discourse. In ECAI 2023, pages 2346–2353. IOS
Press.

Zhipeng Zhou, Xingnan Zhou, Yudi Chen, and Haonan
Qi. 2024. Evolution of online public opinions on ma-
jor accidents: Implications for post-accident response
based on social media network. Expert Systems with
Applications, 235:121307.

7 Appendix A

7.1 Advanced Attention Mechanisms

7.1.1 Gated Adaptive Weighting
The gated adaptive weighting component combines
the context vectors at the word and sentence level



283

using a gating mechanism.

ccombined = [cw; cs] (15)

g = σ(W 2
g tanh(W 1

g ccombined + b1g) + b2g) (16)

cfinal = g · cw + (1− g) · cs (17)

where W 1
g ∈ RD×2D, W 2

g ∈ R1×D, b1g ∈ RD,
and b2g ∈ R are learnable parameters, g ∈ R
is the gate value, σ is the sigmoid function, and
cfinal ∈ RD is the final context vector that bal-
ances word and sentence-level information. This
gated adaptive weighting mechanism allows our
model to dynamically adjust the importance of
word-level and sentence-level features for each in-
put, potentially improving its ability to detect hate
speech across various linguistic contexts.

7.1.2 Multi-head Adaptive Weighting
Multi-head methods incorporate adaptive weight-
ing within their structure through multiple heads,
without the need for an additional weighting step.
After obtaining the context vectors for each head,
we concatenate them and apply an adaptive weight-
ing mechanism:

ccombined = [c1w; c
1
s; c

2
w; c

2
s; ...; c

h
w; c

h
s ] (18)

β = softmax(W 2
a ReLU(W 1

a ccombined + b1a) + b2a)
(19)

cfinal =

2h∑
i=1

βici (20)

where W 1
a ∈ RD×2hD, W 2

a ∈ R2h×D, b1a ∈ RD,
and b2a ∈ R2h are learnable parameters, β ∈ R2h

are the adaptive weights, and cfinal ∈ RD is the
final context vector.

7.1.3 Multi-head Gated Adaptive Weighting
The Multi-Head Gated Adaptive Weighting (MH-
GAW) mechanism extends the concept of adaptive
weighting by using multiple attention heads and
incorporating a gating mechanism. This approach
allows the model to capture different aspects of the
input simultaneously and dynamically balance the
importance of word-level and sentence-level fea-
tures. For each head i (where i = 1, 2, ..., h, and h
is the number of heads):

eiw = tanh(W 1i
w H + b1iw ) (21)

αi
w = softmax(W 2i

w eiw + b2iw ) (22)

ciw =

L∑
j=1

αij
wH

j (23)

eis = tanh(W 1i
s H + b1is ) (24)

αi
s = softmax(W 2i

s eis + b2is ) (25)

cis =

L∑
j=1

αij
s H

j (26)

where W 1i
w ,W 2i

w ,W 1i
s ,W 2i

s are learnable parame-
ters for each head, αi

w, α
i
s ∈ RL are the attention

weights, and ciw, c
i
s ∈ RD are the word-level and

sentence-level context vectors for each head. The
context vectors from all heads using equation 27
and 28

cw =
1

h

h∑
i=1

ciw (27)

cs =
1

h

h∑
i=1

cis (28)

where cw, cs ∈ RD are the aggregated word-level
and sentence-level context vectors. A gating mech-
anism is applied to dynamically balance the word-
level and sentence-level information using equa-
tions 29, 30 and 31

ccombined = [cw; cs] (29)

g = σ(W 2
g tanh(W 1

g ccombined + b1g) + b2g) (30)

cgated = g1 · cw + g2 · cs (31)

where W 1
g ∈ RD×2D, W 2

g ∈ R2×D, b1g ∈ RD,
and b2g ∈ R2 are learnable parameters, g ∈ R2

are the gate values, σ is the sigmoid function, and
cgated ∈ RD is the gated context vector and final
context vector passed in classification head.

8 Appendix B

8.1 Task B Results
The performance in Subtask B using the Hierarchi-
cal Adaptive Attention Model is shown in Table
4. We achieved an accuracy of 0.73 on the test set
of 4,076 samples. For class 0 (non-hate speech),
the model attained precision of 0.93, recall of 0.94,
and an F1-score of 0.94 across 3,602 instances. For
class 1 (hate speech), it recorded precision of 0.52,
recall of 0.46, and an F1-score of 0.49 over 474
instances.

The macro-averaged F1-score was 0.71, and
the weighted F1-score was 0.88. This indicates
a significant disparity in performance between
classes, with high effectiveness in detecting non-
hate speech (F1: 0.94) due to the model’s handling
of the majority class. However, detecting hate



284

speech was more challenging (F1: 0.49), show-
ing that while precision (0.52) and recall (0.46)
were balanced, the minority class proved difficult
to classify accurately.

Table 4: Results for Subtask B: Hate Speech Detection
Using Hierarchical Adaptive Attention Model

prec. rec. f1 supp.
0 0.93 0.94 0.94 3602
1 0.52 0.46 0.49 474
acc. 0.73 4076
macro 0.72 0.70 0.71 4076
weighted 0.88 0.89 0.88 4076

The performance in the Subtask B using the Hi-
erarchical Gated Adaptive Attention Model is pre-
sented in Table 5. The model achieved an accuracy
of 0.86 on the test set of 4,076 samples. For class 0,
the model attained precision of 0.95, recall of 0.90,
and an F1-score of 0.92 across 3,602 instances. For
class 1, the precision was 0.44, recall was 0.63,
and F1-score was 0.52 over 474 instances. The
macro-averaged and weighted F1-score was 0.72,
and 0.87 respectively.

This architecture demonstrated strong overall
performance with 86% accuracy and improved han-
dling of class imbalance. Non-hate speech detec-
tion remained high (F1: 0.92), with excellent preci-
sion (0.95) and a slightly lower recall (0.90). Also
in hate speech detection, we observed an increase
of 0.63 in recall, although precision dropped to
0.44, indicating better minority class detection at
the cost of some additional false positives. The
macro F1-score of 0.72 and weighted F1-score of
0.87 reflect robust performance and enhanced han-
dling of the minority class.

Table 5: Results for Subtask B: Hate Speech Detection
Using Hierarchical Gated Adaptive Attention Model

prec. rec. f1 supp.
0 0.95 0.90 0.92 3602
1 0.44 0.63 0.52 474
acc. 0.86 4076
macro 0.70 0.76 0.72 4076
weighted 0.89 0.86 0.87 4076

The performance in Subtask B using the Hier-
archical Multi-head Adaptive Weighting model is
shown in Table 6. The model achieved an accuracy
of 0.89 on a Val set of 4,076 samples. For class 0,
the model recorded precision of 0.92,recall of 0.95,
and an F1-score of 0.94 across 3,602 instances.
For class 1, the precision was 0.52, the recall was
0.39, and the F1-score was 0.45 over 474 instances.

The macro-averaged F1-score was 0.69, while the
weighted F1-score was 0.88.

While achieving the highest accuracy at 89%,
the model displayed significant class imbalance
in performance. Non-hate speech detection was
highly effective. However, hate speech detection
struggled (F1: 0.45), with a low recall (0.39), in-
dicating missed detections despite moderate preci-
sion (0.52). The macro F1-score of 0.69 reflects
the challenge of achieving balanced performance
across classes, while the high weighted F1-score of
0.88 underscores strong performance on the major-
ity class.

Table 6: Results for Subtask B: Hate Speech Detection
Using Hierarchical Multi-head Adaptive Weighting

prec. rec. f1 supp.
0 0.92 0.95 0.94 3602
1 0.52 0.39 0.45 474
acc. 0.89 4076
macro 0.72 0.67 0.69 4076
weighted 0.88 0.89 0.88 4076

The performance in Subtask B using the Hi-
erarchical Multi-head Gated Adaptive Weighting
model is presented in Table 7. The model achieved
an accuracy of 0.87 on a val set of 4,076 samples.
For class 0, it demonstrated precision of 0.94, re-
call of 0.91, and an F1-score of 0.93 across 3,602
instances. For class 1, it recorded precision of
0.45,recall of 0.58, and an F1-score of 0.51 over
474 instances. The macro and weighted averaged
F1-score was 0.72 and 0.88 respectively.

The model achieved 87% accuracy with im-
proved balance across classes. Non-hate speech
detection remained strong, showing balanced pre-
cision and recall. Hate speech detection improved
(F1: 0.51) with increased recall (0.58) compared to
the non-gated version, though precision was mod-
erate (0.45). The macro F1-score of 0.72 matches
that of the gated attention model, indicating com-
parable balanced performance.

Table 7: Results for Subtask B: Hate Speech Detection
Using Hierarchical Multi-head Gated Adaptive Weight-
ing

prec. rec. f1 supp.
0 0.94 0.91 0.93 3602
1 0.45 0.58 0.51 474
acc. 0.87 4076
macro 0.70 0.75 0.72 4076
weighted 0.89 0.87 0.88 4076

In subtask B, we analyzed different proposed ar-



285

chitectures to gain crucial insights. The Hierarchi-
cal Multi-head Adaptive Weighting model achieved
the highest accuracy of 89% but showed weak
performance in detecting the minority class. In
contrast, the Hierarchical Gated Adaptive Atten-
tion model provided a more balanced performance,
with 86% accuracy and significantly improved hate
speech detection, while maintaining strong non-
hate speech detection. Both gated architectures,
Gated Adaptive Attention and Multi-head Gated
Adaptive Weighting models consistently outper-
formed their non-gated counterparts in minority
class detection, achieving macro F1 scores of 0.72.
The substantial class imbalance influenced model
behavior, with gating mechanisms proving particu-
larly effective in managing this challenge. These
results indicate that, for practical applications in
binary hate speech detection, gated architectures
offer optimal performance by balancing overall ac-
curacy with reliable minority class detection.

8.2 Task C Results
The performance of the hierarchical adaptive
weighting model for identifying hate speech targets
(Subtask C) categorized as ’individual,’ ’organi-
zation,’ or ’community’—is presented in Table 8.
The model achieved accuracy of 73% on val set of
474 samples. For class 0 (individual), it reported
precision of 0.78, recall of 0.76, and F1-score of
0.77 across 230 instances. For class 1 (organiza-
tion), the precision was 0.75, recall was 0.78, and
F1-score was 0.76 over 183 instances. For class 2
(community), the model had precision of 0.45, re-
call of 0.44, and F1-score of 0.45 over 61 instances.
The macro-averaged F1-score was 0.66, and the
weighted F1-score matched the accuracy at 0.73.

While achieving balanced macro-averaged preci-
sion and recall of 0.66, the model performed well
for individual (F1: 0.77) and organizational tar-
gets (F1: 0.76). However, identifying community
targets remained challenging, with both precision
and recall at 0.45, indicating difficulty in detect-
ing the minority class. The weighted F1-score
of 0.73 reflects the model’s proportionate perfor-
mance across the class distributions. The confusion
matrix, shown in Figure 2, provides deeper insight
into the model performance across the classes.

The Gated Adaptive Weighting model, in Sub-
task C achieved an accuracy of 75% on a test set
of 474 samples, as shown in Table 9. For class 0,
the model reported precision of 0.78, recall of 0.81,
and F1-score of 0.79 across 230 instances. For

Figure 2: Confusion matrix of the hierarchical adaptive
weighting model.

Table 8: Results for Subtask C: Hate Speech Detection
Using Hierarchical Adaptive Weighting

Prec. Rec. F1 Supp.
0 0.78 0.76 0.77 230
1 0.75 0.78 0.76 183
2 0.45 0.44 0.45 61
Acc. 0.73 474
Macro 0.66 0.66 0.66 474
Weight. 0.73 0.73 0.73 474

class 1, it recorded precision of 0.80, recall of 0.75,
and F1-score of 0.77 across 183 instances. For
class 2 , the model attained precision of 0.51,recall
of 0.52, and F1-score of 0.52 across 61 instances.
The macro-averaged F1-score was 0.69, while the
weighted F1-score was 0.75.

The gating mechanism significantly enhanced
minority class detection, resulting in an F1-score
of 0.52 with balanced precision and recall of 0.51
and 0.52, respectively. Performance on individual
targets improved, achieving an F1-score of 0.79
(precision: 0.78, recall: 0.81), while organizational
target detection reached an F1-score of 0.77 (pre-
cision: 0.80, recall: 0.75). The model demon-
strated a balanced precision-recall trade-off across
all classes, with weighted metrics consistently at
0.75, indicating robust performance regardless of
class distribution. Figure 3 presents the confusion
matrix, offering a detailed view of the performance
of the model in all classes.

The Multi-head Adaptive Weighting model in
Subtask C achieved an accuracy of 73% on val set
of 474 samples, as shown in Table 10. For class
0, the model reported precision of 0.78, recall of
0.78, and F1-score of 0.78 across 230 instances.
For class 1, it recorded precision of 0.76, recall of



286

Figure 3: Confusion matrix of the hierarchical gated
adaptive weighting model.

Table 9: Results for Subtask C: Hate Speech Detection
Using Hierarchical Gated Adaptive Weighting

Prec. Rec. F1 Supp.
0 0.78 0.81 0.79 230
1 0.80 0.75 0.77 183
2 0.51 0.52 0.52 61
Acc. 0.75 474
Macro 0.69 0.69 0.69 474
Weight. 0.75 0.75 0.75 474

0.73, and F1-score of 0.74 across 183 instances.
For class 2 , the model attained a precision of 0.47,
a recall of 0.52, and an F1-score of 0.50 across 61
instances. The macro and weighted F1-scores were
0.67 and 0.73, respectively.

With an accuracy of 73%, this model demon-
strated a slight improvement in recall (macro-recall:
0.68). Detection of individual targets maintained
strong performance (F1: 0.78), with both precision
and recall at 0.78. For organizational targets, there
was a slight decline (F1: 0.74), with precision at
0.76 and recall at 0.73. Community target detec-
tion improved moderately compared to the non-
gated hierarchical model, achieving an F1-score of
0.50, with precision at 0.47 and recall at 0.52. The
weighted metrics stabilized at 0.73, consistent with
accuracy. The confusion matrix depicted in Figure
4 sheds light on the model’s performance for each
class.

The Multi-head Gated Adaptive Weighting
model in Subtask C achieved an accuracy of 73%
on a val set of 474 samples, as shown in Table 11.
For class 0, the model achieved precision of 0.76,re-
call of 0.78, and an F1-score of 0.77 across 230 in-
stances. For class 1, it recorded a precision of 0.78,
a recall of 0.75, and an F1-score of 0.76 across 183

Figure 4: Confusion matrix of the multi-head adaptive
weighting model.

Table 10: Results for Subtask C: Hate Speech Detection
Using Muti-head Adaptive Weighting

Prec. Rec. F1 Supp.
0 0.78 0.78 0.78 230
1 0.76 0.73 0.74 183
2 0.47 0.52 0.50 61
Acc. 0.73 474
Macro 0.67 0.68 0.67 474
Weight. 0.73 0.73 0.73 474

instances. For class 2, the model attained precision
of 0.43,recall of 0.43, and F1-score of 0.43 across
61 instances. The macro-averaged F1-score was
0.66, while the weighted F1-score was 0.73.

Despite its architectural sophistication, the
model performance remained at 73% accuracy. It
showed a regression in minority class detection (F1:
0.43), with balanced but lower precision and recall
(both at 0.43). Individual target detection main-
tained effectiveness (F1: 0.77) with a precision of
0.76 and a recall of 0.78. Organizational targets
exhibited similar results (F1: 0.76) with a precision
of 0.78 and a recall of 0.75. Detailed information
on the model’s classification accuracy across the
classes can be observed in the confusion matrix
shown in Figure 5)

Table 11: Results for Subtask C: Hate Speech Detection
Using Muti-head Gated Adaptive Weighting

Prec. Rec. F1 Supp.
0 0.76 0.78 0.77 230
1 0.78 0.75 0.76 183
2 0.43 0.43 0.43 61
Acc. 0.73 474
Macro 0.66 0.65 0.66 474
Weight. 0.73 0.73 0.73 474

Comparative analysis identifies the Gated Adap-



287

Figure 5: Confusion matrix of the multi-head gated
adaptive weighting model.

tive Weighting model as the optimal architecture,
demonstrating superior performance across all eval-
uation metrics. The introduction of gating mech-
anisms significantly enhanced minority class de-
tection while maintaining strong performance on
majority classes. In contrast, the multi-head ap-
proaches, despite their complexity, did not yield
substantial improvements over simpler architec-
tures. A persistent challenge across all models is
the detection of community-targeted hate speech,
indicating need for additional techniques to address
class imbalance. These results suggest that archi-
tectural simplicity, combined with effective feature
selection through gating, outperforms more com-
plex attention mechanisms in hate speech and target
detection.

9 Appendix C (Error Analysis)

9.1 Appendix C -I

The model exhibited specific challenges in clas-
sifying tweets containing symbolic language,
named entities, and code-mixed expressions, par-
ticularly in understanding nuanced cultural and
script-specific references in Devanagari-based low-
resource languages. Figure 6 shows representative
examples that illustrate these limitations:

The tweet(Index 945) references “Anjana” in a
non-hateful, casual context within election com-
mentary. However, the model incorrectly flags
this as hate speech, demonstrating difficulties in
interpreting named individuals in colloquial, non-
aggressive contexts.

The tweet(Index 1667) critiques leadership,
which could be interpreted as negative, the lan-

Figure 6: Error analysis of samples of Substask B

guage does not explicitly target any individual or
group with hate speech.The hashtag "#NoNotA-
gain" is often associated with resistance or oppo-
sition, which may have contributed to the model’s
identification of the tweet as possibly related to
hate speech, especially in the context of political
discourse. This tweet contains a mix of Nepali and
English, phrase as a political expression of discon-
tent without hate. The model’s misclassification
reveals limitations in processing symbolic expres-
sions within code-mixed language, especially in-
volving Devanagari script. The tweet(Index 2530)
contains the term ‘"lauro" carries symbolic mean-
ing in Nepali political discourse. Used here in a
non-hostile critique of electoral commission deci-
sions, its misclassification as hate speech highlights
the model’s difficulty in interpreting culturally spe-
cific metaphors without explicit hate markers. The
tweet("Index 2615") contains hyperbolic political
rhetoric attributed to a political figure. The model’s
incorrect classification demonstrates challenges in
processing sarcasm and layered interpretation. The
language used in the tweet(Index 2443), such as
"Galat manchhelai parnayo" (voting for the wrong
person) and "sadegleka neta" (rotten leaders), car-
ries a negative tone. This could be seen as ag-
gressive or disrespectful towards political leaders,
which may have influenced the model’s classifica-
tion.However, while the tone is critical, the tweet
doesn’t contain hate speech towards any particu-
lar group. The phrase "Hajurbuba pustalai bidayi
garaun" (let’s say goodbye to the older generation
of leaders) focuses on generational change. The
critique is directed at political figures considered
outdated or ineffective, which is a common politi-
cal sentiment.The model could have misinterpreted
the critical nature of the tweet as hateful, possibly
because of the phrases "Galat manchhelai parnayo",



288

"Hajurbuba pustalai bidayi garaun" and "sadegleka
neta" (rotten leaders).

9.2 Appendix C -II
To evaluate our model’s robustness in distinguish-
ing hate speech targets, we conducted an error anal-
ysis on misclassified instances. This analysis pro-
vided insights into common misclassification pat-
terns, particularly among categories of individuals,
organizations, and communities. Figure 7 presents
examples of these errors, along with interpreta-
tions for each case. The analysis revealed specific
trends in misclassification across categories. For in-
stance, tweets targeting individuals (Class 0) were
frequently misclassified as targeting communities
(Class 2), likely due to language that generalized
statements to a broader group. Similarly, tweets
aimed at organizations (Class 1) were often misin-
terpreted as targeting communities (Class 2) due to
the use of collective or broad descriptors.

Figure 7: Error analysis of samples of Substask C

In tweet (Index 421), a specific individual "@KT-
nepal" is criticized using direct language, but the
inclusion of broader terms like "Prajatantr ko do-
hol na kaat" (loosely criticizing broader democratic
practices) likely led the model to misclassify it as
targeting a community (Class 2). Tweet (Index
206) targets a spokesperson (an individual) but also
references religious and political groups ("Ramb-
hakton" and "Jinnah"), which may have confused
the model into categorizing it as community-level
speech (Class 2). Tweet (Index 253) critiques the
BJP (a political organization) but uses phrases like
"Gulaam mansikta ke gulaam" ("slave mentality"),
which could be interpreted as a critique of a broader
societal mindset. This likely led the model to clas-
sify it under communities (Class 2) instead of or-
ganizations (Class 1). Tweet (Index 91) employs

sarcastic commentary that seems directed at an indi-
vidual due to its personal tone ("Jummon ke nazron
se hamari totee surakshit hai"), but it actually tar-
gets a group associated with a particular ideology.
The model misinterpreted this, resulting in a clas-
sification as an individual (Class 0) rather than an
organization (Class 1).

In tweet (Index 457), although the statement ref-
erences a community ("Jo apne bilon se nikal kar
bilbila rahe hain"), it is attributed to a political
leader (@myogiadityanath). This association with
an organization might have caused the model to
misclassify it as targeting an organization (Class
1) instead of a community (Class 2). The tweet
(Index 309) criticizes a group but also mentions
a specific individual, "Karn Mall." The presence
of this individual reference may have confused the
model, leading to a classification under individuals
(Class 0) rather than communities (Class 2). These
findings suggest that our model requires improved
contextual awareness, particularly in handling nu-
anced linguistic features like collective nouns and
generalized rhetoric. Future iterations could benefit
from incorporating additional context markers or
keywords associated with specific entities to en-
hance target classification accuracy."


	Introduction
	Task and Dataset Description
	Proposed Framework
	Overview
	XLM-RoBERTa
	Attention Mechanism 
	Word-level Attention
	Sentence-level Attention
	Adaptive Weighting

	Classification Head

	Experimental Settings and Evaluations Metrics
	Results and Analysis

	Conclusion
	Limitations
	Appendix A
	Advanced Attention Mechanisms
	Gated Adaptive Weighting
	Multi-head Adaptive Weighting
	Multi-head Gated Adaptive Weighting


	Appendix B
	Task B Results
	Task C Results

	Appendix C (Error Analysis)
	Appendix C -I
	Appendix C -II


