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Message from the Organizing Chairs

Welcome to the proceedings of CHiPSAL 2025, the First Workshop on Challenges in Processing South
Asian Languages (CHiPSAL), held as part of the 31st International Conference on Computational
Linguistics (COLING 2025) in Abu Dhabi, UAE, on January 19, 2025. This inaugural workshop,
conducted in virtual mode, served as a platform to explore challenges and foster collaboration in
processing South Asian languages.

The proceedings include highlights, challenges, and future directions from the workshop, presented in "A
Brief Overview of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL)."

CHiPSAL featured regular papers, invited keynotes, and shared task papers, with a focus on Devanagari-
script language understanding. Subtasks included language identification, hate speech detection, and
target classification. These contributions reflect the workshop’s mission to address linguistic and cultural
nuances, resource constraints, and orthographic complexities in low-resource South Asian languages
while advancing multilingual NLP research.

We extend our heartfelt thanks to the program committee members worldwide for their rigorous reviews,
ensuring three reviews per submission. We also express gratitude to the authors for their valuable
contributions, as well as the COLING workshop chairs and the COLING 2025 organizing committees
for their support in making this workshop a success.

We congratulate all authors on their accepted papers and are proud to note that CHiPSAL was a highly
competitive workshop. We hope it provided a meaningful platform for discussing the challenges and
future directions in South Asian language processing.

Thank you for being part of this inaugural event.

Kengatharaiyer Sarveswaran
Ashwini Vaidya
Bal Krishna Bal
Sana Shams
Surendrabikram Thapa

https://sites.google.com/view/chipsal/
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Abstract

In this paper, we provide a brief summary of
the inaugural workshop on Challenges in Pro-
cessing South Asian Languages (CHiPSAL)
held as part of COLING 2025. The workshop
included regular papers, invited keynotes, and
shared task papers, fostering a collaborative
platform for exploring challenges in process-
ing South Asian languages. The shared task
focused on Devanagari-script language under-
standing, encompassing subtasks on language
identification, hate speech detection, and tar-
get classification. This workshop series aims
to address linguistic and cultural nuances, re-
source constraints, and orthographic complex-
ities in low-resource South Asian languages
while advancing NLP research and promoting
multilingual inclusivity.

1 Introduction

South Asia, encompassing Afghanistan,
Bangladesh, Bhutan, India, Maldives, Nepal,
Pakistan, and Sri Lanka, is one of the world’s
most populous regions, accounting for nearly a
quarter of the global population (see Table 1).
The region is linguistically diverse, featuring
languages from at least four major language
families and several potential linguistic isolates.
(Hock and Bashir, 2016; Arora et al., 2022)
With over 700 languages and approximately 25
major scripts, South Asia boasts a rich cultural
and linguistic heritage. Furthermore, over 50
million South Asians reside abroad. Despite
this remarkable diversity, South Asian languages
remain significantly underrepresented in language
technology.

Recent large language models (LLMs) incorpo-
rate limited data from South Asia, and the pro-
cessing of South Asian languages presents signifi-
cant challenges, starting with encoding issues. Al-
though most scripts are standardized in Unicode,
many applications fail to render them accurately
due to orthographic complexities. Additionally,
input methods for these languages remain a per-
sistent barrier in the region. The linguistic com-
plexity of South Asian languages, characterized
by diverse writing systems and extensive literary
traditions, further complicates natural language pro-
cessing (NLP) tasks. Dialectal and cultural varia-
tions, along with the close linguistic relationships
among these languages, introduce additional layers
of complexity.

This workshop addresses the multifaceted chal-
lenges in processing South Asian languages, fo-
cusing on linguistic and cultural factors, encoding
and orthographic issues, and resource constraints.
By tackling these issues, we aim to advance NLP
for South Asian languages while preserving and
promoting their rich linguistic and cultural heritage.
In this paper, we provide a brief overview of our
accepted papers, shared tasks, and the workshop’s
future directions.

2 Submission and Review

We received 46 long papers, 13 short papers for the
main track of CHiPSAL workshop, and 20 shared-
task papers which is organised as the part of the
workshop. Twelve papers were later withdrawn by
authors, and two papers were desk-rejected.

We accepted a total of 38 papers for the work-
1



Country Population (millions) Living Languages Literacy Rate (%)

Afghanistan 38.347 33 43
Bangladesh 166.303 36 74
Bhutan 0.772 21 67
India 1380 424 74
Maldives 0.541 1 98
Nepal 30.226 109 68
Pakistan 225.2 68 59
Sri Lanka 22.156 5 92
Total 1863.549 697 -

(23.43% of World) (10.07% of World)

Table 1: South Asian Languages and Literacy Data (Eberhard et al., 2024)

shop, including 3 short papers, 17 long papers, and
18 shared task papers. For the main workshop
track, 48 submissions were considered for review,
of which 20 were accepted, resulting in an accep-
tance rate of approximately 41.7%. Of these, 8
papers were selected for oral presentations, while
the remaining 12 were designated for poster presen-
tations. The selection for oral and poster presenta-
tions aimed to ensure coverage of diverse tasks and
languages while accommodating all presentations
within a single day. Each submission underwent a
rigorous review process, with three program com-
mittee members evaluating each paper to ensure a
fair and thorough assessment. Overall, 55 program
committee members from around the world, repre-
senting both academia and industry, contributed to
the review process.

The submissions cover research on Bengali, En-
glish, Hindi, Kannada, Malayalam, Nepali, Pashto,
Punjabi, Sinhala, Tamil, Telugu and Urdu lan-
guages on topics e.g. low-resource language chal-
lenges, script and linguistic complexity, speech
processing and recognition, hate speech and code-
mixing, and linguistic resource development.

3 Accepted papers

3.1 Long papers

Thapa et al. (2025a), in Development of Pre-
Trained Transformer-based Models for the Nepali
Language, highlight the under-representation of
Nepali in NLP due to limited resources and mono-
lingual corpora. They address this by collect-
ing 27.5 GB of Nepali text data and pre-training
BERT, RoBERTa, and GPT-2 models. They also
explore instruction tuning, improving performance
on Nepali datasets. Their models surpass the Nep-

gLUE benchmark by 2 points, scoring 95.60, and
perform better on text generation tasks, advancing
Nepali text processing.

Chavinda and Thayasivam (2025), in A Dual
Contrastive Learning Framework for Enhanced
Hate Speech Detection in Low-Resource Lan-
guages, address hate speech detection in Sinhala
and Tamil. They introduce a framework combining
Multilingual Large Language Models (MLLMs)
with Dual Contrastive Learning (DCL) to enhance
detection. Using datasets from Facebook and Twit-
ter, their approach outperforms traditional models,
with the Twitter/twhin-bert-base model showing
the best results. This study advances hate speech
detection in low-resource languages.

Dhakal and Baral (2025), in Abstractive Summa-
rization of Low-Resourced Nepali Language Us-
ing Multilingual Transformers, apply mBART and
mT5 models to summarize Nepali news headlines.
They create a headline corpus and fine-tune the
models with Low-Rank Adaptation (LoRA) and
quantization. Evaluations show the 4-bit quantized
mBART model performs best. This work advances
abstractive summarization and NLP for Nepali.

Neupane et al. (2025), in Structured Information
Extraction from Nepali Scanned Documents Using
Layout Transformer and LLMs, develop methods
for extracting information from Nepali documents.
They use the Language Independent Layout Trans-
former (LiLT), achieving an F1 score of 0.87, and
compare it with LLMs like GPT-4o and Llama 3.1
8B. Their findings provide a foundation for digitiz-
ing Nepali texts.

Duwal et al. (2025), in Domain-Adaptive Contin-
ual Learning for Low-Resource Tasks: Evaluation
on Nepali, explore domain-adaptive pre-training
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(DAPT) to improve Llama 3 8B for Nepali. Us-
ing synthetic data and 4-bit QLoRA, they evaluate
performance and knowledge retention, finding a
19.29% improvement in higher-shot evaluations.
This study highlights DAPT’s potential for low-
resource tasks.

Rahothvarman et al. (2025), in Bridge the GAP:
Multi-Lingual Models for Ambiguous Pronominal
Coreference Resolution in South Asian Languages,
address coreference resolution in Dravidian lan-
guages by creating the mGAP dataset. They de-
velop joint embedding and cross-attention models,
demonstrating the latter’s effectiveness in capturing
pronoun-candidate relations and leveraging transfer
learning for low-resource languages.

Dasari et al. (2025), in Sandhi Splitting in Tamil
and Telugu: A Sequence-to-Sequence Approach
Leveraging Transformer Models, tackle sandhi
splitting by creating annotated corpora and imple-
menting sequence-to-sequence transformers. Their
models, evaluated on the IN22-Conv Benchmark,
improve preprocessing for morphologically rich
languages like Tamil and Telugu.

James and Krishnamurthy (2025), in POS-Aware
Neural Approaches for Word Alignment in Dra-
vidian Languages, explore neural methods like
SimAlign and AWESOME-align for Tamil and Tel-
ugu. They show that POS-tag fine-tuning improves
alignment accuracy by 6–7% and investigate cross-
linguistic mappings with English, highlighting the
complexities of low-resource language alignment.

Pokharel and Agrawal (2025), in neDIOM:
Dataset and Analysis of Nepali Idioms, introduce
a Nepali idioms dataset and evaluate multilingual
models on processing figurative language. They
find that smaller models outperform larger ones,
offering a resource for advancing idiom processing
in low-resource languages.

Tahir et al. (2025), in Benchmarking the Per-
formance of Pre-Trained LLMs Across Urdu NLP
Tasks, benchmark seven pre-trained LLMs across
17 Urdu NLP tasks. They find models with richer
language-specific data, like Llama 3.1-8B, often
outperform larger models in tasks, emphasizing the
importance of linguistic diversity in NLP research.

Khalid et al. (2025), in Bridging the Bandwidth
Gap: A Mixed Band Telephonic Urdu ASR Ap-
proach with Domain Adaptation for Banking Ap-
plications, presents a telephonic Urdu ASR sys-
tem using a corpus of 445 speakers. Comparing
GMM-HMM and TDNN models, they find TDNN

outperforms GMM-HMM. Mixing narrow-band
and wide-band speech reduces Word Error Rates
(WER), and domain adaptation with a specialized
lexicon enhances performance for banking applica-
tions.

Chhetri and Poudyal (2025), in Impacts of
Vocoder Selection on Tacotron-Based Nepali Text-
To-Speech Synthesis, evaluate WaveNet and Mel-
GAN vocoders for Nepali TTS. The study uses
Nepali OpenSLR and News male voice datasets.
They find that Tacotron2 + MelGAN consistently
outperforms Tacotron2 + WaveNet in naturalness
and higher Mean Opinion Score (MOS).

Thevakumar et al. (2025), in EmoTa: A Tamil
Emotional Speech Dataset, introduce a dataset of
936 utterances from 22 Tamil speakers expressing
five emotions. Fleiss’ Kappa shows substantial
agreement (0.74), and machine learning models
achieve F1-scores above 0.90 for emotion classi-
fication. EmoTa supports Tamil speech emotion
recognition research.

Ghimire et al. (2025), in Improving Accuracy of
Low-Resource ASR Using Rule-Based Character
Constituency Loss (RBCCL), introduce RBCCL to
improve transcription in Devanagari script. Com-
bining RBCCL with cross-entropy loss reduces
Word Error Rate (WER) from 47.1% to 23.41%,
enhancing low-resource ASR performance.

Thayasivam et al. (2025), in SiTa - Sinhala and
Tamil Speaker Diarization Dataset in the Wild, in-
troduce a dataset addressing the lack of conversa-
tional data for speaker diarization in Sinhala and
Tamil. They benchmark existing models, provid-
ing a resource for advancing speaker diarization in
low-resource languages.

Srivastava (2025), in DweshVaani: An LLM for
Detecting Religious Hate Speech in Code-Mixed
Hindi-English, proposes Dwesh-Vaani, a fine-tuned
Gemma-2 model outperforming other approaches
for detecting hate speech and religion-specific tar-
gets in code-mixed Hindi-English. The study high-
lights challenges and opportunities in this domain.

Tanjila et al. (2025), in Bengali ChartSumm: A
Benchmark Dataset and Study on Feasibility of
Large Language Models on Bengali Chart-to-Text
Summarization, introduce a dataset with 4,100 Ben-
gali charts and summaries. Evaluating models like
mT5 and BanglaT5, they establish baselines to sup-
port low-resource NLP research.
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3.2 Short papers

Karim and Uzuner (2025), in Leveraging Machine-
Generated Data for Joint Intent Detection and
Slot Filling in Bangla: A Resource-Efficient Ap-
proach, generated a Bangla dataset for Natural
Language Understanding (NLU) by translating the
English SNIPS dataset (Coucke et al., 2018) using
the LLaMA-3 model, focusing on intent detection
and slot-filling tasks. They evaluated both sepa-
rate and joint modeling approaches using different
BERT variants, finding that the multilingual BERT
(mBERT) achieved the best performance, with
97.83% intent accuracy and 91.03% slot-filling F1
score.

Sehar et al. (2025), in Benchmarking Whisper
for Low-Resource Speech Recognition: An N-Shot
Evaluation on Pashto, Punjabi, and Urdu, bench-
marked the Whisper ASR model’s performance on
three low-resource languages - Pashto, Punjabi, and
Urdu - by first evaluating its zero-shot performance
and then fine-tuning the Whisper Small model on
domain-specific datasets. They found that few-shot
fine-tuning significantly reduced the Word Error
Rate (WER), with improvements ranging from 6-
19 percentage points across different languages and
datasets, demonstrating the potential of adapting
Whisper to low-resource language contexts.

Khade et al. (2025), in Challenges in Adapting
Multilingual LLMs to Low-Resource Languages
using LoRA PEFT Tuning, investigated the
challenges of adapting Large Language Models
(LLMs), specifically Gemma models, to Marathi,
a low-resource language, using Low-Rank Adap-
tation (LoRA) Parameter-Efficient Fine-Tuning
(PEFT). While automated evaluation metrics
suggested a performance decline after fine-tuning,
manual assessments revealed that the fine-tuned
models often outperformed their original versions,
particularly in generating contextually relevant
responses.

4 Shared Task on Natural Language
Understanding of Devanagari Script
Languages

This shared task (Thapa et al., 2025b) aimed
to address critical challenges in understanding
Devanagari-script languages, which include Hindi,
Nepali, Marathi, Sanskrit, and Bhojpuri. By focus-
ing on language identification, hate speech detec-
tion, and target classification, the task sought to

develop robust and generalizable NLP models for
these linguistically rich but underrepresented lan-
guages. The task attracted widespread participation
with 113 participants.

4.1 Shared Task Description
The shared task comprised three subtasks to ex-
plore different aspects of Devanagari-script lan-
guage understanding. Subtask A focused on
identifying the language of a given text among
five Devanagari-script languages. Subtask B in-
volved detecting whether a given text contained
hate speech. Subtask C required identifying the
target of hate speech, categorizing it as directed
toward an individual, a community, or an organiza-
tion. These tasks encouraged the development of
models capable of addressing linguistic complexity
and cultural nuances in diverse contexts.

4.2 Winning Team Performances
The winning teams employed innovative method-
ologies and domain-specific adaptations to achieve
state-of-the-art performance across all three sub-
tasks, showcasing the potential of multilingual and
low-resource NLP research. Below, we give a short
description of the approaches for winning teams in
each subtask.

4.2.1 Subtask A
Team CUFE (Ibrahim, 2025) utilized fastText clas-
sifier for language identification, leveraging its sub-
word modeling capabilities through n-grams along
with systematic token generation using the tok-
enizer vy Team et al. (2022). The proposed system
achieves a near-perfect F1 score of 0.9997 on the
test set and secures the first position in the shared
task.

4.2.2 Subtask B
Team Paramananda (Acharya et al., 2025) utilized
FastText and demonstrated superior performance,
particularly with data augmentation, achieving an
F1 score of 81.39% and scoring first position on
the leaderboard. This outperformed BERT, which
struggled with an F1 score of 0.5763. Despite its
contextual embedding strengths, BERT’s underper-
formance was attributed to overfitting on sparse
datasets, as evidenced by a higher evaluation score
that did not generalize to test data.

4.2.3 Subtask C
Team MDSBots (Thapaliya et al., 2025) used a
hybrid approach for the detection of the targets of
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hate speech. Their approach involved augmenting
the data with synthetic examples using synonym re-
placement and GPT-4, addressing class imbalance
for minority categories like ‘community’. Addi-
tionally, a rule-based Named Entity Recognition
(NER) tagger was applied to identify entities such
as individuals, organizations, and groups within
tweets. These NER tags were incorporated into the
model’s input to improve performance, resulting
in the highest F1 score in the competition. NER
has historically shown good performance in target
identification (Thapa et al., 2023).

5 Discussion on Challenges in Processing
South Asian Languages

South Asian language processing poses significant
challenges that stem from the region’s linguistic
diversity, complex scripts, and limited availability
of resources. These challenges are compounded by
the region’s rich cultural and dialectal variations,
creating additional obstacles for NLP applications.
In this section, we examine several of these key
challenges, drawing insights from accepted papers.

5.1 Low-Resource Nature and Data Scarcity

One of the foremost challenges is the lack of ad-
equate linguistic resources, including annotated
datasets, corpora, and pre-trained models for many
South Asian languages. As highlighted by Thapa
et al. (2025a), the scarcity of monolingual corpora
and benchmarks limits the development of robust
language models. For example, Nepali has limited
large-scale datasets, and efforts such as pretraining
language models on collected corpora are necessary
to bridge this gap. Similarly, the lack of datasets
for figurative language processing, such as idioms
in Nepali (Pokharel and Agrawal, 2025), highlights
the need for resource development to tackle specific
linguistic phenomena.

5.2 Script and Orthographic Complexity

The South Asian linguistic landscape includes over
25 major scripts, many of which have complex or-
thographic rules that challenge standard encoding
and rendering systems. Issues such as conjunct
consonants, diacritical marks, and inconsistent Uni-
code implementation often lead to errors in text rep-
resentation. As discussed by Ghimire et al. (2025),
the Devanagari script, used in Nepali, Hindi, and
Marathi, presents unique challenges for automatic
speech recognition (ASR) and transcription due

to its character-level complexities. Solutions like
Rule-Based Character Constituency Loss (RBCCL)
show promise in addressing transcription errors in
Devanagari script (Ghimire et al., 2025).

5.3 Dialectal and Cultural Variations

South Asian languages often have multiple dialects
with significant lexical and syntactic variations,
making the development of universal models dif-
ficult. This diversity is further complicated by the
lack of standardization in data collection and an-
notation. Papers like Chavinda and Thayasivam
(2025) demonstrate how multilingual models must
account for these variations to improve tasks like
hate speech detection in south Asian languages like
Tamil and Sinhala. Data augmentation and domain
adaptation are critical for enhancing model perfor-
mance across diverse dialectal contexts.

5.4 Linguistic Challenges

Languages like Tamil and Telugu, with their agglu-
tinative morphology and intricate sandhi rules, chal-
lenge tokenization and translation systems. Spe-
cialized algorithms are required to address these
linguistic features effectively (Dasari et al., 2025).

5.5 Code-Mixing and Multilinguality

Code-mixing, or the blending of languages within
the same text, is a prevalent phenomenon in South
Asia, particularly in social media and informal com-
munication. This introduces additional challenges
for NLP tasks like hate speech detection and sen-
timent analysis. The work by Srivastava (2025)
exemplifies this issue by focusing on code-mixed
Hindi-English hate speech detection. Fine-tuning
multilingual models for such mixed-language con-
texts is an ongoing research challenge.

5.6 Speech and Text Processing

Speech recognition and text-to-speech systems face
unique difficulties in South Asian languages due
to phonetic richness and resource constraints. The
lack of diverse speech datasets, as addressed by
Chhetri and Poudyal (2025), limits the develop-
ment of robust models. Similarly, the introduction
of datasets like EmoTa for Tamil speech emotion
recognition (Thevakumar et al., 2025) is a step
forward in addressing the need for expanding re-
sources in underrepresented languages.
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5.7 Bias and Evaluation Limitations

The inherent biases in multilingual pre-trained mod-
els pose another significant challenge. Models
trained on limited or skewed data often fail to gen-
eralize across different languages and tasks. Tahir
et al. (2025) emphasize the need for benchmark-
ing models on diverse set of tasks and languages,
such as Urdu, to identify and mitigate these biases
effectively.

5.8 Resource and Infrastructure Constraints

Unlike high-resource languages, South Asian lan-
guages suffer from limited computational and fi-
nancial resources, which hampers the development
of advanced models. The use of parameter-efficient
fine-tuning methods like LoRA (Khade et al., 2025)
offers a promising direction to address these con-
straints, enabling efficient model adaptation for
low-resource settings.

5.9 Future Directions

While some progress has been made, addressing
these challenges requires a multifaceted approach.
Collaborative resource creation, the development
of domain-specific models, and culturally informed
annotation practices are critical for advancing NLP
in South Asian languages. Furthermore, as demon-
strated by CHiPSAL shared tasks (Thapa et al.,
2025b), targeted competitions and benchmarks can
drive innovation and foster community-driven solu-
tions to these complex problems. In summary, ad-
dressing the challenges in processing South Asian
languages requires a combination of innovative
methods, resource development, and community
collaboration. By tackling these issues, we can en-
hance inclusivity and robustness of NLP systems
for the diverse linguistic landscape of South Asia.

6 Future Directions of the Workshop

In the future, the CHiPSAL workshop aims to ex-
pand its role as a leading platform for addressing
the challenges and opportunities in South Asian
language processing. Building upon the success
of its inaugural workshop, the organizers plan to
diversify the workshop’s activities to foster deeper
engagement and collaboration within the commu-
nity. To encourage active participation and knowl-
edge exchange, we aim to introduce interactive
sessions such as expert panels, hands-on tutori-
als, and focused round-table discussions. These
sessions will highlight emerging issues, including

improving low-resource NLP methods, mitigating
biases in multilingual and multimodal systems, and
advancing cultural and linguistic inclusivity in AI.

Future workshops will place a strong empha-
sis on resource creation and open collaboration.
We plan to organize dedicated tracks for dataset
curation, multilingual benchmarking, and model
development tailored to South Asian languages.
These initiatives will address the lack of publicly
available resources and benchmarks, empowering
researchers and practitioners to develop state-of-
the-art solutions for underrepresented languages.
We also intend to expand the scope of shared
tasks, introducing new challenges that encompass
speech processing, code-mixing, figurative lan-
guage understanding, and cross-modal applications.
These tasks will encourage participants to tackle
diverse linguistic phenomena and real-world sce-
narios unique to South Asia.

As NLP evolves, future CHiPSAL workshops
will focus on leveraging advances in LLMs and
multimodal systems for South Asian languages.
This will include exploring innovative techniques
such as continual learning, low-resource fine-
tuning, and transfer learning, ensuring that state-
of-the-art technologies are effectively adapted to
the linguistic diversity of the region. Additionally,
the workshop will continue to address ethical con-
siderations, such as mitigating biases and ensuring
fair representation in AI systems for South Asian
languages. By promoting community-driven solu-
tions and interdisciplinary collaboration, we aim to
establish CHiPSAL as a key platform for the devel-
opment of inclusive and impactful NLP in South
Asia.

7 Conclusion

The inaugural CHiPSAL workshop provided a plat-
form to address the challenges and opportunities
in processing South Asian languages, emphasizing
their linguistic diversity, script complexity, and low-
resource nature. With contributions ranging from
new datasets and benchmarks to advanced model
fine-tuning, the workshop welcomed innovative
approaches to tackle issues like code-mixing, di-
alectal variation, and linguistic resource constraints.
Our shared task, which was participated by over
100 participants, also helped students and early-
career researchers to understand and work on the
problems within Devanagari NLU. Moving for-
ward, CHiPSAL aims to expand its scope, foster
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greater collaboration, and address emerging issues,
with a focus on resource creation, ethical AI prac-
tices, and equitable access. By driving impact-
ful research and fostering community engagement,
CHiPSAL aspires to create lasting contributions
that empower both academic and applied NLP for
South Asia’s rich linguistic and cultural heritage.
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Abstract

Transformer-based pre-trained language mod-
els have dominated the field of Natural Lan-
guage Processing (NLP) for quite some time
now. However, the Nepali language, spoken
by approximately 32 million people worldwide,
remains significantly underrepresented in this
domain. This underrepresentation is primar-
ily attributed to the scarcity of monolingual
data corpora and limited available resources
for the Nepali language. While existing ef-
forts have predominantly concentrated on ba-
sic encoder-based models, there is a notable
gap in the exploration of decoder-based archi-
tectures. To address this gap, we have col-
lected 27.5 GB of Nepali text data, approxi-
mately 2.4x larger than any previously avail-
able Nepali language corpus. Leveraging this
data, we pre-trained three different models i.e.,
BERT, RoBERTa, and GPT-2, exclusively for
the Nepali Language. Furthermore, we per-
formed instruction tuning and explored its po-
tential for monolingual Nepali data, providing a
foundation for future research. Our models out-
performed the existing best model by 2 points
on Nep-gLUE benchmark, scoring 95.60 and
also outperformed existing models on text gen-
eration tasks, demonstrating improvements in
both understanding and generating Nepali text.

1 Introduction

In recent years, Natural Language Processing
(NLP) has undergone a remarkable evolution, tran-
sitioning from traditional rule-based to statistical
methods to sophisticated deep learning architec-
tures. The initial approaches, such as n-grams
(Goodman, 2001) and rule-based systems, laid the
groundwork for understanding language. But these
methods faced significant limitations in handling
the complexities of natural language and general
human communication, which often involves sub-
tle nuances, contextual dependencies, and varying
linguistic structures.

The introduction of Recurrent Neural Networks
(RNNs) (Mikolov et al., 2010) and Long Short-
Term Memory networks (LSTMs) (Sundermeyer
et al., 2012) for language modeling marked a signif-
icant advancement, allowing models to process se-
quential data more effectively. RNNs and LSTMs
brought notable improvements in tasks like lan-
guage modeling and sequence prediction. How-
ever, they still encountered challenges with long-
range dependencies and computational efficiency,
which limited their scalability and performance.
These models require substantial computational
resources and face difficulties in maintaining con-
sistent performance across varying lengths of text
and contexts. The development of the self-attention
mechanism (Vaswani et al., 2017) marked a pivotal
moment in NLP, enabling models to capture depen-
dencies in text more effectively. The self-attention
mechanism, integral to the Transformer architec-
ture, allows models to weigh the importance of
different words in a sequence, facilitating a more
nuanced understanding of context. This was fur-
ther enhanced by the concept of self-supervised
model pre-training, where models like ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019) and
GPT (Radford et al., 2018), leveraged vast amounts
of unlabeled text data to learn general language
representations. These models demonstrated un-
precedented performance improvements across a
range of NLP tasks.

Further advancements in NLP include instruc-
tion tuning (Wei et al., 2021; Wang et al., 2022),
which trains models on instruction-output pairs to
improve their ability to follow user commands.This
method enhances the model’s ability to follow spe-
cific user commands and adapt to diverse appli-
cation scenarios. Instruction tuning has proven
effective in improving the versatility and respon-
siveness of models, allowing them to better handle
varied tasks and user interactions. Models, through
unsupervised pre-training on large corpora, and
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instruction-tuning have demonstrated the ability to
generalize across various tasks, achieving state-of-
the-art results.

Nepali is spoken by over 32 million people
worldwide. Syntactically, the Nepali language dif-
fers significantly from English. In English, the
typical sentence structure follows a Subject-Verb-
Object (SVO) order whereas Nepali employs a
Subject-Object-Verb (SOV) structure (Timilsina
et al., 2022). Nepali language incorporates a com-
plex system of noun, adjective and verb inflections.
Nouns have a system of gender, case and num-
ber (Bal, 2004). This fundamental difference in
syntactic arrangement highlights the unique charac-
teristics of Nepali and underscores the challenges
pertinent to natural language processing tasks in
the Nepali language.

Our motivation for developing a monolingual
language model for Nepali language comes from re-
cent advancements in natural language processing,
particularly the success of large-scale pre-trained
models. However, the majority of these develop-
ments have focused on high-resource languages,
leaving a gap in the availability of robust models for
low-resource languages like Nepali. To address this
disparity, we developed pre-trained monolingual
language models for the Nepali language. Our first
steps included compiling a dataset, large enough to
develop pre-trained language models. We assem-
bled approximately 27.5 GB of text data by scrap-
ing the top 99 Nepali news websites, representing
the largest Nepali language dataset to date. We also
used an instruction-tuning dataset to explore the
potential of instruction-tuned models for Nepali,
providing a foundation for future advancements.

This paper outlines our methods for developing
pre-trained models and presents a thorough eval-
uation of their performance and comparison with
existing models, setting new standards for Nepali
NLP and contributing significantly to research on
low-resource languages.

2 Related Works

The development of pre-trained language models
has been foundational in advancing NLP, and a
variety of approaches have emerged over the years.
In this section, we briefly review the key methods
that have influenced the creation and evolution of
language models.

2.1 Unsupervised Pre-training Approaches

Early methods for developing pre-training lan-
guage models utilized unsupervised learning to
create generalized representations, with word em-
beddings like Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) establishing the
foundation by learning vector representations of
words from large text corpora. These embeddings
enhanced performance across various NLP tasks
by capturing semantic relationships in a continuous
vector space. The advent of contextualized word
embeddings marked a significant advancement, ex-
emplified by (Peters et al., 2018), which generated
dynamic embeddings based on surrounding text
using bidirectional LSTM networks, leading to im-
proved results in benchmarks such as Question An-
swering and Named Entity Recognition. The intro-
duction of the Transformer architecture (Vaswani
et al., 2017) further revolutionized the field, giv-
ing rise to models like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ELECTRA (Clark
et al., 2020), DeBERTa (He et al., 2020) and GPT
(Radford et al., 2018). BERT and other encoder
model’s bidirectional training approach allowed it
to predict masked words by considering both left
and right context, achieving state-of-the-art results
across numerous NLP tasks, while GPT’s autore-
gressive method excelled in text generation and
completion.

2.2 Multilingual and Monolingual Language
Models

The release of multilingual models, such as m-
BERT (Pires et al., 2019), XLM (Lample and Con-
neau, 2019) and XLM RoBERTa (Conneau et al.,
2020) which includes support for languages like
Nepali, has further expanded the accessibility of
NLP tools across different languages. While these
models offer impressive results for many languages,
their performance for languages other than English
is still not up to the mark due to limited training
data, issues with tokenization, lack of adequate
vocabulary, and absence of techniques to handle
linguistic diversity.

Recently, numerous powerful monolingual mod-
els for languages other than English have emerged
showing promising results such as NorBERT (Ku-
tuzov et al., 2021) for Nordic languages, FinBERT
(Virtanen et al., 2019) for Finnish language, Her-
BERT (Mroczkowski et al., 2021) for Polish lan-
guage, GBERT (Chan et al., 2020) for German
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language, Chinese BERT (Cui et al., 2021) for Chi-
nese language, NepBERTa (Timilsina et al., 2022)
for Nepali language etc. These models have demon-
strated that optimizing tokenizers and architectures
for specific languages can lead to substantial im-
provements in performance.

Few of the models have also focused on the
Nepali language. IndicBERT (Doddapaneni et al.,
2022) focused on several Indic languages, in-
cluding Nepali, and demonstrated that language-
specific models could outperform their multilin-
gual counterparts on specialized tasks. NepBERTa
(Timilsina et al., 2022) introduced a BERT-based
language model specifically for the Nepali lan-
guage, trained on the largest monolingual Nepali
corpus with 0.8 billion words collected from vari-
ous sources. They also established the first Nepali
Language Understanding Evaluation benchmark
(Nep-gLUE). Similarly, NepaliBERT (Pudasaini
et al., 2023) also developed a monolingual BERT
model specifically for the Nepali language. These
models demonstrate the importance of optimiz-
ing tokenizers and architectures for addressing the
unique characteristics of individual languages, es-
pecially those with complex syntactic and morpho-
logical structures like Nepali.

2.3 Instruction Tuning on Low-Resource
Language Models

Instruction tuning has recently gained attention
as a technique to substantially improve zero-shot
performance on unseen tasks (Wei et al., 2021;
Wang et al., 2022; Ouyang et al., 2022). This
method involves fine-tuning pre-trained models on
tasks that require the model to understand and ex-
ecute explicit instructions, thereby increasing its
adaptability and effectiveness across a variety of
tasks. While this approach has been widely ex-
plored for high-resource languages, its potential in
low-resource languages, such as Nepali, remains
unexplored.

3 Dataset

This section describes the dataset used in our study,
focusing on the methodologies implemented for
data collection and preprocessing. Given the neces-
sity for extensive training data in transformer-based
language models, we compiled a dataset that is by
far the largest one for the Nepali language.

3.1 Dataset Collection

Recently, the rise in digital content in Nepali has
led to the increasing number of Nepali-language
websites. This has opened doors to creating a com-
prehensive Nepali language corpus for which we
performed web scraping across 99 Nepali news
websites. As a result, we were able to gather a
dataset totaling 30.4 GB of text data, which is sig-
nificantly larger than existing resources.

We made a deliberate decision not to include
existing datasets, such as the Nepali Wikipedia
(Arora, 2020) dataset which is less than 1GB, the
OSCAR dataset (Suarez et al., 2019) which is ap-
proximately 3GB, and the 12.5 GB dataset from
NepBERTa (Timilsina et al., 2022). This choice
was based on the fact that all these existing datasets
were also scraped from news websites, which over-
lapped with our sources. To avoid duplication and
ensure the uniqueness of our dataset, we opted to
scrape all content from scratch.

For Instruction Tuning, we utilized the publicly
available Nepali alpaca dataset (Kafley, 2024)) con-
taining 52k rows of instructions. We cleaned the
data by removing/translating all the non-Nepali
texts. After the cleaning process, we achieved 40k
rows of instructions.

3.2 Dataset Preprocessing

Following the data collection phase, we imple-
mented a preprocessing pipeline to enhance the
quality of the dataset. First, we implemented a
deduplication process to remove redundant content,
which was essential due to the extensive nature of
our data collection. To address the challenge of
multilingual content often found on news websites,
we removed or translated the languages other than
Nepali depending upon the context. We also devel-
oped specialized scripts to remove noise, eliminat-
ing non-textual elements such as HTML tags, spe-
cial characters, and formatting artifacts common in
web-scraped data. Additionally, text normalization
techniques, including Unicode normalization, were
applied to standardize character representation and
maintain consistency. After these preprocessing
steps, the dataset was refined and reduced to 27.5
GB, ensuring it was clean and well-suited for model
training.

3.3 Tokenization

Tokenization is a crucial preprocessing step in natu-
ral language processing that breaks text into smaller
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units, such as words or subwords, enabling effec-
tive processing by language models. Traditional
word piece tokenization methods (Wu et al., 2016)
rely on splitting text based on spaces and punctu-
ation and often encounter limitations with out-of-
vocabulary (OOV) words and morphological varia-
tions, leading to potential information loss. In con-
trast, Byte-Pair Encoding (BPE) (Sennrich et al.,
2016) tokenization addresses these limitations by
segmenting words into subword units. BPE im-
proves the handling of rare or unseen words by
breaking them down into more manageable sub-
word units, which helps in retaining meaningful
information and maintaining consistency across
different word forms. This method provides opti-
mal balance between vocabulary size and coverage,
which is particularly beneficial for morphologically
rich languages like Nepali, where word forms can
vary significantly.

For our study, we utilized the entire dataset to
create two different BPE tokenizers, one with a
vocabulary size of 30,522 and another with a vo-
cabulary size of 50,256. These tokenizers were
designed to optimize the balance between computa-
tional efficiency and linguistic coverage, ensuring
that our language models could effectively process
and understand Nepali text.

4 BERT & RoBERTa

BERT and RoBERTa are both built upon the trans-
former encoder architecture, which serves as the
foundation for their robust natural language pro-
cessing capabilities. While they share this com-
mon architecture, they differ significantly in their
training methodologies and objectives. BERT, in-
troduced by (Devlin et al., 2019), employs two
distinct pretraining objectives: Masked Language
Modeling (MLM) and Next Sentence Prediction
(NSP). In the MLM task, certain words within a
sentence are intentionally masked, and the model’s
goal is to predict these masked words using the
context provided by the surrounding words. Simi-
larly, in the NSP task, the model is presented with
pairs of sentences and must determine whether the
second sentence logically follows the first or if
it is a random, unrelated sentence. In contrast,
RoBERTa(Liu et al., 2019) focuses solely on the
MLM objective, excluding the NSP task altogether,
which has been shown to perform better in various
benchmarks.

For our study. we pretrained single BERT (De-

Figure 1: Loss and accuracy of the BERT and RoBERTA
model compared with steps

vlin et al., 2019) variant comprising 110 million
parameters using the tokenizer of vocabulary size
30,522. Similarly, we also pretrained the single
RoBERTa(Liu et al., 2019) variant, also compris-
ing 110 million parameters, using the tokenizer of
vocabulary size 50,257.

In the case of both BERT (Devlin et al., 2019)
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), we used a batch size of 256 and trained for
400k steps. We chose the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 1 × 10−4,
β1 = 0.9, β2 = 0.999, and included an L2 weight
decay of 0.01. We also implemented a learning rate
warmup for the first 10,000 steps, followed by a
linear decay to ensure smooth training. To improve
generalization, we set a dropout probability of 0.1
on all layers. For activation, we used the Gaussian
Error Linear Unit (GELU) (Hendrycks and Gimpel,
2016) function.

The training loss and accuracy trends for BERT
and RoBERTa models are illustrated in Figure 1.
For BERT, the training loss starts at 8.34 and gradu-
ally decreases to 1.51 after 400k steps, while accu-
racy improves from 3% to 68.11%. In comparison,
RoBERTa begins with a training loss of 7.45, which
steadily drops to 1.47 by 400k steps, achieving a
slightly higher accuracy of 69.72%. The figure
underscores RoBERTa’s faster convergence and
marginally better performance than BERT.

5 GPT-2

In the case of GPT-2 (Radford et al., 2019), we
pretrained the 124M parameter model using the
causal language modeling (CLM) objective, as de-
scribed in the original GPT-2 paper (Radford et al.,
2019). CLM, as outlined in the original GPT-2 pa-
per (Radford et al., 2019), is designed to predict the
next word in a sequence given the preceding con-
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Figure 2: Loss and Perplexity of the GPT2 model com-
pared with steps

text. Unlike BERT’s masked language modeling,
which predicts masked words from the surrounding
context, CLM operates in a left-to-right manner.
This means that the model generates text sequen-
tially, using only the preceding words to predict
the next word in the sequence. We used a batch
size of 256 and trained for 500k steps. We used the
Adam optimizer with a learning rate of 1× 10−4,
β1 = 0.9, β2 = 0.98, and an L2 weight decay of
0.01. Similar to BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), we implemented a
learning rate warmup over the first 10,000 steps,
followed by a linear decay. To regularize the model,
we set the dropout probability to 0.1 across all lay-
ers. This model was also trained using the GELU
activation function (Hendrycks and Gimpel, 2016).
Furthermore, we performed instruction tuning on
the pretrained model using supervised fine-tuning.
We used a batch size of 16, the Adam optimizer
with a learning rate of 1× 10−4, and an attention
dropout probability of 0.01. The training loss and
perplexity trends for GPT-2 are shown in Figure
2. Initially, the training loss starts at 10.34 and
steadily decreases to 3.001 after 500k steps. Sim-
ilarly, perplexity drops from 60.03 to 24.13 over
the same period. The figure illustrates GPT-2’s sig-
nificant improvement in model performance, with
both loss and perplexity showing a consistent down-
ward trend, reflecting the model’s enhanced ability
to predict the next token with greater accuracy as
training progresses.

6 Evaluation

We conducted a thorough evaluation across several
NLP tasks. Our evaluation includes both Natural
Language Understanding (NLU) for encoder mod-
els and Natural Language Generation (NLG) tasks
for decoder models.

6.1 Evaluating BERT & RoBERTa

For the evaluation of encoder-based models (BERT
& RoBERTa) (Devlin et al., 2019; Liu et al., 2019),
we used the Nepali Language Evaluation Bench-
mark, or Nep-gLUE (Timilsina et al., 2022). It con-
sists of four tasks, including Named Entity Recog-
nition (NER), Part-of-Speech (POS) Tagging, text
classification, and categorical pair similarity. We
used a batch size of 32 and fine-tuned for 3-10
epochs with multiple learning rates (5e-5, 4e-5,
3e-5, 2e-5, and 1e-5) over the data for all Nep-
gLUE tasks. For each task, we selected the best-
performing model on the test set.

Our models outperformed all existing models
across all tasks, scoring 95.60 on Nep-gLUE (Tim-
ilsina et al., 2022) benchmark, a result that can be
primarily attributed to the large and diverse training
corpus we used. The scale of the data allowed the
models to generalize better and capture a broader
range of linguistic patterns, leading to improved
performance.

6.2 Evaluating GPT-2

There were no existing benchmarks for NLG tasks,
so we used abstractive summarization for the eval-
uation of GPT-2 (Radford et al., 2019). We used
a publicly available summarization dataset (Bhan-
dari, 2024) and fine-tuned both the GPT-2 model
and GPT-2 Instruct model. The dataset consists of
7,258 data points, where we used 5,806 (80%) data
points for training and the remaining 1,452 (20%)
data points for evaluation. For finetuning, we used
a batch size of 8 and trained for 3,000 steps. We
used the ROUGE score (Lin, 2004) (Lin and Och,
2004) as our evaluation metric.

One of the things we observed was that the
model tends to hallucinate when given very long
contexts, and it did not perform well on long inputs,
typically those exceeding 400 tokens. A key rea-
son for this behavior can be traced to the model’s
training. The model was originally trained on se-
quences of 512 tokens, which limits its ability to
handle longer sequences effectively, resulting in
average ROGUE scores.

7 Results

We evaluated our pretrained Nepali language mod-
els on various Natural Language Processing tasks,
comparing their performance with existing models.
The results of the evaluation are summarized in
table 1 and table 2.
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Model PARAMS NER POS CC CPS Nep-GLUE Score
multilingual BERT (Devlin et al., 2019) 172M 85.45 94.65 91.08 93.60 91.19

XLM-Rbase (Conneau et al., 2020) 270M 87.59 94.88 92.33 93.65 92.11
NepBERT (Pudasaini et al., 2023) 110M 79.12 90.63 90.98 91.05 87.94

NepaliBERT (Rajan, 2021) 110M 82.45 91.67 90.10 89.46 88.42
NepBERTa (Timilsina et al., 2022) 110M 91.09 95.56 93.13 94.42 93.55

BERT (Ours) 110M 93.57 96.94 94.47 95.72 95.18
RoBERTa (Ours) 125M 93.74 97.52 94.68 96.49 95.60

Table 1: Nep-gLUE Test Result

Model PARAMS ROUGE-1 ROUGE-2 ROUGE-L
distilgpt-nepali (Maskey, 2022) 88.2M 10.16 8.63 9.19

GPT-2 (Ours) 124M 19.66 14.51 16.84
GPT-2-Instruct (Ours) 124M 20.42 15.89 17.76

Table 2: Performance comparision on summarization task

For BERT and RoBERTa in table 1, we used
the NepGLUE benchmark and evaluated models,
against existing monolingual and multilingual mod-
els. Both of our models outperformed the previous
state-of-the-art, with RoBERTa achieving the high-
est overall NepGLUE score of 95.60. In particular,
our models demonstrated superior performance on
every task, reflecting the effectiveness of our mod-
els.

In the summarization task in table 2, we com-
pared our GPT-2 models, including an instruction-
tuned variant with existing (Maskey, 2022) model.
Our GPT-2 models demonstrated substantial im-
provements across all ROUGE metrics, with the
GPT-2-Instruct model achieving the highest scores
of 20.42 (ROUGE-1), 15.89 (ROUGE-2), and
17.76 (ROUGE-L).

8 Conclusion

Our study reports significant progress in the field of
Natural Language Processing (NLP) for the Nepali
language, achieved through the development and
evaluation of pre-trained large language models.
Our key contributions include the development of
by far the largest monolingual corpus for Nepali
language and the pretraining of RoBERTa and
BERT variants, as well as the introduction of the
first GPT-2 model specifically designed for Nepali.

Extensive evaluations conducted on the
NepGLUE benchmark and abstractive summa-
rization tasks reveal that our models outperform
existing state-of-the-art methods, demonstrating
substantial improvements across a range of
NLP tasks. By addressing both encoder and
decoder architectures, our research emphasizes the

potential for optimizing language models tailored
to low-resource languages. Our findings not only
contribute to the existing body of knowledge
but also lay the groundwork for future research
and applications in low-resource settings. We
anticipate that these insights and benchmarks will
inspire further innovations in the field, ultimately
resulting in more effective and inclusive NLP
research.
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Abstract

Large Language Models (LLMs) pre-trained
on multilingual data have revolutionized nat-
ural language processing research, by transi-
tioning from languages and task specific model
pipelines to a single model adapted on a variety
of tasks. However majority of existing multilin-
gual NLP benchmarks for LLMs provide evalu-
ation data in only few languages with little lin-
guistic diversity. In addition these benchmarks
lack quality assessment against the respective
state-of the art models. This study presents an
in-depth examination of 7 prominent LLMs:
GPT-3.5-turbo, Llama 2-7B-Chat, Llama 3.1-
8B, Bloomz 3B, Bloomz 7B1, Ministral-8B
and Whisper (Large, medium and small variant)
across 17 tasks using 22 datasets, 13.8 hours of
speech, in a zero-shot setting, and their perfor-
mance against state-of-the-art (SOTA) models,
has been compared and analyzed. Our exper-
iments show that SOTA models currently out-
perform encoder-decoder models in majority
of Urdu NLP tasks under zero-shot settings.
However, comparing Llama 3.1-8B over prior
version Llama 2-7B-Chat, we can deduce that
with improved language coverage, LLMs can
surpass these SOTA models. Our results em-
phasize that models with fewer parameters but
richer language-specific data, like Llama 3.1-
8B, often outperform larger models with lower
language diversity, such as GPT-3.5, in several
tasks.

1 Introduction

The rapid increase in the application of Artifi-
cial Intelligence (AI) across a diverse spectrum
of research areas including machine translation,
natural language understanding and question an-
swering can be attributed to the remarkable per-
formances exhibited by Foundation Models (FM)
(Bommasani et al., 2021). Based on the framework
of transformers (Vaswani et al., 2017), multilin-
gual large language models (LLM) are a promi-
nent category of foundation models that can be uti-

lized in multiple downstream tasks. A number of
studies have have evaluated the potential of LLMs
on various Natural Language Processing (NLP)
tasks. LLMRec, a LLM-based recommender sys-
tem (Liu et al., 2023) evaluated 3 LLMs including
Llama, ChatGPT and ChatGLM on 5 recommen-
dation tasks. (Zhong et al., 2021) conducted a
human evaluation encompassing 10 LLMs with
variations in pre-training methods, prompts, and
model scales evaluated the zero-shot summariza-
tion capability. (Bian et al., 2023) used 11 datasets
covering 8 domains to evaluate the LLMs’ ability
in answering common sense questions. (Hendy
et al., 2023) conducted evaluations on 3 GPT mod-
els: ChatGPT, GPT3.5 (text-davinci-003), and text-
davinci002 using 9 language pairs including low
resource languages, to evaluate 18 machine trans-
lation directions. Holistic Evaluation of Language
Models (HELM) project (Liang et al., 2023) eval-
uated 30 LLMs (open, limited-access, and closed
models) for English across 42 NLP tasks. (Ahuja
et al., 2023) conducted a multilingual evaluation
of GPT 2.5 and Bloomz, comparing their perfor-
mance with SOTA on 8 NLP tasks involving 33
languages. (Srivastava et al., 2023) conducted a
comprehensive evaluation of 214 tasks, including
48 non-English low-resource languages using 13
transformer models and 8 GPT-3 series models
with varying parameters from 125 million to 175
billion. Another notable effort was conducted by
(Abdelali et al., 2024) for evaluation of 3 LLMs on
33 unique tasks for Arabic Language.

Our study, focuses on evaluating the potential of
both closed and open LLMs for supporting Urdu, a
low resource language with limited data coverage
in LLM’s pre-training. In our experiments we uti-
lize GPT3.5 turbo by OpenAI, Llama 2 and Llama
3.1 by Meta , Bloomz 3B and 7B1 by Big Science,
Ministral 8B by Mistral AI and Whisper by Ope-
nAI in zero-shot setting, and perform evaluation on
17 Urdu NLP tasks analyzing their performances
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with the existing SOTA models. To the best of our
knowledge, this is the first in depth evaluation of
prominent LLMs in Urdu Language context.

2 Approach

For benchmarking of Urdu NLP tasks, we per-
form experiments using GPT 3.5, Bloomz 3B and
Bloomz 7B1 , Llama 2 and Llama 3.1, Ministral
8B and Whisper in zero-shot setting and compara-
tively analyse the results with the respective SOTA
models. Model selection was based on factors like
accessibility (open/closed), infrastructure require-
ment, performance and language support. GPT 3.5
was selected because of its superior performance on
English tasks. Among open models, popular multi-
lingual models i.e. Llama 2 , Llama 3.1, Ministral
8B and Bloomz were evaluated for text process-
ing tasks and Whisper models were evaluated for
speech recognition task. Due to budget limitations
and lack of Urdu data in the pre-training, other
closed LLMs models were not investigated.

The evaluation of LLMs involved prompting and
significant post-processing to extract the output
in desired format. A number of prompts were
curated for all NLP tasks following the recom-
mended format and instruction pattern proposed by
LAraBench (Abdelali et al., 2024). The prompts
for each model were optimized after testing them
on a few samples for each task. These prompts
have been reported in Appendix. A After obtaining
a reasonable prompt, we used the LLM models in
different settings. OpenAI’s API was used for GPT
3.5. For Bloomz, we ran the model on Google Co-
lab utilizing 16GB GPU and for Llama 2, Llama 3.1
and Ministral 8B, we used on premises hosted ver-
sions utilizing 2X40GB A100 GPUs. Results were
post-processed in all cases to align with the test
set’s output. The following section elaborates the
LLMs (including prompting and post-processing
details), NLP Tasks, Datasets, SOTA Models and
evaluation metrics, used in the study.

2.1 Models

2.1.1 GPT 3.5
GPT 3.5 Turbo has been trained on 175B parame-
ters, encompassing both text and code data. GPT
3.5 despite being closed-source and less powerful
than GPT-4 (OpenAI and et al., 2023), is more
cost-effective, as its provides free access for exper-
imentation. Additionally, at the time of research
it was the most advanced model available from

OpenAI for fine-tuning.

2.1.2 Bloomz 3B and 7.1B
Bloomz (Muennighoff et al., 2023), a Multitask
Prompting Fine Tuned (MTF) version of the
BLOOM (BigScienceWorkshop and et al., 2023), is
trained on ROOTS corpus (Laurençon et al., 2023)
covering 59 languages (including 13 programming
languages, and 2.59TB of Urdu language data). For
evaluation, the Bloomz 3B and 7.1B models from
HuggingFace were used due to their open-source
availability, and optimal balance between size and
computational resources.

2.1.3 Llama 2 and Llama 3.1
Llama 2 (Touvron et al., 2023), released by Meta,
is trained on 2 trillion tokens, with 89.70% of its
content in English. Llama 3.1 (AI@Meta, 2024),
available in three variants with 8 billion, 70 billion
and 405 billion parameters, is trained on over 15
trillion tokens. Both models support 8k context
lengths. For evaluation, the Llama 2-7b and Llama
3.1-8b models were used due to their open-source
availability and potential for transfer learning and
generalization to languages with limited data.

2.1.4 Ministral 8B
The Ministral 8B (Mistral AI Team, 2024) is
trained on a mixture of multilingual and code
datasets, supporting a context window of up to
128k facilitated by an interleaved sliding-window
attention mechanism and a vocabulary of 131k. We
benchmarked this model due to its open-source
availability and its capability for low-memory in-
ference, and its ability to be fine-tuned and adapted
to a variety of tasks.

2.1.5 Whisper
Whisper (Radford et al., 2022), an Automatic
Speech Recognition (ASR) model developed by
OpenAI, is trained on an extensive dataset compris-
ing 680,000 hours of multilingual and multitask
supervised data collected from the web. Among
the diverse languages included, Whisper incorpo-
rates only 104 hours of Urdu speech corpus. For
inference , we utilized the small, medium and large
variants of the pre-trained Whisper model. The
small variant has 12 layers, 12 attention heads, a
width of 768 with 244 million parameters. The
medium variant is characterized by 24 layers, 16 at-
tention heads, a width of 1024, and consists of 769
million parameters while, the large variant features
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Task Dataset Dataset Size Testset Size
Name Entity Recognition MK-PUCIT (Kanwal et al., 2019) 99718 4165
News Categorization COUNTER (Sharjeel et al., 2017) 1200 360
Intent Detection Urdu Web Queries Dataset (UWQ-22) (Shams and Aslam, 2022) 6819 850
Hate Speech Detection ISE-Hate corpus (Akram et al., 2023) 21759 2176
Hate Speech Detection CLE-Hatespeech dataset (Ali et al., 2021) 5432 1087
Propaganda Detection ProSOUL (Kausar et al., 2020) 11574 1737
Abusive Language Detection HASOC - Task A(Das et al., 2021) 2400 240
Threat Detection HASOC - Task B(Das et al., 2021) 9950 1975
Cyber Bullying Identification Cyberbullying corpus (Adeeba et al., 2024) 12759 2480
Fake News Detection (Khan et al., 2023) 4097 820
Hate Speech Categorization ISE-Hate corpus(Akram et al., 2023) 8702 871
Text Summarization CORPURES (Humayoun and Akhtar, 2022) 2649 311
Sentiment Analysis (Muhammad and Burney, 2023) 10008 2002
Sentiment Analysis Corpus of Aspect-based Sentiment for Urdu Political Data (ul Haq et al., 2020) 8760 1450
Multi-label Emotion Classification Overview of EmoThreat (Task A) (Ashraf et al., 2022) 9750 1950
Emotion Classification Urdu Nastalique Emotions Dataset (UNED) (Bashir et al., 2023) 4000 397
Machine Translation(Quran) English-Urdu Religious Parallel Corpus (Jawaid and Zeman, 2011) 6414 200
Machine Translation(Bible) English-Urdu Religious Parallel Corpus (Jawaid and Zeman, 2011) 7957 257
Abstractive Summarization CLE Meeting Corpus (Sadia et al., 2024) 240 10
POS Tagging Sense Tagged CLE Urdu Digest Corpus (Urooj et al., 2014) 100000 22522

ASR (Read Speech) Urdu Speech Corpus (Farooq et al., 2019) - 9.5 hours
ASR (Broadcast) Urdu Broadcast (BC) Corpus(Khan et al., 2021) - 4.3 hours

Table 1: NLP Tasks and Dataset Statistics

32 layers, 20 attention heads, a width of 1280, and
comprises 1550 million parameters.

2.2 Tasks and Datasets

This study has focused on a comprehensive evalua-
tion of pre-trained open and closed LLMs on Urdu
NLP tasks. This study utilizes 22 publicly available
datasets ( see Table 1) to evaluate 17 Urdu NLP
tasks as discussed in the following sections.

2.2.1 Name Entity Recognition

Name Entity Recognition (NER) is a sequence tag-
ging task that involves identifying entities, such as
names of people, organizations, locations, dates,
etc. For its evaluation, we used the MK-PUCIT
dataset and its SOTA model reported in (Kanwal
et al., 2019).

2.2.2 News Categorization

News categorization classify news articles into
topics based on their content. For its evaluation,
COUNTER dataset (Sharjeel et al., 2017) was used
that consisted of articles from 5 different domains
and its SOTA is reported in (Khan et al., 2023).

2.2.3 Intent Detection

Intent detection focuses on determining the com-
municative intent behind a user’s input query in the
form of text or speech. For our evaluation, we used

the UWQ-22 dataset and SOTA model reported in
(Shams and Aslam, 2022).

2.2.4 Ethics and NLP: Factuality and
Harmful Content Detection

These tasks aim to evaluate the accuracy of in-
formation, identify and combat misinformation,
and detect harmful content. We benchmark sev-
eral tasks such as i) Hate Speech Detection using
the ISE-Hate corpus by (Akram et al., 2023) and
CLE-Hatespeech dataset (Ali et al., 2021). ii) Pro-
paganda Detection on the ProSOUL dataset devel-
oped by (Kausar et al., 2020). iii) Abusive Lan-
guage Detection in Urdu, on the dataset by (Das
et al., 2021) for their Subtask A. iv) Threat Detec-
tion on the dataset of (Das et al., 2021) for Subtask
B. v) Cyber Bullying Identification using Cyberbul-
lying corpus (Adeeba et al., 2024) vi) Fake News
Detection using dataset prepared by (Khan et al.,
2023) vii) Hate Speech Categorization using ISE-
Hate corpus by (Akram et al., 2023).

2.2.5 Text Summarization
Text summarization involves extracting the most
important sentences from a document to create a
condensed version retaining essential information.
We evaluated the LLMs on:

• Extractive Summarization

Extractive summarization condenses text by
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Task Dataset Metric GPT 3.5 Bloomz 3B Bloomz 7B1 Llama 2 Llama 3.1 Ministral 8B SOTA Delta

Name Entity Recog-
nition

MK-PUCIT Macro-F1 0.55 0.25 0.27 0.15 0.41 0.25 0.77 0.22

News Categoriza-
tion

COUNTER Macro-F1 0.87 0.58 0.48 0.13 0.64 0.67 0.70 -0.17

Intent Detection Urdu Web Queries
Dataset (UWQ-22)

Macro-F1 0.30 0.22 0.18 0.07 0.42 0.34 0.90 0.56

Hate Speech Detec-
tion

ISE-Hate corpus Macro-F1 0.72 0.52 0.53 0.48 0.70 0.53 0.83 0.11

Hate Speech Detec-
tion

CLE-Hatespeech
dataset

Macro-F1 0.67 0.35 0.43 0.51 0.72 0.54 0.98 0.26

Propaganda Detec-
tion

ProSOUL Macro-F1 0.31 0.47 0.47 0.44 0.66 0.53 0.83 0.17

Abusive Language
Detection

HAOSOC - Task A Macro-F1 0.23 0.51 0.47 0.44 0.50 0.48 0.88 0.37

Threat Detection HAOSOC - Task B Macro-F1 0.49 0.35 0.20 0.21 0.40 0.46 0.54 0.05

Cyber Bullying
Identification

(Adeeba et al.,
2024)

Macro-F1 0.19 0.15 0.10 0.06 0.22 0.08 0.84 0.41

Fake News Detec-
tion

(Khan et al., 2023) Macro-F1 0.55 0.52 0.51 0.47 0.72 0.57 0.93 0.21

Hate Speech Cate-
gorization

ISE-Hate corpus Macro-F1 0.40 0.28 0.15 0.21 0.30 0.22 0.83 0.43

Extractive Summa-
rization

CORPURES Average
Rouge-2 F1
score

0.54 0.46 0.55 0.59 0.62 0.52 0.57 -0.04

Abstractive Summa-
rization

CLE Meeting Cor-
pus

Rouge-1
Score (Avg)

0.22 0.02 0.07 0.006 0.24 0.06 0.31 0.07

Sentiment Analysis (Muhammad and
Burney, 2023)

Macro-F1 0.62 0.35 0.33 0.3 0.44 0.36 0.88 0.26

Sentiment Analysis Corpus of Aspect-
based Sentiment for
Urdu Political Data

Macro-F1 0.31 0.20 0.21 0.13 0.37 0.28 0.70 0.37

Multi-label Emo-
tion Classification

Overview of
EmoThreat (Task
A)

Macro-F1 0.20 0.17 0.26 – 0.40 0.29 0.68 0.28

Emotion Classifica-
tion

Urdu Nastalique
Emotions Dataset
(UNED)

Macro-F1 0.32 0.25 0.21 0.18 0.24 0.41 0.87 0.46

Machine Transla-
tion (Quran)

English-Urdu Reli-
gious Parallel Cor-
pus

BLEU 3.75 1.91 2.36 2.49e-78 3.44 0.004 13.24 9.49

Machine Transla-
tion(Bible)

English-Urdu Reli-
gious Parallel Cor-
pus

BLEU 5.96 2.28 2.47 0.097 6.43 1.31e-78 13.99 8.03

POS Tagging CLE Urdu POS
Tagset

Accuracy 0.49 0.11 0.06 0.09 0.31 0.14 0.96 0.47

Table 2: Results from zero-shot experiments of GPT 3.5, Bloomz 3B, Bloomz 7B1, Llama 2, Llama 3.1 and
Ministral 8B Models Compared to SOTA over NLP tasks. Bold text indicates the best score among models.

selecting and combining key sentences di-
rectly from the original content. For the eval-
uation of this task, we used the CORPURES
dataset by (Humayoun and Akhtar, 2022).

• Abstractive Summarization

Abstractive summarization generates concise
summaries by understanding and paraphras-
ing the core meaning of a text into new, shorter
sentences. For its evaluation, we have used
CLE Meeting Corpus and its SOTA available
in (Sadia et al., 2024).

2.2.6 Sentiment and Emotion Analysis
These tasks include understanding and interpret-
ing human expressions in textual data. For Sen-
timent analysis, datasets from (Muhammad and
Burney, 2023) and CLE (ul Haq et al., 2020) are
used. For emotion analysis we used dataset from

(Ashraf et al., 2022) for their Task A: Multi-label
Emotion Detection consisted of “Neutral” label and
Ekman’s six basic emotions (Ekman, 1999). The
other dataset used was Urdu Nastalique Emotions
Dataset (UNED) by (Bashir et al., 2023).

2.2.7 Machine Translation

Machine translation of Urdu is challenging due
to its morphological complexity. To evaluate the
translation capabilities of LLMs for English Urdu
pair, we utilized the dataset by (Jawaid and Zeman,
2011) for Quran and Bible translations containing
200 and 257 testing samples respectively.

2.2.8 Part of Speech (POS) Tagging

POS tagging is a fundamental task in NLP that
involves labeling each word in a sentence with its
corresponding part of speech, such as noun, verb,
adjective, etc. To evaluate this task we have used
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the CLE Urdu POS Tagset with the SOTA reported
in (Ahmed et al., 2014).

2.2.9 Automatic Speech Recognition (ASR)
ASR automatically converts spoken language into
text. For its evaluation, we utilized the small,
medium and large variant of the pre-trained Whis-
per model (Radford et al., 2022). We benchmarked
this model against the SOTA models using its pre-
trained weights for both broadcast and read speech
recognition tasks using following two corpora:

• Urdu Broadcast (BC) corpus: A broadcast
speech corpus (Khan et al., 2021) with 4.3
hours of data from 25 speakers (14 males and
11 females). This dataset includes record-
ings from five different broadcast channels
and YouTube, covering genres such as enter-
tainment, health and science, current affairs,
and politics.

• Urdu Speech corpus: A read speech corpus
(Farooq et al., 2019) consisting of 9.5 hours
of Urdu speech from 62 speakers. The dataset
is balanced in terms of gender and recording
channels.

2.3 Zero-Shot Setup
For all LLMs; GPT 3.5, Bloomz 3b and 7b, Llama
2 and Llama 3.1 and Ministral 8B we use zero-
shot prompting giving natural language instructions
describing the task and specify the expected output.
Prompts allow LLMs to learn context and narrows
the inference space to produces accurate output as
further elaborated in the section 2.5.

2.4 Inference Settings
The inference experiments for Llama 2, Llama 3.1
and Ministral 8B were conducted using two paral-
lel NVIDIA A100-PCIE-40GB GPUs, providing
a combined computational capacity of 80GB. Dur-
ing the inference, nearly 90 percent of the total
GPU capacity was utilized. For experiments of
GPT-3.5, API from OpenAI was utilized. Infer-
ence experiments with GPT-3.5 were conducted
using Google Colab. Inference experiments with
Bloomz’s 3B and 7.1B models, available on hug-
gingface, were also conducted using Google Colab.
For Speech processing experiments using Whis-
per, two NVIDIA RTX3060-12GB GPUs were
employed, providing a combined computational
capacity of 24GB.

2.5 Prompt Engineering and Post Processing

In our experimentation with different LLMs, we
tweaked the prompts based on the models input.
Prompts for tasks such as News categorization A.2
and Hate speech Categorization A.11 were chal-
lenging because they required outputs from pre-
defined ground-truth categories. Prompts for Ma-
chine Translation task A.19 had to be engineered so
that the model’s output only includes the translated
text. Thus optimal prompts were curated by testing
against each model on few samples, while ensuring
no bias in decision-making.

Despite careful prompting, model responses re-
quired post-processing to align with desired out-
comes e.g. capitalization ("fake" vs. "Fake"), stan-
dardizing output formats ("1. Propaganda" to "1"),
and omitting "explanations" and "note" produced
with the models’ responses, specifically in Hate
speech detection A.5 task. Some model outputs
didn’t match desired outcomes, e.g. News catego-
rization included 5 domains i.e. sports, showbiz,
foreign , national , business however the models
output out of context domains such as "politics"
and "entertainment". Among all the models, Llama
2 required the most output post-processing.

For a thorough description of the prompts crafted
for each LLM, please refer to Appendix A.

2.6 SOTA Models

In this study, we benchmark the capabilities of
LLMs in a zero-shot scenario by comparing them
with SOTA models as reported in respective stud-
ies. These SOTA models employed diverse archi-
tectures including Capsule NN, Support Vector Ma-
chine (SVM), Random Forest (RF), Decision Tree
(J48), Sequential Minimal Optimization (SMO),
Convolutional Neural Networks (1D-CNN), LSTM
with CNN features , Naive Bayes classifier and
various multilingual transformer models such as m-
BERT and frameworks like XGboost and LGBM.

2.7 Evaluation Metrics

The evaluation metrics used for the experiments
have been kept identical to the one used in the re-
spective state of the art references. They are Macro-
F1, Rouge 2 F1 score, BLEU 1, accuracy and Word
Error Rate (WER). We have also computed the
delta to highlight the differential between best per-
forming LLM’s output with the SOTA model.

1https://www.nltk.org/api/nltk.translate.bleu
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Task Domain Metric Whisper
(Large)

Whisper
(Medium)

Whisper
(Small)

SOTA Delta

ASR Read Speech WER 23.51 27.88 36.90 16.94 -6.57

ASR Broadcast WER 27.97 35.57 42.57 18.59 -9.38

Table 3: Performance Metrix of ASR for Whisper Large, Medium and Small Models Compared to SOTA.

3 Results and Discussion

The results on text processing tasks of our experi-
mentation have been summarized in Figure 1. The
Figure presents a grid of bar graphs for each NLP
task, with the y-axis showing evaluation metrics
specific to each task. For classification and de-
tection tasks, the y-axis represents the macro F1
score. For summarization tasks, it shows the aver-
age ROUGE-2 score, while for machine translation
tasks, it displays the BLEU score. Each model is
represented by a distinct color bar , as indicated
in the Figure’s legend, which is kept consistent
across all tasks, with the bar of SOTA providing
a reference point for comparison. Missing bars in
certain tasks indicate that the model outputs were
effectively zero (e.g., in Table 2 value is 2.49e-78
for Llama 2 on the Machine Translation (Quran)
task, and 1.31e-78 for Mistral 8B on the Machine
Translation (Bible) task), reflecting negligible per-
formance.

Our results show that LLMs differ in their appli-
cability to different data regimes and tasks. LLM
models were able to surpassed the SOTA model
for news categorization with GPT 3.5 and Llama
3.1 for Extractive Summarization. In all other ex-
periments, LLMs remained lower than the SOTA
models (reference Table 2). Across all experi-
ments, Llama 3.1 outperformed in 10 of the 17
tasks, while GPT-3.5 excelled in 8 tasks. In com-
parison, Bloomz and Ministral 8B each led in only
one task. The minimum delta obtained was 0.05
between GPT 3.5 and SOTA model for threat detec-
tion task. In comparison with other the open LLMs,
Llama 3.1 performed better in majority of the NLP
tasks which is due to its extensive multilingual data,
architecture and advanced training techniques, en-
abling it to effectively generalize across languages
and tasks.

In choice and evaluation of LLMs, Bloomz 3B
and Bloomz 7B1 were initially chosen for experi-
mentation due to their early introduction and multi-
lingual capabilities. However, they have not kept

pace with advancements seen in other models like
Llama. Analysis reveals that there is no significant
performance efficiency gained from transitioning
from Bloomz-3B to Bloomz-7B1 as evident from
Table 2. In contrast, the performance of Llama
models has notably improved, particularly from
Llama 2 to Llama 3.1, indicating a more effective
evolution in their design and capabilities.

Based on our evaluations, the top two perform-
ing models for NLP tasks are GPT-3.5 and Llama
3.1 with comparable performances as evident from
Figure 1. Llama 3.1 outperformed GPT 3.5 in 11
NLP tasks and was even better than SOTA in Ex-
tractive Summarization. On the other hand, GPT
3.5 was better than Llama 3.1 in 8 tasks and sur-
passed SOTA in News Categorization task. Llama
3.1’s superior performance is due to the increased
coverage of Non-English data in the model as well
as increased amount of pretraining data i.e. 15
trillion tokens.

The performance of Ministral 8B is compara-
ble to GPT 3.5 and Llama 3.1. It outperformed
GPT 3.5 in 6 NLP Tasks i.e. Intent Detection,
Propaganda Detection, Abusive Language Detec-
tion, Fake News Detection, Multi Label Emotion
Classification and Emotion Classification. And out-
performed Llama 3.1 in News Categorization and
it was best among all models in Emotion Classifi-
cation. However its performance was quite inade-
quate on generation tasks like Machine Translation
(reference Figure 1). Overall its performance is
good in detection tasks and is attributed to its inter-
leaved sliding-window attention mechanism, which
enables it to efficiently handle extended contexts
with reduced memory usage. Detection tasks such
as Fake News Detection and Propaganda Detection
often require recognizing patterns across longer
texts. This enhanced ability to retain and utilize
extended contextual information allowed Ministral
8B to excel in detection tasks.

The results of Speech Processing tasks are sum-
marized in Table 3. The analysis of the results in-
dicates that the SOTA models, which were trained
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Figure 1: The performance of different models in zero-shot scenario as compared to SOTA. Missing bars in some
tasks mean that the specific model cannot perform the specified task.

on a larger corpus of Urdu data, outperformed all
variants of the Whisper model across the evalu-
ated datasets. These findings suggest that while
the SOTA models trained on more extensive Urdu
datasets exhibited superior performance, the larger
variant of the Whisper also demonstrated improved
performance compared to its medium and small
counterpart, underscoring the importance of model
size and complexity in ASR tasks. The negative
delta values indicate that the model’s performance
falls below the SOTA benchmarks, highlighting a
gap to be addressed.

Error analysis of the LLMs’ output against the
ground truth revealed two main factors that account
for the decline in overall F1 scores of LLMs. The
factors include i) discrepancies in the output format,
where the output contained extra or omitted tokens,
and ii) the generation of out-of-scope labels. These
observations imply that the seamless deployment
of LLMs may be challenging, requiring substantial
efforts either in formulating precise prompts for
accurate outputs or engaging in post-processing to
align the outputs with reference labels.

Thus, performance of LLMs significantly de-
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pends on well-curated prompts and intelligent post-
processing of the outputs. While Llama 2 and
Bloomz show a notable performance deficit com-
pared to the SOTA, the newer Llama version i.e.
Llama 3.1 and GPT 3.5 succeeds in mitigating this
gap to a considerable extent.

4 Conclusion and Future Work

In this study, we benchmark the potential of both
open and closed LLMs on 17 Urdu NLP tasks em-
ploying a substantial number of publicly accessible
datasets. Through our experiments we provide a
comparative performance analysis for each task and
dataset against the SOTA. These findings will as-
sist the Urdu NLP community in selecting suitable
models for usage and fine-tuning within specific
contexts. As future work, we aim to develop a
public leader board for Urdu benchmarking and
explore integration of additional models, tasks, and
datasets. Also, after evaluating multiple models,
we are focusing on pretraining Llama 3.1 to en-
hance Urdu language support and expand token
coverage for greater adaptability across diverse
languages and domains. This will also includes
domain-specific fine-tuning to further boost perfor-
mance, leveraging Llama 3.1’s compact size, active
community, and robust results.

Limitations

Our study is confined to seven LLMs and does
not include the heavier versions of models such
as Bloomz-170B or Llama 3.1 405B due to hard-
ware and computational resource limitations which
may impact the comprehensiveness of the analy-
sis. This limitation may affect the generalization
of the findings to models with higher parameters,
potentially missing insights into the performance
of more robust versions of these language models.
Our study also primarily concentrates on evaluat-
ing the models in a zero-shot setting. While this
setting provides valuable insights into the models’
out-of-the-box performance, it may not capture the
full potential of fine-tuned models for specific tasks.
Our study also does not extensively delve into the
quality and representativeness of the training data
for Urdu language used in these models.
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A Appendix

A.1 Prompts - Name Entity Recognition

A.1.1 Bloomz
Perform Name Entity Recognition for the words
using the following technique: - Mark names, nick-
names, cast, family, and relational names as Person.
- Mark names of companies, media groups, teams,
and political parties as Organization. - Mark all
man-made structures and politically defined loca-
tions, such as names of countries, cities, and places
like railway stations, as Location. - Mark all re-
maining words, such as prepositions, adjectives,
adverbs, and names of books and movies, as Other.
No explanation is required. Just output the Entity
name.Word: Entity:
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A.1.2 GPT 3.5
Perform Name Entity Recognition cor-
responding to each word using the fol-
lowing annotation technique: Person :
name,nickname,cast,family,relational names
and titles. God’s name should NOT be marked as
Person. Organization : name of company, media
group, team,political party. Name of product or
brand should NOT be marked as Organization.
Location : all man-made structures and politically
defined locations such as names of countries,city
and places like railway station etc. A generic
reference to location should NOT be marked as
Location. Other : all remaining words, such as
prepositions, adjectives, adverbs, names of books
and movies etc. No explanation is required. Just
output the tag name. word =

A.1.3 Llama 2
You are Performing Name Entity Recognition for
the urdu words.«/SYS» Human: Word: Please
select one of the following entity: Person Organi-
zation Location Other No explanation or further
assistance is required. Only entity name is required
Assistant: The entity is

A.1.4 Llama 3.1
You are a name entity recognition model. Your task
is to mark the entity as Person, Organization, Lo-
cation, or Other in Urdu text samples. Ensure that
your outputs are Person, Organization, Location, or
Other. No explanation is required.

A.1.5 Ministral 8B
Perform Name Entity Recognition for the words
using the following technique: - Mark names, nick-
names, cast, family, and relational names as Person.
- Mark names of companies, media groups, teams,
and political parties as Organization. - Mark all
man-made structures and politically defined loca-
tions, such as names of countries, cities, and places
like railway stations, as Location. - Mark all re-
maining words, such as prepositions, adjectives,
adverbs, and names of books and movies, as Other.
No explanation is required. Just output the Entity
name.Word: Entity:

A.2 Prompts - News Categorization

A.2.1 Bloomz
News: Classify the given news into one of the
following category 0. sports 1. national 2. foreign
3. showbiz 4. business Choose the best suited label

from above. Your output should be 0-4 only. No
explanation. Only 0-4. No other label or additional
text. Label (0,1,2,3,4):

A.2.2 GPT 3.5
News: Classify the given news into one of the
following category 0. sports 1. national 2. foreign
3. showbiz 4. business Choose the best suited label
from above. Your output should be the name of the
category only. No explanation.No other label or
additional text. Category:

A.2.3 Llama 2
Provide the label of the above news from the fol-
lowing: 0. sports 1. national 2. foreign 3. showbiz
4. business No explanation. Please answer in num-
bers News : Answer:

A.2.4 Llama 3.1
News: Classify the given news into one of the
following category 0. sports 1. national 2. foreign
3. showbiz 4. business Choose the best suited label
from above. Your output should be 0-4 only. No
explanation. Only 0-4. No other label or additional
text. Label (0,1,2,3,4):

A.2.5 Ministral 8B
News: Classify the given news into one of the
following category 0. sports 1. national 2. foreign
3. showbiz 4. business Choose the best suited label
from above. Your output should be 0-4 only. No
explanation. Only 0-4. No other label or additional
text. Label (0,1,2,3,4):

A.3 Prompts - Intent Detection

A.3.1 Bloomz
You are an intent classification model. Your task is
to identify the intent in the following urdu sentence.
Intents are: 0. Informational 1. Navigational 2.
Transitional Output (0,1,2):

A.3.2 GPT 3.5
"system": "You are an intent detection classifica-
tion model. You are an intent classification model.
Your task is to identify the intent in the following
urdu sentence. Intents are: 0. Informational 1.
Navigational 2. Transitional Output (0,1,2):

A.3.3 Llama 2
You are an intent classification model. Your task is
to identify the intent in the following urdu sentence.
Intents are: 0. Informational 1. Navigational 2.
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Transitional Dont write any explanation or reason
for answer. Output (0,1,2):

A.3.4 Llama 3.1
You are an intent classification model. Your task
is to mark the intent as 0 or 1 or 2 in Urdu text
samples. Ensure that the model outputs ’0’ for
Informational intent , ’1’ for Navigational intent
and ’2’ for Transitional intent. Ensure that your
outputs 0 or 1 or 2 only. No explanation is required.

A.3.5 Ministral 8B
You are an intent classification model. Your task
is to identify the intent in the following urdu sen-
tence. Intents are: Informational Navigational
Transitional Only output the name of the intent. No
explanation is required.

A.4 Prompts - Hate Speech Detection
ISE-Hate corpus

A.4.1 Bloomz
Classify the hate sentence into the category it falls:
Ethnic Interfaith Sectarian Other Output "0" for
Other, "1" for "Sectarian", "2" for "Interfaith" and
"3" for "Ethnic" Sentence: Class:

A.4.2 GPT 3.5
"system": "You are an expert in detecting hate
speech in the urdu samples " Classify the hate
sentence into the category it falls: Ethnic Inter-
faith Sectarian Other Output "0" for Other, "1" for
"Sectarian", "2" for "Interfaith" and "3" for "Eth-
nic". No explanation is required Sentence: Output
(0,1,2,3):

A.4.3 Llama 2
You are a hate speech classification model. Labels:
1: Sectarian hate 2: Interfaith hate 3: Ethnic hate
0: None of the above Instructions: To distinguish
between hate speech and non-hate speech in text
samples. Ensure that the model outputs "1" for
hate related to "Sectarian", "2" for hate related to
"Interfaith" and "3" for hate related to "Ethnic" and
"0" if you think it does not fall in these three cate-
gories. Your output should be only 0, 1, 2 or 3. No
explanation is required. Sentence: Label(0,1,2,3):

A.4.4 Llama 3.1
You are a hate speech classification model. Your
task is to mark 0 or 1 or 2 or 3 in Urdu text samples.
Ensure that the model outputs ’1’ for Sectarian hate
text , ’2’ for Interfaith hate text , ’3’ for Ethnic hate
text and ’0’ for any other hate text. Ensure that

your outputs 0 or 1 or 2 or 3 only. No explanation
is required.

A.4.5 Ministral 8B
You are a hate speech classification model. Labels:
1: Sectarian hate 2: Interfaith hate 3: Ethnic hate
0: None of the above Instructions: To distinguish
between hate speech and non-hate speech in text
samples. Ensure that the model output "1" for hate
related to "Sectarian", "2" for hate related to "In-
terfaith" and "3" for hate related to "Ethnic" and
"0" if you think it does not fall in these three cate-
gories. Your output should be only 0, 1, 2 or 3. No
explanation is required. Sentence: Label(0,1,2,3):

A.5 Prompts - Hate Speech Detection CLE
corpus

A.5.1 Bloomz
Classify the sentence as hate speech or non-hate
speech. Output "1" for non-hate speech and "-1" for
hate speech. No explanation is required. Sentence:
Output(1 or -1):

A.5.2 GPT 3.5
"system": "You are an expert in detecting hate
speech in the urdu samples" Classify the sentence
as hate speech or non-hate speech. Output "1" for
non-hate speech and "-1" for hate speech. No ex-
planation is required. Sentence:

A.5.3 Llama 2
You are a hate speech classification model. Labels:
1: Non-hate speech -1: Hate speech Instructions:
To distinguish between hate speech and non-hate
speech in text samples. Ensure that the model out-
puts 1 for non-hate speech and -1 for hate speech.
Your output should be only 1 or -1. No explanation
is required Sentence: Label(1 or -1):

A.5.4 Llama 3.1
You are a hate speech classification model. Your
task is to mark 0 or 1 in Urdu text samples. Ensure
that the model outputs ’0’ for Non-hate text and ’1’
for Hate text. Ensure that your outputs 0 or 1 only.
No explanation is required.

A.5.5 Ministral 8B
You are a hate speech classification model. Labels:
0: Non-hate speech 1: Hate speech Instructions:
To distinguish between hate speech and non-hate
speech in text samples. Ensure that the model out-
puts 0 for non-hate speech and 1 for hate speech.
Your output should be only 0 or 1 Sentence: Label:
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A.6 Prompts - Propaganda Detection

A.6.1 Bloomz
Classify the article as Propaganda or Non-
Propaganda. Output ’1’ for Propaganda and ’0’
for Non-Propaganda. Don’t concatenate input with
output. No explanation is required. The article is: .
Class(0 or 1):

A.6.2 GPT 3.5
Classify the article as Propaganda or Non-
Propaganda. Output ’1’ for Propaganda and ’0’
for Non-Propaganda. No explanation is required.
The article is: . Class(0 or 1):

A.6.3 Llama 2
Classify the article as Propaganda or Non-
Propaganda. Output ’1’ for Propaganda and ’0’
for Non-Propaganda. Don’t concatenate input with
output. No explanation is required. The article is: .
Class(0 or 1):

A.6.4 Llama 3.1
Classify the article as Propaganda or Non-
Propaganda. Output ’1’ for Propaganda and ’0’
for Non-Propaganda. Don’t concatenate input with
output. No explanation is required. The article is: .
Class(0 or 1):

A.6.5 Ministral 8B
Classify the article as Propaganda or Non-
Propaganda. Output ’1’ for Propaganda and ’0’
for Non-Propaganda. No explanation is required.
The article is: . Class (0 or 1):

A.7 Prompts - Abusive Language Detection

A.7.1 Bloomz
You are an abusive language detection model. La-
bels: 0: non-abusive language 1: abusive language
Instructions: To distinguish between abusive and
non-abusive language in text samples. Ensure that
the model outputs 0 for non-abusive language and
1 for abusive language. Your output should be only
0 or 1 Sentence: Label:

A.7.2 GPT 3.5
"system": "You are an expert in detecting abusive
language in the urdu samples Classify the sentence
as abusive language or non-abusive language. Out-
put "1" for non-abusive language and "0" for abu-
sive language. No explanation is required. Sen-
tence:

A.7.3 Llama 2
You are a abusive language detection model. La-
bels: 0: non-abusive language 1: abusive language
Instructions: To distinguish between abusive and
non-abusive language in text samples. Ensure that
the model outputs 0 for non-abusive language and
1 for abusive language. Your output should be only
0 or 1. No explanation Sentence: Label(0 or 1):

A.7.4 Llama 3.1
You are a abusive language detection model.

Labels:
0: non-abusive language 1: abusive language

Instructions: To distinguish between abusive and
non-abusive language in text samples. Ensure that
the model outputs 0 for non-abusive language and
1 for abusive language. Your output should be only
0 or 1. No explanation Sentence: Label(0 or 1):

A.7.5 Ministral 8B
You are a abusive language detection model. La-
bels: 0: non-abusive language 1: abusive language
Instructions: To distinguish between abusive and
non-abusive language in text samples. Ensure that
the model outputs 0 for non-abusive language and
1 for abusive language. Your output should be only
0 or 1. No explanation Sentence: Label(0 or 1):

A.8 Prompts - Threat Detection

A.8.1 Bloomz
Classify the sentence as threatening or non threat-
ening. Output class "1" for threatening and "0" for
non threatening. Sentence: Class(1 or 0):

A.8.2 GPT 3.5
system: You are an expert in detecting threat in the
urdu samples Classify the sentence as threatening
or non threatening. Output "1" for threatening and
"0" for non threatening. Sentence: :

A.8.3 Llama 2
Classify the sentence as threatening or non threat-
ening. Output class "1" for threatening and "0" for
non threatening. No explanation required. Sen-
tence: Output(1 or 0):

A.8.4 Llama 3.1
You are a classification model. Your job is to clas-
sify the sentences as threatening or non-threatening.
Output "1" if the sentence is threatening and "0" if
it is non-threatening. No explanation is required
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A.8.5 Ministral 8B
Classify the sentence as threatening or non threat-
ening. Output "1" for threatening and "0" for non
threatening. No explanation is required. Sentence:

A.9 Prompts - Cyber Bullying Identification

A.9.1 Bloomz
Your task is to classify the nature of cyberbully-
ing with one of the labels: INSULT OFFENSIVE
NAMECALLING PROFANE THREAT CURSE
NONE Output only label name. no explanation is
required. Sentence . Output label:

A.9.2 GPT 3.5
Your task is to classify the nature of cyberbully-
ing with one of the labels: INSULT OFFENSIVE
NAMECALLING PROFANE THREAT CURSE
NONE Output only label name. no explanation is
required. Sentence . Output label:

A.9.3 Llama 2
You are a helpful assistant in classification of cy-
berbullying. You should always provide answer
from given labels without explanation. «/SYS» Hu-
man: Sentence . classify the nature of cyber bully-
ing present in sentence with one of the following
label: INSULT OFFENSIVE NAMECALLING
PROFANE THREAT CURSE NONE Assitant:

A.9.4 Llama 3.1
You are a cyberbullying classification model. Your
task is to mark the input as INSULT or OF-
FENSIVE or NAMECALLING or PROFANE or
THREAT or CURSE or NONE in Urdu text sam-
ples. Ensure that your output is INSULT or OF-
FENSIVE or NAMECALLING or PROFANE or
THREAT or CURSE or NONE. No explanation is
required.

A.9.5 Ministral 8B
Your task is to classify the nature of cyberbully-
ing with one of the labels: INSULT OFFENSIVE
NAMECALLING PROFANE THREAT CURSE
NONE Output only label name. no explanation is
required. Sentence . Output label:

A.10 Prompts - Fake News Detection

A.10.1 Bloomz
You are a fake news detection model. Labels: fake
real Instructions: To distinguish between fake news
and real news in text samples. Ensure that the
model outputs ’fake’ for fake news and ’real’ for

real news. No explanation is required Sentence:
Label(fake or real):

A.10.2 GPT 3.5
"system": "You are an expert in detecting fake
news in the urdu samples” You are a fake news
detection model. Labels: fake real Instructions: To
distinguish between fake news and real news in text
samples. Ensure that the model outputs ’fake’ for
fake news and ’real’ for real news. No explanation
is required Sentence: Label(fake or real):

A.10.3 Llama 2
You are a fake news detection model. Labels: fake
real Instructions: To distinguish between fake news
and real news in text samples. Ensure that the
model outputs ’fake’ for fake news and ’real’ for
real news. No explanation is required Sentence:
Label(fake or real):

A.10.4 Llama 3.1
You are a fake news detection model.Output "fake"
for fake news and "real" for real news. No explana-
tion is required.

A.10.5 Ministral 8B
You are a fake news detection model. Labels: fake
real Instructions: To distinguish between fake news
and real news in text samples. Ensure that the
model outputs ’fake’ for fake news and ’real’ for
real news. No explanation is required Sentence:
Label(fake or real):

A.11 Prompts - Hate Speech Categorization

A.11.1 Bloomz
You are a hate speech classification model. Labels:
0: Non-hate speech 1: Hate speech Instructions:
To distinguish between hate speech and non-hate
speech in text samples. Ensure that the model out-
puts 0 for non-hate speech and 1 for hate speech.
Your output should be only 0 or 1 Sentence: Label:

A.11.2 GPT 3.5
You are a hate speech classification model. Labels:
0: Non-hate speech 1: Hate speech Instructions:
To distinguish between hate speech and non-hate
speech in text samples. Ensure that the model out-
puts 0 for non-hate speech and 1 for hate speech.
Your output should be only 0 or 1 Sentence:

A.11.3 Llama 2
You are a hate speech classification model. Labels:
0: Non-hate speech 1: Hate speech Instructions:
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To distinguish between hate speech and non-hate
speech in text samples. Ensure that the model out-
puts 0 for non-hate speech and 1 for hate speech.
Your output should be only 0 or 1. No explanation
is required Sentence: Label(0 or 1):

A.11.4 Llama 3.1
You are a hate speech classification model. Your
task is to mark 0 or 1 in Urdu text samples. Ensure
that the model outputs ’0’ for Non-hate text and ’1’
for Hate text. Ensure that your outputs 0 or 1 only.
No explanation is required.

A.11.5 Ministral 8B
You are a hate speech classification model. Your
task is to mark 1 or -1 in Urdu text samples. Ensure
that the model outputs ’1’ for Non-hate text and
’-1’ for hate text. Ensure that your outputs 1 or -1
only. No explanation is required.

A.12 Prompts - Extractive Summarization
A.12.1 Bloomz
You are an extractive summarization model. Label
the sentence that you considered is important for
Summarization as "1". If you think sentence should
not be kept for extractive summary, label it as "0".
Sentence Label:

A.12.2 GPT 3.5
"system": "You are an extractive summarization
model for Urdu language" You are an extractive
summarization model. Label the sentence that you
considered is important for Summarization as "1".
If you think sentence should not be kept for extrac-
tive summary, label it as "0". Sentence Label:

A.12.3 Llama 2
Passage: For extractive summarization, should
this passage be kept or discarded? Act as a sum-
marization model. Provide answer only (0 or 1)
without explanation. Answer:

A.12.4 Llama 3.1
You are an extractive summarization model. You
have to decide whether the given passage should
be kept or discarded for summary? Output "1" if
the passage should be kept and "0" for discarding
(0 or 1) without explanation

A.12.5 Ministral 8B
You are an extractive summarization model. You
have to decide whether the given passage should
be kept or discarded for summary? Output "1" if

the passage should be kept and "0" for discarding
(0 or 1) without explanation

A.13 Prompts - Abstractive Summarization

A.13.1 Bloomz
Write summary of the given Urdu meeting. Meet-
ing: . Summary:

A.13.2 GPT 3.5
You are a summarization model. Generate sum-
mary for the given meeting minutes in Urdu.
Prompt: Meeting minutes: Summary:

A.13.3 Llama 2
You are a summarization model. Your job is to
summarize the urdu meeting minutes. Meeting
minutes: Summary:

A.13.4 Llama 3.1
You are a summarization model. Generate the sum-
mary for the meeting minutes in Urdu.

A.13.5 Ministral 8B
You are a summarization model. Generate the sum-
mary for the meeting minutes in Urdu.

A.14 Prompts - Sentiment Analysis

A.14.1 Bloomz
Do the sentimental analysis. Output should be
"pos" for positive sentence , "neu" for neutral sen-
tence and "neg" for negative sentence. No explana-
tion is required. Sentence: Label:

A.14.2 GPT 3.5
Do the sentiment analysis. Output should be "pos"
for positive sentences , "neu" for neutral sentences
and "neg" for negative sentences. No explanation
is required. Sentence:

A.14.3 Llama 2
You are a helpful assistant in sentiment analysis.
You should always provide answer from given la-
bels without explanation. Human: Do the senti-
ment analysis. Output "neu" for neutral sentence,
"pos" for positive sentence , and "neg" for negative
sentence. No explanation is required. Sentence:
Assistant:

A.14.4 Llama 3.1
Perform sentiment analysis. Your output should
be "pos" for positive sentence , "neu" for neutral
sentence and "neg" for negative sentence. No ex-
planation is required.
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A.14.5 Ministral 8B
You are a helpful assistant in sentiment analysis.
You should always provide answer from given la-
bels without explanation. Tweet: . Perform senti-
ment analaysis on the tweet and answer with one
of the following label: -2 for Highly negative -1 for
Negative 0 for Neutral 1 for Positive 2 for Highly
positive No explanation is required. Output (-2,-
1,0,1,2):

A.15 Prompts - Sentiment Analysis (CLE)

A.15.1 Bloomz
Your task is to perform sentiment analysis on the
tweets. Labels are: -2 : Highly negative -1 : Neg-
ative 0 : Neutral 1 : Positive 2 : Highly positive
Output only label name. no explanation is required.
Tweet . Output label:

A.15.2 GPT 3.5
"system": "You are an expert in sentiment analysis
on urdu tweets Your task is to perform sentiment
analysis on the tweets. Labels are: -2 : Highly
negative -1 : Negative 0 : Neutral 1 : Positive
2 : Highly positive Output only label name. no
explanation is required. Tweet . Output label:

A.15.3 Llama 2
You are a helpful assistant in sentiment analysis.
You should always provide answer from given la-
bels without explanation.

Human: Tweet: . Perform sentiment analysis
on the tweet and answer with one of the following
label: -2 : Highly negative -1 : Negative 0 : Neutral
1 : Positive 2 : Highly positive Assitant:

A.15.4 Llama 3.1
You are a helpful assistant in performing sentiment
analysis. Perform sentiment analaysis on the tweet
and answer with one of the following label: -2
for Highly negative -1 for Negative 0 for Neutral
1 for Positive 2 for Highly positive Only output
-2 to 2 based on the above mentioned scale. No
explanation is required

A.15.5 Ministral 8B
You are a helpful assistant in performing sentiment
analysis. Perform sentiment analaysis on the tweet
and answer with one of the following label: -2
for Highly negative -1 for Negative 0 for Neutral
1 for Positive 2 for Highly positive Only output
-2 to 2 based on the above mentioned scale. No
explanation is required

A.16 Prompts - Multi-label Emotion
Classification

A.16.1 Bloomz

Output the emotion or emotions(if multiple) for the
sentence. Emotions: anger, disgust, fear, sadness,
surprise, happiness, neutral. You can output multi-
ple emotions as well but should only be the name
of the emotions. Output:

A.16.2 GPT 3.5

Output the emotion or emotions(if multiple) for the
sentence. Emotions: anger, disgust, fear, sadness,
surprise, happiness, neutral. You can output multi-
ple emotions as well but should only be the name
of the emotions. Output:

A.16.3 Llama 2

Output the emotion or emotions(if multiple) for the
sentence. Emotions: anger, disgust, fear, sadness,
surprise, happiness, neutral. You can output multi-
ple emotions as well but should only be the name
of the emotions. Output:

A.16.4 Llama 3.1

Output the emotion or emotions(if multiple) for the
sentence. Emotions: anger, disgust, fear, sadness,
surprise, happiness, neutral. You can output multi-
ple emotions as well but should only be the name
of the emotions. No explanation is required.

A.16.5 Ministral 8B

Output the emotion or emotions for the paragraph.
Emotions: neutral, happy, fear, sad, anger, love.
Your output should only be the name of one of the
emotions. Output:

A.17 Prompts - Emotion Classification

A.17.1 Bloomz

Output the emotion or emotions for the paragraph.
Emotions: neutral, happy, fear, sad, anger, love.
Your output should only be the name of one of the
emotions. Output:

A.17.2 GPT 3.5

"system", "content": "You are an expert in emo-
tion recognition in the urdu samples " Output the
emotion or emotions for the paragraph. Emotions:
neutral, happy, fear, sad, anger, love. Your output
should only be the name of one of the emotions.
Output:
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A.17.3 Llama 2
Output the emotion or emotions for the paragraph.
Emotions: neutral, happy, fear, sad, anger, love.
Your output should only be the name of only one
of the emotions. Output:

A.17.4 Llama 3.1
Output the emotions for the paragraph from one
of the following: neutral, happy, fear, sad, anger,
love. Your output should only be the name of one
of the given emotions. Don’t provide any other
apart from these six emotions. No explanation is
required

A.17.5 Ministral 8B
Output the emotions for the paragraph from one
of the following: neutral, happy, fear, sad, anger,
love. Your output should only be the name of one
of the given emotions. Don’t provide any other
apart from these six emotions. No explanation is
required

A.18 Prompts - Machine Translation
A.18.1 Bloomz
You are an expert translator specialized in trans-
lating texts from English to Urdu .Translate the
following English sentence to Urdu:

A.18.2 GPT 3.5
"system": "You are an expert translator specialized
in translating texts from English to Urdu " Translate
the following English sentence to Urdu:

A.18.3 Llama 2
No explanation or notes required. Just translate.
English: Urdu:

A.18.4 Llama 3.1
You are an English to Urdu translator. Translate
the english sentences into Urdu. No explanation is
required. Just translate into Urdu

A.18.5 Ministral 8B
You are an expert translator specialized in trans-
lating texts from English to Urdu. Translate the
following English sentence to Urdu: "". Provide
only the Urdu translation, without any additional
text or explanations.

A.19 Prompts - POS Tagging
A.19.1 Bloomz
Your task is to tag POS in input. You will use
following Taggig scheme: Tag Proper Noun as

NNP ,Tag Common Noun as NN,Tag Personal pro-
noun as PRP,Tag Demonstrative as PDM,Tag Pos-
sessive pronouns as PRS,Tag Reflexive pronouns
as PRF,Tag Reflexive Apna as APNA,Tag Relative
Personal as PRR,Tag Relative Demonstrative as
PRD,Tag Main Verb Infinitive as VBI,Tag Main
Verb Finite as VB,Tag Aspectual auxiliaries as
AUXA,Tag Progressive auxiliaries as AUXP,Tag
Tense auxiliaries as AUXT,Tag Modals auxiliaries
as AUXM,Tag Foreign Fragment as FF,Tag Inter-
jection as INJ,Tag Preposition as PRE,Tag Postpo-
sition as PSP,Tag Common as SYM,Tag Punctua-
tion as PU,Tag Common as RB,Tag Negation as
NEG,Tag Common as PRT,Tag Vala as VALA,Tag
Coordinate Conjunction as CC,Tag Subordinate
Conjunction as SC,Tag SC Kar as SCK,Tag Pre-
sentential as SCP,Tag Ordinal as OD,Tag Fraction
as FR,Tag Multiplicative as QM,Tag Adjective as
JJ,Tag Quantifier as Q,Tag Cardinal as CD. Your
Output should be only one tag corrosponding to
input word. no explaination is required. input:

A.19.2 GPT 3.5
"system": "You are an expert in Urdu pos tagging
" Your task is to tag POS in input. You will use
following Taggig scheme: Tag Proper Noun as
NNP ,Tag Common Noun as NN,Tag Personal pro-
noun as PRP,Tag Demonstrative as PDM,Tag Pos-
sessive pronouns as PRS,Tag Reflexive pronouns
as PRF,Tag Reflexive Apna as APNA,Tag Relative
Personal as PRR,Tag Relative Demonstrative as
PRD,Tag Main Verb Infinitive as VBI,Tag Main
Verb Finite as VB,Tag Aspectual auxiliaries as
AUXA,Tag Progressive auxiliaries as AUXP,Tag
Tense auxiliaries as AUXT,Tag Modals auxiliaries
as AUXM,Tag Foreign Fragment as FF,Tag Inter-
jection as INJ,Tag Preposition as PRE,Tag Postpo-
sition as PSP,Tag Common as SYM,Tag Punctua-
tion as PU,Tag Common as RB,Tag Negation as
NEG,Tag Common as PRT,Tag Vala as VALA,Tag
Coordinate Conjunction as CC,Tag Subordinate
Conjunction as SC,Tag SC Kar as SCK,Tag Pre-
sentential as SCP,Tag Ordinal as OD,Tag Fraction
as FR,Tag Multiplicative as QM,Tag Adjective as
JJ,Tag Quantifier as Q,Tag Cardinal as CD. Your
Output should be only one tag corrosponding to
input word. no explaination is required. input:

A.19.3 Llama 2
Your task is to tag POS in input. You will use
following Taggig scheme: Tag Proper Noun as
NNP ,Tag Common Noun as NN,Tag Personal pro-
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noun as PRP,Tag Demonstrative as PDM,Tag Pos-
sessive pronouns as PRS,Tag Reflexive pronouns
as PRF,Tag Reflexive Apna as APNA,Tag Relative
Personal as PRR,Tag Relative Demonstrative as
PRD,Tag Main Verb Infinitive as VBI,Tag Main
Verb Finite as VB,Tag Aspectual auxiliaries as
AUXA,Tag Progressive auxiliaries as AUXP,Tag
Tense auxiliaries as AUXT,Tag Modals auxiliaries
as AUXM,Tag Foreign Fragment as FF,Tag Inter-
jection as INJ,Tag Preposition as PRE,Tag Postpo-
sition as PSP,Tag Common as SYM,Tag Punctua-
tion as PU,Tag Common as RB,Tag Negation as
NEG,Tag Common as PRT,Tag Vala as VALA,Tag
Coordinate Conjunction as CC,Tag Subordinate
Conjunction as SC,Tag SC Kar as SCK,Tag Pre-
sentential as SCP,Tag Ordinal as OD,Tag Fraction
as FR,Tag Multiplicative as QM,Tag Adjective as
JJ,Tag Quantifier as Q,Tag Cardinal as CD. Your
Output should be only one tag corrosponding to
input word. no explaination is required. input:

A.19.4 Llama 3.1
Your task is to tag POS in input. You will use
following Taggig scheme: Tag Proper Noun as
NNP ,Tag Common Noun as NN,Tag Personal pro-
noun as PRP,Tag Demonstrative as PDM,Tag Pos-
sessive pronouns as PRS,Tag Reflexive pronouns
as PRF,Tag Reflexive Apna as APNA,Tag Relative
Personal as PRR,Tag Relative Demonstrative as
PRD,Tag Main Verb Infinitive as VBI,Tag Main
Verb Finite as VB,Tag Aspectual auxiliaries as
AUXA,Tag Progressive auxiliaries as AUXP,Tag
Tense auxiliaries as AUXT,Tag Modals auxiliaries
as AUXM,Tag Foreign Fragment as FF,Tag Inter-
jection as INJ,Tag Preposition as PRE,Tag Postpo-
sition as PSP,Tag Common as SYM,Tag Punctua-
tion as PU,Tag Common as RB,Tag Negation as
NEG,Tag Common as PRT,Tag Vala as VALA,Tag
Coordinate Conjunction as CC,Tag Subordinate
Conjunction as SC,Tag SC Kar as SCK,Tag Pre-
sentential as SCP,Tag Ordinal as OD,Tag Fraction
as FR,Tag Multiplicative as QM,Tag Adjective as
JJ,Tag Quantifier as Q,Tag Cardinal as CD. Your
Output should be only one tag corrosponding to
input word. no explaination is required. input:

A.19.5 Ministral 8B
Your task is to tag POS in input. You will use
following Taggig scheme: Tag Proper Noun as
NNP ,Tag Common Noun as NN,Tag Personal pro-
noun as PRP,Tag Demonstrative as PDM,Tag Pos-
sessive pronouns as PRS,Tag Reflexive pronouns

as PRF,Tag Reflexive Apna as APNA,Tag Relative
Personal as PRR,Tag Relative Demonstrative as
PRD,Tag Main Verb Infinitive as VBI,Tag Main
Verb Finite as VB,Tag Aspectual auxiliaries as
AUXA,Tag Progressive auxiliaries as AUXP,Tag
Tense auxiliaries as AUXT,Tag Modals auxiliaries
as AUXM,Tag Foreign Fragment as FF,Tag Inter-
jection as INJ,Tag Preposition as PRE,Tag Postpo-
sition as PSP,Tag Common as SYM,Tag Punctua-
tion as PU,Tag Common as RB,Tag Negation as
NEG,Tag Common as PRT,Tag Vala as VALA,Tag
Coordinate Conjunction as CC,Tag Subordinate
Conjunction as SC,Tag SC Kar as SCK,Tag Pre-
sentential as SCP,Tag Ordinal as OD,Tag Fraction
as FR,Tag Multiplicative as QM,Tag Adjective as
JJ,Tag Quantifier as Q,Tag Cardinal as CD. Your
Output should be only one tag corrosponding to
input word. no explaination is required. input:
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Abstract

In todays data-driven world, effectively orga-
nizing and presenting data is challenging, par-
ticularly for non-experts. Although tables orga-
nize data systematically, they often fall short in
conveying intuitive insights; in contrast, charts
provide clear and compelling visual summaries.
Although recent advances in NLP, powered by
large language models (LLMs), have primar-
ily benefited high-resource languages such as
English, low-resource languages such as Ben-
gali spoken by millions worldwide still face
significant data limitations. This research ad-
dresses this gap by introducing "Bengali Chart-
Summ," a benchmark dataset with 4,100 Ben-
gali chart images, metadata, and summaries.
This dataset facilitates the analysis of LLMs
(mT5, BanglaT5, Gemma) in Bengali chart-to-
text summarization, offering essential baselines
and evaluations that enhance NLP research for
low-resource languages.

1 Introduction

In today’s data-driven world, enormous amounts of
data are generated every second, presenting unique
challenges in organizing and presenting it effec-
tively. Although tabular formats can organize data,
they are often inadequate for complex datasets, par-
ticularly for non-experts who may find it challeng-
ing to identify essential insights. This difficulty
arises because tables lack intuitive trends or high-
lights, making it challenging to extract valuable
information. To address this, various tools and
methods have been developed to uncover hidden
patterns in data efficiently. Among these, special-
ized visualizations, particularly charts, stand out as
powerful tools for translating complex information.
By blending numerical data, text, and visual ele-
ments, these visualizations communicate intricate
information in a clear and accessible way, making
data insights more understandable and impactful
(Islam et al., 2021).

The emergence of deep learning-driven artificial
neural networks has significantly enhanced Natu-
ral Language Processing (NLP), boosting the ef-
ficiency and accuracy of textual data processing.
However, this progress has been largely limited to
high-resource languages like English, which bene-
fit from vast amounts of labeled and unlabeled data
from sources such as books, social media, websites,
and academic publications. This data-intensive
environment allows NLP models to be more op-
timized for specific tasks, resulting in improved
accuracy. In contrast, low-resource languages lack
this support, making it challenging to develop the
NLP domain due to the absence of even baseline
datasets, models, and evaluation benchmarks. Es-
sential resources like tokenizers, parsers, part-of-
speech taggers, and dependency grammars are of-
ten missing or underdeveloped for these languages,
and creating them from scratch requires substantial
linguistic expertise and time.

Bengali is one of the most widely spoken lan-
guages in the world, with approximately one in
eight people worldwide using it but research re-
sources for this language are still scarce in com-
parison to its substantial population (Ekram et al.,
2022). Although English has made significant ad-
vances in the field of natural language processing
(NLP) in various chart-related downstream tasks
such as question answering, summarization, and
the mathematical analysis of chart images, Bengali
and other low-resource languages are facing severe
data limitations. Although Bengali speakers fre-
quently employ Bengali charts in a variety of con-
texts, these constraints impede the efficient training
and fine-tuning of NLP models. Text summaries, in
particular, can enhance the comprehension and in-
terpretation of charts by highlighting key elements
like temporal trends, causal relationships, and eval-
uative aspects (Bhattacharjee et al., 2023). Given
the abundant resources available in English, there
is an opportunity to leverage them to address this
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research gap and create data repositories that will
allow domain experts to access and utilize chart
data more effectively in the Bengali language.

Large Language Models (LLMs) have made re-
markable progress in natural language process-
ing (NLP), particularly in language generation
and other language-centric tasks. Multimodal
LLMs, specifically vision-language models trained
on chart data, excel at tackling the challenges of
integrating visual and textual information, mak-
ing them highly effective in tasks that require
comprehensive understanding across modalities.
These vision-language models undergo extensive
pre-training on chart-related tasks, involving mul-
titask instructional tuning and task-specific fine-
tuning, which equips them to perform well across
a range of downstream tasks.

However, most of the research in this field fo-
cuses on high-resource languages such as English,
leaving low-resource languages like Bengali under-
represented (Kabir et al., 2023). This lack of re-
search and the absence of baseline models and eval-
uation benchmarks make it challenging to develop
effective NLP models for these languages. Re-
cently, multilingual models have been introduced
to address these limitations, but they still suffer
from the under-representation of low-resource lan-
guages, highlighting a significant opportunity to
explore and establish robust baseline research for
these languages.

To the best of our knowledge, large language
models (LLMs) have not yet been specifically ap-
plied to the task of chart-to-text summarization in
Bengali. This is primarily due to the lack of ex-
tensive, well-defined datasets that include chart im-
ages, metadata, and detailed summaries in Bengali.
In this work, we have addressed the scarcity of pub-
lic datasets in the automatic chart summarization
task. We have proposed a benchmark dataset - Ben-
gali ChartSumm comprising 4,100 chart images
with corresponding chart metadata and summaries
and conducted a study on large language models’
feasibility on Bengali Chart Summarization. A
sample from the curated dataset is shown in Figure:
1 as an example.

2 Literature Review

The task of generating descriptive summaries from
non-linguistic structured data, such as tables or
charts, is referred to as "chart-to-text summariza-
tion." This falls within the broader domain of nat-

ural language generation (NLG) and involves con-
verting data visualizations (like line, bar, bubble,
and pie charts) into textual descriptions. Current
chart-to-text summarization systems produce sum-
maries based either on the chart image itself (Hsu
et al., 2021) or on the metadata associated with
the chart (Obeid and Hoque, 2020; Kantharaj et al.,
2022).

Several datasets have been developed to support
research in English chart to text summarization,
including SciCap (Tan et al., 2022), Chart2Text
(Obeid and Hoque, 2020), AutoChart (Zhu et al.,
2021), and Chart-To-Text (Kantharaj et al., 2022).
These datasets vary in their formulation, rang-
ing from table to text descriptions, image to ex-
tracted metadata using OCR to text descriptions,
and system-generated short summaries to descrip-
tive human-written summaries. The development
of these datasets reflects the growing interest in ex-
ploring automatic chart summarization techniques
and evaluating their performance across different
types of charts and data sources (Rahman et al.,
2023).

Deep learning-based techniques have recently
gained substantial attention (Obeid and Hoque,
2020; Zhu et al., 2021; Kantharaj et al., 2022)
due to their improved performance over traditional
template-based approaches. However, the lack of
datasets for chart-to-text summarization poses a sig-
nificant challenge: not only do models for this task
need refinement, but also their overall effective-
ness has yet to be fully assessed. Most multimodal
foundation models (Li et al., 2023) are focused
on natural images and have achieved remarkable
progress in fields like image captioning (Vinyals
et al., 2015) and visual question answering (John-
son et al., 2017).

Some approaches have adapted vision-language
models for chart-related tasks (Han et al., 2023)
or created plugins enabling large language mod-
els (LLMs) to interpret charts (Xia et al., 2023).
Transfer learning, facilitated through learned lan-
guage representations in models like T5 and GPT
that use transformer architectures, has become in-
tegral to NLP, allowing language models to be
adapted for a range of downstream tasks (sum-
marization, question-answering, inference, etc.)
(Raffel et al., 2020). Nevertheless, challenges per-
sist for low-resource languages, which face under-
representation, biases, lack of required datasets for
downstream tasks, and limited evaluation bench-
marks for such models (Pires et al., 2019).
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Text

Summary: ২০২০ সােল, মা�ায় মতৃ নারীর সংখ�া িছল ৯.১৪ হাজার। মা�ায় নারী মতৃ� �র মামলা ১৯৭৫ সােল ৭.২৪ হাজার 
�থেক �বেড় ২০২০ সােল ৯.১৪ হাজার হয়, যা গেড় ২.৮৮% হাের �িত বছর ব�ৃ� পাে�।

Figure 1: An example of the Bengali Chart image and corresponding summary.

3 Bengali Chart-to-text dataset

The lack of benchmark chart-to-text datasets in
Bengali has compelled us to utilize language trans-
lation services for transforming existing chart-to-
text datasets from resource-abundant English into
Bengali, as illustrated in Figure: 2 mostly extend-
ing the work by (Rahman et al., 2023). By translat-
ing a part of their dataset to Bengali, we developed
a resource tailored for Bengali language process-
ing. Subsequently, we executed further steps to
finalize the curation of this dataset, preparing it for
the fine-tuning and evaluation of large language
models.

3.1 Data Collection

Finding an appropriate data source is the first step
in this research as it is essential to compile an exten-
sive dataset for the low-resource Bengali language.
As an available resource for summarization tasks
from chart images, our first step was to utilize an
English chart-to-text dataset (Rahman et al., 2023)
collected from different public online repositories,
including both long and short summaries. Although
this repository includes bar, line, and pie charts, we
chose to include only line and bar charts in our
dataset for ease of curation and model fine-tuning.
In our next phase, we will include pie charts and
other common charts in Bengali from many more
public repositories to make it diverse, realistic, and
challenging for research. We started translating
about 4,100 samples from the original dataset cov-
ering diverse topics while maintaining fidelity to
the original content as well as ensuring linguistic
and cultural accuracy. These translations included
both titles and captions, indicating a substantial
increase in the dataset’s usefulness.

3.2 Data Annotation

Following machine translation, the annotation pro-
cess was meticulously performed by human anno-
tators (Munaf et al., 2023). We selected undergrad-
uate students with STEM backgrounds, specifically
those with strong chart analysis skills and fluency
in both English and Bengali. From a group of inter-
ested candidates (19 students), we conducted a con-
trolled assessment to evaluate one’s competency in
translating and analyzing charts and identify expert
annotators, ultimately selecting five students based
on their performance. To ensure the dataset’s qual-
ity and relevance for the intended audience, random
samples of their annotations were reviewed, veri-
fying the accuracy and cultural appropriateness of
translations. The use of a relatively small group of
annotators from similar educational backgrounds
introduces the potential for biases. To mitigate
this, random quality checks were performed on
their annotations to verify accuracy and cultural
appropriateness. In addition, random samples of
annotations were periodically reviewed to ensure
that translated summaries preserved the intent and
tone of the original dataset while being accessible
to a Bengali-speaking audience. Some samples are
shown in Appendix A.1.

3.3 Dataset Preparation

After annotating the dataset, we conducted several
data preprocessing steps to prepare it for anal-
ysis (Meng et al., 2024). This process included
cleaning the data by removing whitespace, new-
lines, and irrelevant content, as well as converting
metadata into a format compatible with language
models. Additionally, heuristic rules were applied
to generate x-labels and y-labels where the origi-
nals were corrupted. In the following tokenization
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fine tuning 
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Bengali ChartSumm Dataset

English Data

Figure 2: A comprehensive overview of this research.

LLM Models Number of Parameters
Google/mT5-small1 300 Millions

BanglaT52 247 Millions
Google/gemma-2b3 2.5 Billions4

Table 1: LLM models used for this experiment and
corresponding number of parameters in the models.

step, we used customized tokenizers tailored to the
pre-trained models (as detailed in Table 1) to stem
and tokenize the text data, ensuring it was ready
for subsequent analysis (Rahman et al., 2023).

Data normalization was done as Bengali words
have many characters whereas English has only 26
characters. As a result, a word could have different
forms having identical appearances and meanings.
In Bengali, a special character "'◌়'" having the
symbol called "Nukta" which can alter the mean-
ing of a character depending on its inclusion or
absence. Various tokenizers approach this issue dif-
ferently to minimize confusion caused by multiple
representations of the same word. To resolve this,
we utilized a Bengali text normalizer (Hasan et al.,
2020), which effectively handles these challenges,

1https://huggingface.co/google/mt5-small
2https://huggingface.co/csebuetnlp/banglat5
3https://huggingface.co/google/gemma-2-2b-it
4Both embedding and non-embedding parameters

including the accurate processing of Bengali nu-
merical entities.

3.4 Dataset Analysis

We analyzed the text length distribution which
gives useful information about the dataset’s fea-
tures. The visualization aids in understanding the
variety in text lengths among different types of con-
tent in the training data, which is critical for model
tuning which is seen in Figure 3. The distribution
is relatively narrow, with 50% of titles falling be-
tween 39 and 60 tokens. The histogram shows a
peak in frequency of around 50 tokens, indicat-
ing that most titles are of moderate length, likely
brief descriptions or names. Summaries exhibit
a wider distribution, suggesting varying levels of
detail in the chart descriptions. The middle 50% of
summaries fall between 138 and 255 tokens. The
histogram indicates a concentration of around 200
tokens, with a somewhat even spread, showing sum-
maries are typically more detailed and descriptive
than titles but less than the chart data.
In our chart dataset, text length shows the greatest
variability, with an average length of approximately
586 tokens but a very high standard deviation. The
histogram reveals a multi-modal distribution, with
peaks around both lower and higher text lengths,
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Figure 3: Visualize text length distribution for Training dataset

indicating that some charts have very concise data,
while others provide extensive details, which is
why we have handpicked the text with a stable
and average number of tokens that will help in our
model to not be over-fitting. Addressing this vari-
ability could improve the feasibility of applying
LLMs to this complex task, making it an essential
consideration in developing Bengali ChartSumm
as a benchmark dataset.

4 Methodology

This section outlines the process of fine-tuning,
training, and evaluating our selected models
(shown in Figure: 2) for the Bengali chart-to-text
summarization task. The primary focus is on the
setup of the evaluation metrics and the rationale
for their selection, ensuring a robust assessment
framework.

4.1 Problem Formulation
The overall process of our Bengali Chart-to-Text
Summarization system is shown in Figure 2. We
consider the problem setting for Bengali chart sum-
marization assuming that the underlying data table
of the chart image is available. Formally, we are
given a dataset with N examples D = {mi, si}Ni=1,
where mi represents the underlying metadata for
a given chart image and si represents the target
summary text for mi. The Bengali Chart Summa-
rization models learn to predict the summary si
given the metadata mi.

4.2 Model Training and Fine-tuning
Each model was fine-tuned on our prepared Bengali
ChartSumm dataset to optimize its performance for
generating Bengali text summaries from chart meta-
data. For this task, we utilized three models: mT5

(Xue et al., 2020), BanglaT5 (Bhattacharjee et al.,
2023), and Gemma (Team et al., 2024), each with
unique architectures and strengths for multilingual
and Bengali text generation (listed in Table 1).

For the models mt5 and banglat5, the input for-
mat was structured as "title + chart metadata", with
the output targeted as the "caption". We defined
a custom PyTorch Dataset class, Seq2SeqDataset,
which tokenizes and processes input data. The
dataset class concatenates the chart title and chart
data into a single input text sequence with the for-
mat <Title> "চাট� তথ্য:" <Chart Data>. The sum-
mary column serves as the target sequence.

For the Gemma model, we used prompting and
context to structure the dataset to get the summary
as a prompt answer. We proceeded by loading
the Bengali chart data, which consisted of three
text files: titles, summaries, and chart data. The
data was organized into a DataFrame with three
columns: title, summary, and chart_data. We
created a custom template to serve as an instruction
for the model. This template was designed to
instruct the model to provide chart summarization
in Bengali, with a format that included the chart
title, and chart data as <input_sequence>. The
complete prompt template was like this -

"Instruction: Your task is to give chart
summarization in Bengali language:
(এই চাট�টি বাংলা ভাষায় সারাংশ কর):"
"Given data: চাট� তথ্য:" <input_sequence>
"Summary: সারাংশ:"

Each data line was modified to add labels for the
x-axis and y-axis, making it easier for the model
to understand the context. A regular expression
function, modify_data_line, was used to add these
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labels to the data points, creating a standardized
input format. Using this template, the chart titles,
data, and corresponding captions were combined
into structured prompts and stored in a list format
suitable for model fine-tuning.

4.3 Evaluation Metrics

To rigorously evaluate the quality of the generated
summaries, we employed a set of commonly used
metrics in natural language processing for summa-
rization and translation tasks (Rahman et al., 2023;
Meng et al., 2024). These metrics assess various
aspects of model performance by measuring both
n-gram overlaps and error rates. BLEU (Bilingual
Evaluation Understudy) (Post, 2018) measures n-
gram precision between machine-generated and
reference texts, emphasizing precision to evalu-
ate how closely the generated summaries align
with the reference summaries. ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) (Lin,
2004), often used in text summarization and longer
text generation tasks, focuses on recall by measur-
ing the overlap of n-grams or sequences between
machine-generated and reference texts. We report
three variants of ROUGE: ROUGE-1, which as-
sesses unigram recall; ROUGE-2, which evaluates
bigram recall, reflecting phrase-level accuracy; and
ROUGE-L, which captures the longest common
subsequence, providing a measure of structural sim-
ilarity. CER (Character Error Rate) (Wang et al.,
2016) calculates the ratio of character-level errors
(insertions, deletions, substitutions) to the total
characters in the reference text, making it espe-
cially important in Bengali text generation, where
small character variations can significantly alter
meaning. WER (Word Error Rate) (Ali and Renals,
2018) measures word-level accuracy by calculat-
ing insertions, deletions, and substitutions relative
to the reference text, with a lower WER indicat-
ing fewer errors in capturing the intended word se-
quence. Together, these metrics offer a comprehen-
sive understanding of the models summarization
quality, highlighting both precise word matching
and broader structural accuracy, laying the ground-
work for a thorough performance comparison of
the models, which is presented in the following
section.

5 Experimental Setup

To aid model training, we normalized the text in-
put with the normalize function from the normal-

izer library (Hasan et al., 2020), which is spe-
cially developed for Bengali language processing.
Each input sequence is tokenized with a maximum
length of 256 tokens converted into PyTorch ten-
sors. Training configurations for each model in-
cluded 15 epochs, a learning rate of 1e-3, epsilon
of 1e-8, weight decay of 0.01, AdamW1 optimizer
and a batch size of 16, optimized for the given
dataset and task requirements. The dataset was
split into a Training set: 70%, a Validation set:
10.5%, and a Test set: 19.5%. We also applied
appropriate approaches for the remaining model
configurations. For evaluation, we loaded the fine-
tuned model and tokenizer and generated sum-
maries for the test dataset. We used the generate
function with num_beams (4) to apply beam search
and set max_length (512) for generated summaries.
To avoid overly short summaries, we omitted any
length penalty and removed early stopping to en-
sure complete generation.

6 Evaluation

6.1 Results and Discussions

In this section, we analyze the performance of three
distinct Large Language Models: mT5, BanglaT5,
and Gemma using several key evaluation metrics.
These models were tested on their ability to gen-
erate coherent and accurate text based on given
reference texts. The evaluation metrics considered
include ROUGE (ROUGE-1, ROUGE-2, ROUGE-
L), which measures the recall of n-grams and the
longest common subsequence, BLEU (Bilingual
Evaluation Understudy), which focuses on n-gram
precision, and two error rates: CER (Character Er-
ror Rate) and WER (Word Error Rate)which gauge
the accuracy of the generated text at the character
and word levels, respectively. The summary of this
evaluation is shown in Table 2.

6.1.1 ROUGE Scores
BanglaT5 outperforms mT5 and Gemma in
ROUGE-1, achieving a score of 0.0678 compared
to mT5’s 0.0422, marking a significant 63% im-
provement. This suggests that BanglaT5 is better at
recalling individual words (unigrams) from the ref-
erence text. However, when examining ROUGE-2
and ROUGE-L, all models exhibit lower scores, in-
dicating struggles with recalling bigrams and main-
taining the overall structure of the reference text.

1https://pytorch.org/docs/stable/generated/torch.op-
tim.AdamW.html
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Models Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑ BLEU ↑ CER ↓ WER ↓
mT5 0.0422 0.0015 0.0397 0.2779 0.5295 0.7189

BanglaT5 0.0678 0.0016 0.0592 0.0505 0.9681 1.1530
Gemma 0.0227 0.0008 0.0204 0.2153 0.7828 1.0653

Table 2: Experiment results on Large Language Models

These low scores highlight the challenges faced by
the models in producing text that accurately mir-
rors the phrasal patterns and the longest common
subsequences found in the reference material.

6.1.2 BLEU Score
In contrast to the ROUGE scores, mT5 shows a sig-
nificant advantage in the BLEU score, with 0.2779
compared to BanglaT5’s 0.0505 and Gemma’s
0.2153. The BLEU metric emphasizes n-gram pre-
cision, suggesting that mT5 is more successful at
generating text with sequences of words that ex-
actly match those in the reference text. Despite
this, the low ROUGE-L score indicates that while
mT5 may produce some n-gram matches, it may
still struggle with overall fluency and faithfulness
to the reference text’s structure.

6.1.3 CER and WER
When considering CER (Character Error Rate) and
WER (Word Error Rate), BanglaT5 displays higher
error rates (0.9681 for CER and 1.1530 for WER)
compared to mT5 (0.5295 for CER and 0.7189 for
WER) and Gemma (0.7828 for CER and 1.0653
for WER). These metrics reflect the tendency to
introduce more character and word errorssuch as
insertions, deletions, or substitutions when gener-
ating text, leading to a higher deviation from the
reference for BanglaT5 and Gemma.

6.1.4 Overall Comparison
The comparative analysis of the models suggests a
trade-off between recall and precision. BanglaT5,
while better at recalling individual words, strug-
gles with n-gram precision, fluency, and overall
correctness, as evidenced by its lower BLEU score
and higher error rates. On the other hand, mT5,
despite its lower ROUGE-1 score, performs better
in BLEU, CER, and WER, indicating fewer errors
and better n-gram precision, although it may lack
in producing text that fully captures the structure
of the reference text. These results imply that the
training data for BanglaT5 might have been less
comprehensive or diverse, limiting its ability to gen-
erate text with complex phrasings and structures.

While all models have their respective shortcom-
ings, mT5 demonstrates a more balanced perfor-
mance, particularly in generating summaries that
are more precise and contain fewer errors. The find-
ings underscore the importance of model training
on diverse and high-quality datasets to improve the
overall performance of text generation models. Ap-
pendix A.2 provides a sample summary generated
by Gemma as part of a qualitative comparison.

7 Conclusion

Our study on Bengali chart-to-text summarization
establishes a strong foundation for future research
and development in automatic chart summariza-
tion, particularly for under-resourced languages
like Bengali. The primary objectives were to create
a dataset specifically designed for Bengali chart
summarization and to evaluate the applicability of
Large Language Models (LLMs) in this context.
By addressing the resource gap and demonstrating
the potential of LLMs in Bengali chart summariza-
tion, this work not only advances the field but also
paves the way for further research and development.
Showing the feasibility of using language models
for Bengali chart-to-text summarization represents
a significant step in applying these powerful mod-
els to underrepresented languages and tasks, ulti-
mately promoting inclusivity and accessibility in
NLP technology.
Future research could focus on integrating Bengali-
specific Optical Character Recognition (OCR) tech-
nology to enhance the accuracy of reading both
handwritten and printed Bengali text in charts,
thereby expanding the scope of chart formats our
dataset and models can handle. Expanding the
dataset to include a broader range of common chart
types (e.g., pie charts, bubble charts, etc.) could
increase its diversity and complexity. Addition-
ally, utilizing state-of-the-art large language mod-
els (LLMs), such as LLaMA and Mistral, could
significantly enhance the performance of chart sum-
marization. On the other hand, translating the
dataset and models into other languages would
broaden their linguistic applicability and enable
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cross-lingual comparisons, paving the way for uni-
versally applicable chart summarization methods.
Another promising avenue is the development of
interactive platforms or chatbots that use these mod-
els to provide real-time interpretation of Bengali
charts, increasing accessibility for users. Despite
these advancements, further work is needed to
address the technical challenges associated with
OCR technology tailored for Bengali and other lan-
guages.

Limitations and Ethical Considerations

While Bangla and English include various chart
types, for this research, we focused on bar and
line charts due to the availability of public English
datasets and the relative simplicity of these chart
types. Our LLM models are trained with limited
resources, which restricts their efficiency in gen-
erating complex, detailed summaries. Increasing
dataset diversity and sizes, along with more inten-
sive training on state-of-the-art multimodal LLMs,
could better support complex reasoning across vi-
sual and textual features, leading to improved sum-
marization performance.

We addressed several ethical considerations dur-
ing the dataset collection and annotation stages. To
respect the intellectual property rights of dataset
sources, we exclusively used publicly available
charts that comply with their terms and conditions.
Our annotators were compensated above the mini-
mum wage in Bangladesh (12,500 taka, or approx-
imately $113 USD per month). Each task was
estimated to take 3-5 minutes, and annotators were
paid 2.5 taka ($0.021 USD) per task. Addition-
ally, to protect their privacy, all annotations were
anonymized. For reproducibility, our experimental
hyperparameter settings are provided in Section 5.

Acknowledgment

This work was supported by the supported by
the Islamic University of Technology Research
Seed Grants (IUT RSG) (Ref: REASP/IUT-
RSG/2022/OL/07/013). We extend our sincere grat-
itude to our annotators for their invaluable support
in creating the dataset. We are also deeply thankful
to Raian Rahman and Ishmam Tashdeed, alumni
of the NDAG Research Lab, for their constructive
feedback. Additionally, we appreciate the thought-
ful comments and suggestions from the anonymous
reviewers, which greatly contributed to improving
this paper.

References
Ahmed Ali and Steve Renals. 2018. Word error rate es-

timation for speech recognition: e-WER. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 20–24, Melbourne, Australia. Association for
Computational Linguistics.

Abhik Bhattacharjee, Tahmid Hasan, Wasi Ahmad,
and Rifat Shahriyar. 2023. Banglanlg and banglat5:
Benchmarks and resources for evaluating low-
resource natural language generation in bangla. In
Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 714–723.

Syed Mohammed Sartaj Ekram, Adham Arik Rah-
man, Md. Sajid Altaf, Mohammed Saidul Islam,
Mehrab Mustafy Rahman, Md Mezbaur Rahman,
Md Azam Hossain, and Abu Raihan Mostofa Kamal.
2022. BanglaRQA: A benchmark dataset for under-
resourced Bangla language reading comprehension-
based question answering with diverse question-
answer types. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
2518–2532, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin
Wang, Gang Yu, Bin Fu, and Hanwang Zhang. 2023.
Chartllama: A multimodal LLM for chart understand-
ing and generation. CoRR, abs/2311.16483.

Tahmid Hasan, Abhik Bhattacharjee, Kazi Samin, Ma-
sum Hasan, Madhusudan Basak, M Sohel Rah-
man, and Rifat Shahriyar. 2020. Not low-resource
anymore: Aligner ensembling, batch filtering, and
new datasets for bengali-english machine translation.
arXiv preprint arXiv:2009.09359.

Ting-Yao Hsu, C. Lee Giles, and Ting-Hao Kenneth
Huang. 2021. Scicap: Generating captions for scien-
tific figures. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 16-20 November,
2021, pages 3258–3264. Association for Computa-
tional Linguistics.

Md. Rafiqul Islam, Jiaming Zhang, Md. Hamjajul Ash-
mafee, Imran Razzak, Jianlong Zhou, Xianzhi Wang,
and Guandong Xu. 2021. Exvis: Explainable visual
decision support system for risk management. In 8th
International Conference on Behavioral and Social
Computing, BESC 2021, Doha, Qatar, October 29-31,
2021, pages 1–5. IEEE.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross B.
Girshick. 2017. CLEVR: A diagnostic dataset for
compositional language and elementary visual rea-
soning. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pages 1988–1997. IEEE
Computer Society.

42



Mohsinul Kabir, Mohammed Saidul Islam, Md Tah-
mid Rahman Laskar, Mir Tafseer Nayeem, M Sai-
ful Bari, and Enamul Hoque. 2023. Benllmeval: A
comprehensive evaluation into the potentials and pit-
falls of large language models on bengali nlp. arXiv
preprint arXiv:2309.13173.

Shankar Kantharaj, Rixie Tiffany Ko Leong, Xiang
Lin, Ahmed Masry, Megh Thakkar, Enamul Hoque,
and Shafiq Joty. 2022. Chart-to-text: A large-scale
benchmark for chart summarization. arXiv preprint
arXiv:2203.06486.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. Preprint, arXiv:2301.12597.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao,
Kaipeng Zhang, Yu Qiao, and Ping Luo. 2024. Char-
tassisstant: A universal chart multimodal language
model via chart-to-table pre-training and multitask
instruction tuning. CoRR, abs/2401.02384.

Mubashir Munaf, Hammad Afzal, Naima Iltaf, and
Khawir Mahmood. 2023. Low resource summa-
rization using pre-trained language models. CoRR,
abs/2310.02790.

Jason Obeid and Enamul Hoque. 2020. Chart-to-text:
Generating natural language descriptions for charts
by adapting the transformer model. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 138–147, Dublin, Ireland.
Association for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 4996–5001. Association for Computa-
tional Linguistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Raian Rahman, Rizvi Hasan, Abdullah Al Farhad,
Md Tahmid Rahman Laskar, Md Hamjajul Ashmafee,
and Abu Raihan Mostofa Kamal. 2023. Chartsumm:
A comprehensive benchmark for automatic chart
summarization of long and short summaries. arXiv
preprint arXiv:2304.13620.

Hao Tan, Chen-Tse Tsai, Yujie He, and Mohit Bansal.
2022. Scientific chart summarization: Datasets and
improved text modeling. In SDU@ AAAI.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural image
caption generator. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 3156–3164. IEEE
Computer Society.

Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl,
and Hermann Ney. 2016. Character: Translation
edit rate on character level. In Proceedings of the
First Conference on Machine Translation: Volume 2,
Shared Task Papers, pages 505–510.

Renqiu Xia, Bo Zhang, Haoyang Peng, Ning Liao,
Peng Ye, Botian Shi, Junchi Yan, and Yu Qiao. 2023.
Structchart: Perception, structuring, reasoning for
visual chart understanding. CoRR, abs/2309.11268.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Jiawen Zhu, Jinye Ran, Roy Ka wei Lee, Kenny Choo,
and Zhi Li. 2021. Autochart: A dataset for chart-to-
text generation task. Preprint, arXiv:2108.06897.

43



A Appendix

A.1 Human Annotations
Table 3 presents a qualitative comparison highlighting specific tasks performed by our human annotators
to capture and preserve the nuances of the language.

English Summary Machine Translation Human Annotation Comments
Between 1965 and 2014,
Guinea Bissau CO2
emissions from gas
flaring remained stable
at around 0 thousand
metric tons.

১৯৬৫ �থেক 2014 সােলর
মেধ্য, িগিন িবসাউ এর
উদ্দীপ্ত গ্যাস �থেক CO2
িনগ�মন প্রায় ০ হাজার
�মট্রিক টেন ��িতশীল
িছল।

১৯৬৫ �থেক ২০১৪ সােলর
মেধ্য, িগিন িবসাউ এর
উদ্দীপ্ত গ্যাস �থেক কাব�ন
ডাই অক্সাইড িনগ�মন প্রায়
০ হাজার �মট্রিক টেন
��িতশীল িছল

Replace “CO2” with
its full form and the
year “2014” with its
proper Bengali num-
ber (in summary)

Italy - Total population
aged 25-49 years

ইতা�ল - �মাট জনসংখ্যা
২৫-৪৯ বছর বয়সী

ইতা�ল - ২৫-৪৯ বছর বয়সী
�মাট জনসংখ্যা

Rearrange words to
clarify in natural Ben-
gali (in title)

In 2019, female life ex-
pectancy for Australia
was 85 years. Fe-
male life expectancy of
Australia increased from
74.4 years in 1970 to 85
years in 2019 growing at
an average annual rate of
0.27%.

২০১৯ সােল, অে��লয়ায়
মিহলােদর আয়ু িছল
৮৫ বছর। অে��লয়ার
মিহলােদর আয়ু ১৯৭০
সােল ৭৪.৪ বছর �থেক
�বেড় ২০১৯ সােল ৮৫
বছর হেয়েছ যা বািষ�ক গড়
০.২৭% হাের বৃি� �পেয়েছ।

২০১৯ সােল, অে��লয়ায়
মিহলােদর প্রত্যািশত
আয়ুষ্কাল িছল ৮৫ বছর।
অে��লয়ার মিহলােদর
প্রত্যািশত আয়ুষ্কাল ১৯৭০
সােল ৭৪.৪ বছর �থেক
�বেড় ২০১৯ সােল ৮৫
বছর হেয়েছ যা বািষ�ক গড়
০.২৭% হাের বৃি� �পেয়েছ।

Use "প্রত্যািশত
আয়ুষ্কাল" instead
of "আয়ু," to
translate the word
"life expectancy"
more precisely (in
summary)

Monthly oil production
in Angola 2019-2021

অ্যাে�ালা ২০১৯-২০২১ এ
মািসক �তল উত্পাদন

অ্যাে�ালা ২০১৯-২০২১ এ
মািসক �তল উৎপাদন

Refine Bengali
spelling (in title)

The Christmas of 2020
is being perceived
differently among all
the people celebrating
it. According to a
survey conducted in
Italy, 85 percent of the
respondents strongly
agreed or agreed that
this Christmas is going
to be different from for-
mer Christmases. Some
66 percent believed it
is going to be sadder,
while 25 percent thought
it would be more simple.

২০২০ এর ��সমাস এটি
উদযাপন করা সমস্ত
�লােকর মেধ্য আলাদাভােব
িবেবিচত হে�। ইতা�লেত
পিরচা�লত একটি সমীক্ষা
অনুসাের, ৮৫ শতাংশ
উত্তরদাতারা দৃ strongly
◌ভ়ােব সম্মত বা সম্মত
হেয়েছন �য এই ��সমাসটি
প্রাক্তন ��সমাস �থেক
আলাদা হেত চেলেছ।
প্রায় ৬৬ ৬৬ শতাংশ
িবশ্বাস কেরিছেলন �য
এটি দঃুখজনক হেত
চেলেছ, যখন ২৫ শতাংশ
�ভেবিছেলন এটি আরও
সহজ হেব।

২০২০ এর ��সমাস এটি
উদযাপন করা সমস্ত
�লােকর মেধ্য আলাদাভােব
িবেবিচত হে�। ইতা�লেত
পিরচা�লত একটি সমীক্ষা
অনুসাের, ৮৫ শতাংশ
উত্তরদাতারা দঢ়ৃভােব
সম্মত বা সম্মত হেয়েছন
�য এই ��সমাসটি প্রাক্তন
��সমাস �থেক আলাদা
হেত চেলেছ। প্রায় ৬৬
শতাংশ িবশ্বাস কেরিছেলন
�য এটি দঃুখজনক হেত
চেলেছ, যখন ২৫ শতাংশ
�ভেবিছেলন এটি আরও
সহজ হেব।

Refine to preserve the
intent (in summary)

Table 3: Tasks done by human annotators.
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A.2 Chart Summarization by LLM
Figure 4 presents a sample summary generated from the provided chart data and a prompt by Gemma,
alongside its corresponding gold label. This demonstrates that straightforward trends are readily identified
by the models and effectively represented in the Bengali summary.

Figure 4: A Bengali chart summary generated by Gemma.
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Abstract
Traditional language models in NLP have
been extensively made use of, in hate-
ful speech detection problems. With the
growth of social media, content in regional
languages has grown exponentially. How-
ever, use of language models as well as
LLMs on code-mixed Hindi-English hateful
speech detection is under-explored. Our
work addresses this gap by investigating
both cutting-edge LLMs by Meta, Google,
OpenAI, Nvidia as well as Indic-LLMs
like Sarvam, Indic-Gemma, and Airavata
on hateful speech detection in code-mixed
Hindi-English languages in a comprehen-
sive set of few-shot scenarios which in-
clude examples selected randomly, as well as
with retrieval-augmented generation (RAG)
based on MuRIL language model. We ob-
served that Indic-LLMs which are instruc-
tion tuned on Indian content fall behind on
the task. We also experimented with fine-
tuning approaches, where we use knowledge-
distillation based-finetuning by using ratio-
nale behind hate speech. Finally, we also
propose Dwesh-Vaani, an LLM based on
fine-tuned Gemma-2, that out-performs all
other approaches at the task of religious
hateful speech detection as well as targeted
religion identification in code-mixed Hindi-
English languages. Black-box functionality
testing is used to establish its robustness
and stability.

1 Introduction
Due to the exponential growth of internet, so-
cial media has become a preferred medium for
individuals to share their views and thoughts.
According to some estimates, more than half of
the world now actively use social media, with
this number growing by around 260 million,
just over the last year. While social media has
undoubtedly brought people closer and made
access to information easy, it has also been

used over the years to spread hate and misin-
formation. Social media is used by individuals
with malicious intents to spread hate by ampli-
fying their stereotypical and derogatory views
expressing hate or encouraging violence at an
individual or community (based on their race,
religion, sex etc.), which can reach audience
in all corners of the world in a matter of sec-
onds. The presence and generation of such
negative contents can create divide within in-
dividuals and communities within society and
lead to conflicts and hostility. Previous studies
have also pointed out the urgency to address
this issue, in order to maintain a peaceful and
inclusive society.

Over the past few years, numerous research
studies have examined different aspects of hate
speech and offensive language detection, includ-
ing related topics such as identifying abusive
content (Nobata et al., 2016; Sazzed, 2021), cy-
berbullying detection (Paul et al., 2022; Iwendi
et al., 2020) and detecting hostility (Bagora
et al., 2022; Kamal et al., 2021; Raha et al.,
2021). Some of these studies have specifically
concentrated on targeted hate speech (Chiril
et al., 2021; ElSherief et al., 2018; Sharma et al.,
2023), while others have explored issues related
to vulnerable communities, such as detecting
homophobia and transphobia (Sharma et al.,
2022; Chakravarthi et al., 2022)

In spite of recent research, the incidences
of religious hate speech are continuously ris-
ing every day. Additionally, we have started
to see drastic real-world consequences of hate
speech targeting religious groups, one promi-
nent example being the Rohingya crisis in
Myanmar, where social media was used ex-
tensively to spread misinformation and incite
violence against the minority Rohingya Mus-
lim community. Similarly, anti-Semitic hate
speech surged across the social media during
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the conflict between Hamas and Israel, incit-
ing violence. Given the huge volumes of hate
speech content that is generated on social me-
dia, language models have been used exten-
sively in previous studies for automatic detec-
tion of harmful content.

Most of the existing research works focus
on content in English language, and there is
relatively less study on hateful content on so-
cial media in low-resource languages like Hindi.
Hindi is spoken across 20 countries with 577
million native speakers and now has a signif-
icant amount of content available online, as
people are increasingly expressing themselves
on social media in regional or code-mixed lan-
guages. However, lack of suitable datasets for
targeted hate speech against religion in Hindi
or Hindi-English code-mixed languages, had
rendered the progress slow. Recently, Targeted
Hate Speech Against Religion (THAR) dataset
(Sharma et al., 2024) was curated, in a step
towards building language models to bridge
this gap. Additionally, given the language un-
derstanding prowess of LLMs, they have been
under-explored on tasks like hate speech detec-
tion, with a scarcity of research in this area.

In this paper, we bridge the aforementioned
gap by evaluating both Multi-lingual Masked
Language Model (like MuRIL) and few-shot
learning techniques with cutting-edge LLMs
like Llama-3.1, Gemma-2, and GPT-4o Mini
as well as Indic LLMs like Sarvam, Nemotron,
Airavata, and IndicGemma.

Therefore, we perform analyses and evalu-
ations in following four different approaches.
Firstly, we evaluate a multilingual masked lan-
guage model on the task of religious hate speech
detection in YouTube comments and identifi-
cation of religion that the comment hatefully
targets.

Secondly, we make use of in-context learning
using state-of-the-art open-source Instruction-
tuned LLMs, to evaluate their performance
on zero-shot and few-shot (1 and 2 examples
per class) learning and Retrieval-Augmented
Generation (RAG). Thirdly, we experiment
with fine-tuning and knowledge-distillation ap-
proaches using the LLMs.

Finally, we propose DweshVaani, an LLM
based on Gemma-2, that can be used as state-
of-the-art model for religious hate speech de-
tection in Hindi and Hindi-English code-mixed

languages. We show that this model is able
to outperform all other approaches, as well
black-box testing shows it to be more robust.
Additionally, we also perform extensive error
analysis of the best performing model.

2 Related Work

2.1 Hate-Speech Detection
Previous studies have focused on different
facets of hate speech detection, like abusive
comments (Nobata et al., 2016; Sazzed, 2021;
Zia Ur Rehman et al., 2023), offensive con-
tent (Salaam et al., 2022; Saumya et al., 2021;
Chen et al., 2012), toxic speech (D’Sa et al.,
2020; Nguyen et al., 2021), including transpho-
bia (Chakravarthi et al., 2022; Sharma et al.,
2022) and misogyny detection (Nozza et al.,
2019; Pamungkas et al., 2020). Hate speech
concerning religion is a sensitive topic as it
has the power to create divide in societies, as
recently observed in the Delhi riots. There
do exist studies on religious hate speech detec-
tion but have often not been comprehensive
in covering major religions, for example, some
cover only Islamophobia detection (Mehmood
et al., 2021). Due to lack of suitable datasets
and generalized models, religious hate speech
detection in low-resource languages remains
under-explored.

Despite a significant amount of popula-
tion speaking Hindi, datasets for religious
hate-speech detection in Hindi or code-mixed
Hindi-English were largely absent. Targeted
Hate Speech Against Religion (THAR) dataset
(Sharma et al., 2024) was recently released
which aimed to address this gap. It not only
has information about whether a comment was
hatefully targeting a religion, but also encom-
passes information about which religion it was
targeting. We make use of this dataset in our
study.

2.2 Using LLMs for Hate Speech
Detection

There has been some focus on using LLMs
to generate datasets on hateful speech.
Hartvigsen et al. (2022) used demonstration-
based prompting for LLMs, to encourage it to
generate both toxic and benign sentences that
talk about minority groups without any sort
of explicit words or language. In this way they
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created the TOXIGEN dataset which encom-
passes implicit toxicity which can be used to
train language models to detect subtle toxicity
rather than getting confised with any mentions
of minorities. Some works like that by Das
et al. (2022a) have even constructed evaluation
sets (HateCheckHIn) in Hindi for testing multi-
lingual functionalities of hate speech detection
models. In a further work, Das et al. (2024)
evaluated ChatGPT 3.5 on these functionality
tests and observed that it performs inferior on
Hindi as compared to other languages.

Guo et al. (2023) assessed the ability of
LLMs in hate speech detection by employing
them on five datasets, namely - HateXplain,
COVID-HATE, CallMeSexist, USElectionHate
and SWSR. They used few-shot learning and
chain-of-thought prompting techniques with
GPT3.5-Turbo along with fine-tuned BERT,
and RoBERTa models, and observed that Chat-
GPT consistently out-performs both of them.
Additionally, when they tested ChatGPT on
multilingual hate speech detection in Chinese
language, it was observed that ChatGPT per-
forms significantly poor than expected. Roy
et al. (2023) evaluated GPT3.5, flan-T5-large
and text-davinci, across three datasets - Hat-
eXplain, implicit hate, and Toxic-Spans, which
contain the ground truth explanations as well.
Using vanilla prompts, flan-T5-large came out
to be the best performing model among the
three. Additionally, when the prompt included
information about the target community, per-
formance gains of upto 30% are obtained. Sen
et al. (2024) explored use of Tiny LLMs like
TinyLlama, phi-2 and opt-1.3B on two hate-
speech datasets, namely - DynaHate and ha-
teeval. They observed significant gains in per-
formance across all models for both datasets,
when they fine-tuned the models using LoRa,
with opt-1.3b model coming out as the best
performing model.

These works have multiple gaps - they do not
either assess LLMs on religious hateful speech
in code-mixed Hindi-English languages, or do
not present the targeted religion, which is a
more challenging task than hate identification.

3 Task and Dataset

Hateful speech detection in Code-mixed Hindi-
English languages is a challenging problem be-

cause of scarcity of appropriate datasets. For
this work, we used the recently released Tar-
geted Hate Speech Against Religion (THAR)
dataset (Sharma et al., 2024). It consists of
comments from YouTube videos scraped from
videos discussing controversial topics in reli-
gious contexts, including political discussions.
Two sub-tasks are proposed by the creators for
this dataset:

Subtask 1 (Binary Classification): In
this, the comments are classified into two cate-
gories - Anti-religion and Non-Anti-religion.

1. Anti-religion: A comment falls under the
anti-religion class if it meets one or more
of the following criteria:

• Show hostility towards religious be-
liefs and their sacred elements.

• Attack or belittle any religious faith.
• Critique the practices and rituals as-

sociated with a specific religion.
• Exhibit hate towards spiritual leaders

or celebrities who promote a particu-
lar religion and its cultural aspects.

2. Non-Anti-religion: A comment falls under
the non-anti-religion class if it is not hos-
tile in nature and does not promote any
religious hate or any form of hatred.

Subtask 2 (Multi-class Classification):
In this, the comments are classified into four
categories:

1. Christianity: A comment falls under this
class if it spreads hate or attack on mission-
aries, the church, their religious customs,
and seek to diminish or undervalue their
faith or beliefs.

2. Hinduism: A comment falls under this
class if it is hostile directed at Hindus,
their religious beliefs, cultural practices,
sacred elements, and places; criticizes their
spiritual leaders, uses abusive language
towards them for their speeches, or insults
their deities.

3. Islam: A comment falls under this class
if it promotes hatred towards Muslims,
their religious beliefs, culture, and sacred
elements, as well as criticisms directed at
their religious leaders and disrespectful
language regarding their teachings.
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4. None: A comment falls under this class if
it does not promote religious hate or any
form of hatred, maintains a non-hostile
and respectful tone towards all beliefs and
faiths.

In this work, we utilize the Subtask 2, consid-
ering that it encompasses the non-anti-religion
hateful speech detection task as well as it in-
cludes the problem of identification of the tar-
geted religion, which is a more challenging task.
Details of the dataset are shown in Table 1.
Some examples from the dataset are shown
below. A few other examples are added in
Appendix A.

1. Christianity:

• Comment: Chrtitan log convent

school kholte h Waha bachho ko

convert karte

Explanation: The comment sug-
gests that Christians open convent
schools where they convert the reli-
gion of children, implying a negative
view of Christianity.

2. Hinduism:

• Comment: Bharat main pahle Hindu

hi the lekin woh sab kalma padh kar

Musalman huye aur hindu kisi layak

nahi

Explanation: This comment implies
a derogatory assertion about Hindus
by suggesting a superiority of another
group, which can be interpreted as an
attack on Hindu identity and beliefs.

3. Islam:

• Comment: Yeh hain peace wala

religion musalman

Explanation: This comment ap-
pears to mock a religious group, im-
plying a negative view of Islam.

4. None:

• Comment: �हदू और मुसलमान बनने से

पहले इसंान बनो ! देश में अभी भी इसंािनयत

�जदा है !

Explanation: This comment sug-
gests to put humanity first before re-
ligion, and does not express hatred
towards any religion.

Train Test Whole
Christianity 360 31 391

Hinduism 1,217 132 1,349
Islam 3,326 388 3,714
None 5,491 604 6,095
Total 10394 1155 11549

Table 1: THAR Dataset statistics

• Comment: Inke na khane se sach

khane se sach jhuth to nhi bn sakta

sach to sach hi rhega

Explanation: This comment ex-
presses a general opinion that not
saying anything would not affect the
truth.

4 Methodology
4.1 In-Context Learning
For in-context learning, we use LLMs like:

• Llama: We used Meta’s Llama-3.1 8B
model (AI@Meta, 2024). Llama-3 has 2
other variants at the time of writing - 70B
and 405B parameter models, all of which
have context length of 128k.

• GPT: We used OpenAI’s GPT-4o Mini
(OpenAI et al., 2024) which has a context
window of 128k.

• Gemma: We used Gemma-2 9B model
(Google) (Gemma Team, 2024), which has
context length of 8,192.

• Sarvam-1: We used Sarvam AI’s Sarvam-1
(Sarvam, 2024) 2B model.

• Nemotron-Hindi: We used Nvidia’s
Nemotron-4-Hindi (Joshi et al., 2024) 4B
Instruct-tuned model.

• Indic-Gemma: We used Telugu LLM Labs’
Indic-Gemma (TeluguLLM-Labs), which
is fine-tuned on Gemma 7B model.

• Airavata: We used AI4Bharat’s Airavata
model (Gala et al., 2024) which is a In-
dicInstruct dataset fine-tuned version of
OpenHanthi 7B model.

• Project Indus: We used TechMahin-
dra’s Project Indus LLM (Malhotra et al.,
2024), which is a 7B parameter model.
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These pre-trained chat models have been fur-
ther fine-tuned to follow instructions (except
Sarvam-1) with Reinforcement Learning from
Human Preferences (RLHF) (Ouyang et al.,
2024). Therefore, we use the Instruction-tuned
versions of each of the models. For Sarvam-1,
we do not perform in-context learning, and di-
rectly fine-tune the model on our instruction
dataset to perform inference. We perform infer-
ence using a Nvidia L4 GPU with upto 22.5 GB
of GPU memory. We experiment with 4-bits
quantized versions of the models.

4.2 Prompt Engineering
Articulate prompt engineering is crucial in
steering behaviour and response of the LLMs,
by providing them the appropriate instructions
and context for a task. The prompt template
is shown in B.1.

The prompt starts with an instruction which
encompasses the context of the task including
a knowledge base detailing the classification
criteria and names of the classes. The test
statement is then provided as an input by the
user.

4.2.1 Zero Shot and Random Few Shot
Learning

For our initial approach, we experimented with
zero-shot learning and in-context learning with
1 and 2 examples per class, chosen randomly
from the training set.

4.2.2 Retrieval Augmented Generation:
Semantically Similar Few Shot
Learning

In this approach, we select those examples for
in context learning from the training set, which
are semantically similar to the test statement
at inference. This is achieved by first training a
sentence transformer (MuRIL) (Khanuja et al.,
2021) on the training set, which learns to en-
code the statements in the embedding space,
based on whether their class is similar or dis-
similar. Details of MuRIL model are given in
Appendix C.

In this work, we select one of its variations-
’muril-large-cased’, which is based on the BERT
Large model. Therefore based on this idea, for
each test sentence to be classified, we use the
muril-large-cased vector embeddings and the
cosine similarity metric (for distance calcula-

tion) to retrieve the 1, 4 and 8 most similar
examples at inference time, while performing
in-context learning (as shown in Figure 1).

Figure 1: Dynamic LLM prompt construction
through Retrieval-Augmented Generation (RAG),
using cosine similarity for in-context data selection.
We use K=1, 4, 8.

5 Experiments and Results

5.1 Experimental Setup
We perform fine-tuning of the Sentence Trans-
formers model using PyTorch and HuggingFace
libraries. For in-context learning, the prompt
is described in Section 4.2.

5.2 Hyper-parameter tuning of MuRIL
MuRIL was fine-tuned using Optuna frame-
work. Over 10 trials, validation micro-F1 was
maximized by having search spaces over body’s
learning rate (1e-6, 1e-3), and weight decay (1e-
3, 1e-1). Tuning and deployment of the model
was performed on an Nvidia L4 GPU with 22.5
GB memory.

5.3 Results
We report the performance of the models
through the metrics: micro-F1 (µ-F1) and
macro-F1 (m-F1), as shown in Table 2.

On zero-shot learning, GPT-4o-Mini is the
best performing model, followed by Gemma-2.
On one-shot learning as well, GPT-4o-Mini sig-
nificantly out-performs all other models, how-
ever, we see a significant increase in perfor-
mance of all models when RAG-based one sim-
ilar example is presented. For e.g., here, for
the second best performing model Airavata,
µ-F1 increases from 34.03 to 55.58, which is an
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increment of more than 20 percentage points
(pp).

When presented with RAG-based 4 similar
examples, GPT-4o-Mini still is the best per-
forming mode, however, Airavata appears to
close in on the gap. Interestingly, when RAG-
based 8 most similar examples are provided,
GPT-4o-Mini’s performance appears to plateau
indicating that more examples are contributing
to noise, rather than helping in model’s under-
standing of hateful comment. We observed a
similar trend for the next best model here -
Gemma-2, which only had a 1 pp increase in
µ-F1, from the 4-shot learning (similar) set-
ting, as well as Airavata - whose performance
actually declines (from 60.43 to 58.96 µ-F1).

Additionally, even when presented with upto
RAG-based 8 similar examples, the best per-
forming model (GPT-4o-Mini), still lags upto
10 percentage points compared to the MuRIL
language model, which was fine-tuned on the
whole dataset, but is much smaller in size. This
could be attributed to the challenging nature
of the dataset, where the samples have been
picked up from Youtube comments, and in-
clude real-world noise - emojis, slangs, typos
etc. Due to this, it must be difficult for the
LLMs to excel at the task, given that they are
generally pre-trained on curated and processed
datasets.

Another open-source LLM that we employed
- Project Indus, performed poorly with gib-
berish outputs, even when one example was
provided. Therefore, we omitted the model
while presenting the results.

Therefore, in general we observed that us-
ing our RAG-approach based similar samples
lead to better in-context learning results for all
the models, across all the settings. Although
there’s a threshold of examples, beyond which
the performance for the LLMs seems to either
plateau or decline, on the task.

6 Fine-Tuning of Instruction Tuned
LLMs

Based on the performance of models during
in-context learning, we select Gemma-2 model
for fine-tuning to investigate if model perfor-
mance could be enhanced further. Each sam-
ple from the training set was converted into a
prompt which included the test statement as

a user input and the true label as the reply
expected from the chat assistant. The prompt
template used was exactly the same as depicted
in Section 4.2. QLoRA (Quantized Low-Rank
Adaptation) (Dettmers et al., 2023) was used
to efficiently fine-tune the model. We first
quantized the pre-trained model to 4-bit and
then added a set of learnable low-rank adapter
weight matrices with rank 64, that are tuned
using backpropagation for upto 3 epochs. This
was able to significantly reduce trainable pa-
rameters to 216M, hence significantly reduc-
ing GPU memory requirements. The details of
hyper-parameters are shown in Table 5 in Ap-
pendix D. We compared the performance with
the Sarvam-1 2B model, which we instruct-
tuned on this task.

We observed that with just three epochs of
fine-tuning, it is able to achieve a µ-F1 score of
76.19%, which significantly out-performs few-
shot learning based approaches in LLMs as well
as MuRIL (as shown in Table 3). Therefore, we
propose this fine-tuned model, namely Dwesh-
Vaani LLM as state-of-the-art language model
for hateful speech detection as well as targeted
religion identification.

7 Knowledge Distillation based
Fine-tuning

Considering the challenging nature of the task,
we investigated if incorporating additional in-
formation like rationale during the fine-tuning
process can help improve the model’s under-
standing of hateful speech. To test this, we
experimented with dynamically augmenting
training prompts during the fine-tuning pro-
cess with the rationale behind each of the clas-
sifications, i.e. why or why not a particular
comment is hatefully targeting a religion, and
in case it is - why is it targeting that partic-
ular religion. We generated these rationale
using the GPT-4o-Mini LLM, and the prompt
templates are shown in B.2.

Some examples of generated rationale:

• Comment: आपकी आवाज दरूदश�न के TV

ANCHOR की तरह ह,ैलाइक your voice

Targeted Religion: None
Generated Rationale: The comment ex-
presses a positive comparison of someone’s
voice to that of a TV anchor, without
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any derogatory or negative implications
towards any religion.

• Comment: Bhai Muslim sb ko jhagra kar

ke kya milta ha jaha dekho hindu sb ko

marte rhete ha akhir kya bigara hindu sb

Targeted Religion: Islam
Generated Rationale: The comment ex-
presses hostility towards Muslims by sug-
gesting they are instigating conflict with
Hindus, which perpetuates negative stereo-
types and incites division between the two
religious communities.

• Comment: दिुनया के सबसे पहले इसंान आदम

अलिैहस्सलाम थे और वो मुसलमान थे तो �हदओुं

का पूव�ज भी मुसलमान ही हुए थोड़ा िदमाग लगाओ

सालों अकल है या नहीं

Targeted Religion: Hinduism
Generated Rationale: The comment
dismissively asserts that the first human
was a Muslim, implying that Hindu beliefs
about their own origins are inferior or in-
correct, which can be seen as an attack on
Hinduism and its cultural identity.

• Comment: Mujhe 5 baar kosis ki gai thi

Christianity me convert karne ki.

Targeted Religion: Christianity
Generated Rationale: The comment
expresses frustration about repeated at-
tempts to convert the speaker to Chris-
tianity, which can imply a negative senti-
ment towards the religion and its practices,
potentially reflecting a broader disdain or
hostility towards Christianity.

Therefore, we essentially used rationale
knowledge distilled from the GPT-4o-Mini
LLM in the Gemma-2 model and used it to
dynamically augment the training prompts dur-
ing the fine-tuning process. We trained this
model for one epoch, while keeping all the other
hyper-parameters same as shown in Table 5.
We name the resulting model, DweshVaani-X
(experimental). Contrary to our hypothesis,
we achieved significantly poor results (shown
in Table 3) as compared to both in-context
learning, as well as Dwesh-Vaani, which was di-
rectly fine-tuned without using any additional
knowledge.

Models µ− F1 m−F1

GPT-4o (8-shot RAG) 63.03 53.14
Gemma-2 (8-shot RAG) 59.83 51.64
MuRIL 73.33 61.31
Sarvam-1 51.86 44.98
DweshVaani 76.19 64.27
DweshVaani-X 60.69 41.92

Table 3: Comparison of our model’s performance
against other other approaches

Methods Setting µ− F1 m−F1

MuRIL Full-Data 73.33 61.31
Llama-3.1 0-shot 44.68 40.17
Gemma-2 0-shot 45.97 40.16
GPT-4o 0-shot 49.96 44.17
Nemotron 0-shot 41.13 34.76
Airavata 0-shot 34.03 32.17
Indic-Gem 0-shot 45.63 36.56
Llama-3.1 1-shot (sim) 55.50 47.44
Gemma-2 1-shot (sim) 54.03 47.02
GPT-4o 1-shot (sim) 59.39 50.72
Nemotron 1-shot (sim) 49.87 41.78
Airavata 1-shot (sim) 55.58 49.03
Indic-Gem 1-shot (sim) 44.16 36.77
Llama-3.1 4-shot (sim) 56.36 39.35
Llama-3.1 4-shot (ran) 49.78 41.65
Gemma-2 4-shot (sim) 58.87 51.08
Gemma-2 4-shot (ran) 56.19 47.54
GPT-4o 4-shot (sim) 63.03 52.86
GPT-4o 4-shot (ran) 54.89 46.12
Nemotron 4-shot (sim) 57.66 44.67
Nemotron 4-shot (ran) 54.89 40.56
Airavata 4-shot (sim) 60.43 52.80
Airavata 4-shot (ran) 43.46 39.63
Indic-Gem 4-shot (sim) 54.03 41.75
Indic-Gem 4-shot (ran) 54.03 40.53
Llama-3.1 8-shot (sim) 57.23 48.64
Llama-3.1 8-shot (ran) 49.52 41.64
Gemma-2 8-shot (sim) 59.83 51.64
Gemma-2 8-shot (ran) 54.72 46.70
GPT-4o 8-shot (sim) 63.03 53.14
GPT-4o 8-shot (ran) 56.97 47.43
Airavata 8-shot (sim) 58.96 51.73
Airavata 8-shot (ran) 37.49 33.60
Indic-Gem 8-shot (sim) 59.05 46.55
Indic-Gem 8-shot (ran) 50.65 39.12

Table 2: Classification results for all models on the
test data, with N-Shot indicating the number of
samples used during training. Sim: Similar exam-
ples and Ran: Random examples
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Gold Label Misclassifica-
tions

Christianity 54.84%
Hinduism 55.30%
Islam 20.62%
None 17.38%

Table 4: Misclassified labels along with their mis-
classification percentages, for the DweshVaani (zero-
shot) LLM

8 ERROR ANALYSIS

We performed an error analysis of our top
model DweshVaani (zero-shot), to understand
the model’s behaviour based on what it gets
wrong. The misclassified labels along with the
percentage errors in each are shown in Table 4.
The model made 105 errors on ’None’, 80 on ’Is-
lam’, 73 on ’Hinduism’ and 17 on ’Christianity’
class.

Upon inspecting the samples and their pre-
dicted labels, we observe that the all the
comments for ”Christianity” were classified as
”None”. We noticed that some comments like
"�हदू धम� मानने वाले लोग कान खोल कर सुन ली�जए ईसाई

धम� जसेै कोई धम� नहीं ह"ै, were labelled as target-
ing religions like ”Christianity” and classified
as ”None”. Another example of such an error
is "Vo pati Patni ke beech ki ladai thi fir sb thik

hogaya". These errors point to labelling errors,
and provide belief in robustness of our model,
which is able to still classify as the right label.

For the class ”Hinduism”, we observed am-
biguity with respect to targeting ”Islam”, con-
fusing the model into misclassifying one into
another. For example, "हमारे ही प�रवार के लोग

मु�स्लम बन गए", was labelled as targeting ”Hin-
duism”, but classified as ”Islam”. Here too,
we observed labelling errors. We see a similar
trend for ”Islam” class as well.

Overall, we observed that the incorrect label-
ing could be attributed to most of the errors
and an analysis and correction of labels is re-
quired.

9 FUNCTIONALITY BLACK-BOX
TESTING

Higher values of the metrics used (like µ− F1)
indicate more desirable performance (as shown
in Table 3). Recent works have highlighted the
limitations of such an evaluation paradigm that

these metrics do help to measure the model
performance, however they are incapable of
identifying the weaknesses that could poten-
tially exist in the model. Therefore, we perform
additional functionality black-box testing using
the HateCheckHIn (Das et al., 2022b) evalua-
tion dataset to find out weaknesses present in
our multilingual hate speech detection model
- DweshVaani. Functionality testing results
are shown and discussed in detail in Appendix
E. Overall, we show that our model provides
more stable and robust performance on reli-
gious hateful speech than the baseline.

10 CONCLUSION

We leveraged LLMs for hateful speech detection
against religions in code-mixed Hindi-English
languages. For this, we conducted a compre-
hensive few-shot text classification study based
on random examples as well as using a RAG-
based approach. We demonstrated that using
semantically similar examples, LLMs can sur-
pass zero-shot and other few-shot learning ap-
proaches. We also experimented with QLoRA-
based fine-tuning approaches, where we used
two approaches - one, where the model was
directly fine-tuned without providing any addi-
tional information; and two - where the model
was fine-tuned based on knowledge about ra-
tionale distilled from the GPT model. Interest-
ingly, the latter could only perform at par with
the 8-shot RAG setting. We did extensive qual-
itative analysis of the errors made by our model.
Finally, we proposed Dwesh-Vaani LLM, based
on fine-tuned Gemma-2, which surpasses all
other approaches in performance on hateful
speech detection on code-mixed Hindi-English
languages.

11 LIMITATIONS

We have identified the following limitations
of this work. First, the counter-intuitive re-
sults with knowledge distilled model need to
be further investigated. Second, there are some
refinements that need to be performed on the
dataset. And finally, in an aim towards com-
prehensive models targeting detection of hate-
speech, datasets corresponding to other aspects
like gender, misogyny etc. could also be in-
cluded.
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A Dataset Examples

1. Christianity:

• Comment: Please churcho ko

bharat me ban karo

56



Explanation: The comment
expresses hostility
towards Christianity
by suggesting to ban churches
in India.

2. Hinduism:

• Comment: Hindu dharm nahi

hai saitan ka marg

hai jo sidha nark

ki our lejata hai

Explanation: This comment ex-
presses hostility towards Hinduism
by suggesting that Hinduism is not
a religion and making a derogatory
remark.

3. Islam:

• Comment: मोिमन होने के �लए अनपढ़

होना भी जरूरी है ।

Explanation: By suggesting low lit-
eracy rate in a religious group, this
comment perpetuates negative stereo-
types about Islam.

B Prompt Templates

This Section contains the prompt templates
corresponding to each of the approaches we
used.

B.1 Prompt Engineering
"""You are an expert assistant which
can analyze hate speech texts from
Youtube comments and identify the
religion they are targeting. Your
task is to classify the sentence
after <<<>>> into one of the
following predefined classes:
Islam
Hinduism
Christianity
nan

Respond with nan, if the text does
not target any religion. You will only
respond with the name of the class. In
case you reply with something else, you
will be penalized.
Do NOT provide explanations or notes.

<<<

Sentence: {dialogue}
>>>
Class:"""

B.2 Knowledge Distillation
"""You are an expert assistant which
can analyze hate speech texts from
Youtube comments and identify the
religion they are targeting. Given the
comment below, your task is to provide
rationale for why you think the comment
is NOT hatefully targeting any religion.

You will only respond in one sentence."""

"""You are an expert assistant which
can analyze hate speech texts from
Youtube comments and identify the
religion they are targeting. Given the
hate comment below, your task is to
provide rationale for why you think the
comment could be hatefully targeting
{true_class} religion.

You will only respond in one sentence."""

C MuRIL

MuRIL (Multilingual Representations for In-
dian Languages) (Khanuja et al., 2021) is a a
multilingual language model specifically built
for Indian languages. It is based on a BERT
base architecture which was pre-trained on cor-
pora for 17 Indian languages which was made
up of content from Wikipedia, Common Crawl,
PMINDIA and Dakshina. For training, this
monolingual text corpora was augmented with
both translated and transliterated document
pairs. Hence, while the former was used to train
the model for Language Modeling (MLM) ob-
jective (unsupervised), the latter (parallel data,
encompassing both translated and transliter-
ated) was used to train the model for Trans-
lation Language Modeling (TLM) objective
(supervised). In the previous work by Sharma
et al. (2024), it came out to be the best perform-
ing model, out-performing both IndicBERT
(Kakwani et al., 2020), and mBERT (Devlin
et al., 2018) on the THAR dataset.

D QLoRA Hyper-parameters

Details of QLora Hyper-parameters are shown
in Table 5.
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Hyperparameters Value
Gradient Accumulation Steps 4
Learning Rate 2e-4
Epochs 3
LoRA-Rank 64
LoRA-Alpha 128
Optimizer Adam

Table 5: QLoRA Hyper-parameter Details

E Functionality Black-Box Testing

Higher values of the metrics used (like µ− F1

and m−F1 ) indicate more desirable perfor-
mance (as shown in Table 3). However, it is still
questionable whether such indicators of model
performance alone could be a good measure.
Recent works have highlighted the limitations
of such an evaluation paradigm that these met-
rics do help to measure the model performance,
however they are incapable of identifying the
weaknesses that could potentially exist in the
model.

Further, if there exists systematic gaps and
biases in training data, models could be per-
forming deceptively well on corresponding held-
out test sets by learning simple artifact of the
data instead of understanding the actual task
for which the model is trained. Hence, held-out
performance on this hate speech dataset could
be an incomplete and potentially misleading
measure of the model quality.

Therefore, we perform additional function-
ality black-box testing using the HateCheck-
HIn evaluation dataset (Das et al., 2022b) to
find out weaknesses present in our multilin-
gual religious hateful speech detection model -
DweshVaani.

Since our current model focuses on religious
hate speech only, therefore we sample the sub-
set of functionality tests in which religious iden-
tity is targeted. Additionally, we consider the
MuRIL model finetuned on the THAR dataset
as a baseline. Results for multilingual func-
tionalities are shown in Table 6, where ”DV”
denotes our DweshVaani model, whereas ”MU”
denotes the MuRIL model as baseline. Simi-
larly, results for monolingual functionalities are
shown in Table 7. The ”[IDENTITY]” denote
any religious identity that is being targeted,
for e.g. मुल्ल.े

Results on multilingual functionalities

demonstrate that while DweshVaani is better at
code-mixed sentences with Hindi part in either
Devanagri or Roman text, it lags behind base-
line when hate is expressed using Roman Hindi
and or when the complete sentence is in Hindi
except slur. This might be due to the nature
of the dataset it was trained on. Results on
monolingual functionalities demonstrate that
DweshVaani appears to be more robust as it
performs much better on non-hateful speech as
compared to the baseline model.

Furthermore, this black-box testing revealed
that while the DweshVaani LLM 1 is very ro-
bust, there is still room for improvement and
one of our future work would be to train it on
variety of datasets to reduce bias and ensure
true understanding of the task.

1https://huggingface.co/varadsrivastava/dwesh-
vaani_v1.0
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Functionality Example test case Label n Accuracy (%)
DV MU

MF1: Hate expressed using
Roman Hindi Mujhe [IDENTITY] se nafrat hai.

H 60 56.67 65.00

MF2: Slur represented in
Hindi, rest in Roman Hindi Tum mere liye ek [IDENTITY]

jaise ho.

H 30 30.0 50.0

MF3: Complete sentence is in
Hindi except slur तुम मेरे �लए एक [IDENTITY] जसेै हो

H 30 30.0 56.67

MF4: English written using
Hindi characters आई वांट टू िकल आल [IDENTITY]

H 38 57.89 84.2

MF5: Code-mixed sentence
with Hindi part in Devanagari I totally agree with you,

[IDENTITY] समाज के �लए परजीवी

हैं

H 30 96.67 70.0

MF6: Code-mixed sentence
with Hindi part in Roman text I totally agree with you,

[IDENTITY] samaj ke liye

parajibi hai.

H 32 90.63 87.50

Table 6: Accuracy across HateCheckHIn’s 6 multilingual functionalities. Best performance on each
functional test is in boldface. Performance below 50% is highlighted in red. H: hateful, n: number of
data points.
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Functionality Example test case Label n Accuracy (%)
DV MU

F1: Expression of strong negative
emotions (explicit) मुझे [IDENTITY] से नफरत ह.ै

H 34 85.29 97.06

F2: Description using very negative
attributes (explicit) सभी [IDENTITY] प्र�तकारक होते हैं.

H 38 89.47 100.00

F3: Dehumanisation (explicit) [IDENTITY] कचरा ह.ै H 36 100.00 97.22
F4: Implicit derogation [IDENTITY] को �चिड़याघर में रहना चा-

िहए.

H 40 87.50 85.00

F5: Direct threat
मैं सभी [IDENTITY] को मारना चाहता हँू:

H 38 97.37 100.00

F6: Threat as normative statement
सभी [IDENTITY] को मार देना चािहए.

H 40 97.50 95.00

F7: Hate expressed using slur
तुम मेरे �लए एक [IDENTITY] जसैी हो.

H 27 25.93 51.85

F9: Reclaimed slurs
हम [IDENTITY] अपने हक्क के �लए लड़ते रहेंगे.

NH 12 66.67 00.00

F10: Hate expressed using profanity
तुम चू�तये [IDENTITY] को क्या िदक्कत हैं?

H 40 87.50 92.50

F11: Non-hateful use of profanity
वाह बहनचोद! क्या िदन था.

NH - - -

F12: Hate expressed through refer-
ence in subsequent clauses मैं काफी [IDENTITY] से िमला हँू और मैं उनमें

से हर एक से नफरत करता हँू,

H 40 90.00 92.50

F13: Hate expressed through refer-
ence in subsequent sentences

[IDENTITY] को लगता है की वे ख़ास हैं.

मुझे उनसे नफ़रत ह.ै

H 40 87.50 82.50

F14: Hate expressed using negated
positive statement मेरे मन में तुम जसेै [IDENTITY] के �लए कोई

दया नहीं हैं.

H 40 90.00 92.50

F15: Non-hate expressed using
negated hateful statement मुझे स्पष्ट करने दो: मैं [IDENTITY] से नफरत

नहीं करता.

NH 40 72.00 04.00

F16: Hate phrased as a question
क्या यह स्पष्ट नहीं है की मुझे [IDENTITY] से

नफरत ह?ै

H 40 97.50 97.50

F17: Hate phrased as an opinion
मुझे सभी [IDENTITY] बेकार लगते हैं.

H 40 92.50 95.00

F18: Neutral statements using pro-
tected group identifiers मैं दो [IDENTITY] के साथ रहता हँू.

NH 42 95.24 33.33

F19: Positive statements using pro-
tected group identifiers मुझे [IDENTITY] से प्यार हैं.

NH 60 83.33 20.00

F20: Denouncements of hate that
quote it यिद आप कहते हैं मैं [IDENTITY] से नफरत

करता हँू, तो आप मूख� हैं!

NH 30 50.00 06.67

F21: Denouncements of hate that
make direct reference to it यह कहना िक आप [IDENTITY] से नफरत

करते हैं, यह दशा�ता है िक आप िकतने गुम-

राह हैं।

NH 36 58.33 02.78

F22: Abuse targeted at objects
मुझे मानगो से नफरत ह.ै

NH - - -

F23: Abuse targeted at individuals
(not as member of a prot. group) मैं अपरा�धयों की �नदा करता हँू.

NH - - -

F24: Abuse targeted at nonpro-
tected groups (e.g. professions) मैं आ�टस्ट की �नदा करता हँू.

NH - - -

F25: Swaps of adjacent characters
मुझे [IDENTITY] से नरफत ह.ै

H 34 73.53 97.06

F26: Missing characters
सभी [IDENTITY] प्र�तकक होते हैं.

H 38 76.32 94.74

F27: Missing word boundaries [IDENTITY]कचराह.ै H 38 94.74 94.74
F28: Added spaces between chars

मुझे [IDENTITY] से न फ र त ह.ै
H 32 59.38 96.87

F29: Leet speak spellings
मुझे [IDENTITY] से नफ़्2त ह.ै

H 30 83.33 100.00

Table 7: Accuracy across HateCheckHIn’s 29 monolingual functionalities. Best performance on each
functional test is in boldface. Performance below 50% is highlighted in red. H: hateful, NH: non hateful,
n: number of data points.
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Abstract

Modern general-purpose speech recognition
systems are more robust in languages with
high resources. However, achieving state-
of-the-art accuracy for low-resource lan-
guages is still challenging. To deal with
this challenge, one of the popular prac-
tice is fine-tuning the pre-trained model
on low-resource settings. Nevertheless, a
pre-trained or fine-tuned model fails to cap-
ture the complex character and word con-
stituency in the Devanagari script transcrip-
tion. We proposed a complementary loss
function designed to force the model to
learn the character constituency of Devana-
gari script.
Our complementary loss function, called
Rule-Based Character Constituency Loss
(RBCCL), penalizes incorrect transcrip-
tions and updates the overall loss during
the model training phase. This loss func-
tion can also be combined with Connection-
ist Temporal Classification (CTC) loss or
cross-entropy loss which are widely used in
ASR training. Our experiment shows that
combining the existing cross-entropy loss
with a new complementary loss (RBCCL)
improves the Word Error Rate (WER), re-
ducing it from 47. 1% to 23. 41% which is
a very promising result.

1 Introduction

Automatic Speech Recognition (ASR) is a sub-
set of speech technology that uses machine
learning and neural networks to transcribe au-
dio data into its corresponding written text.
Machine learning-based ASR systems can be
trained using different methods such as super-
vised, semi-supervised, or unsupervised tech-
niques. In supervised approach the spoken
audio and its text transcription must match
exactly for the system to learn efficiently. This
requires a large amount of carefully selected

data, with the precise alignment done manu-
ally. Ensuring that each spoken words matches
accurately with the written text. This necessi-
tates a considerable expenditure of time and
effort in human alignment.

The initial idea for implementing unsuper-
vised ASR was introduced by Liu et al. (2018).
Since then, unsupervised methods have be-
come quite popular. A recent study by Baevski
et al. (2022) showed that unsupervised models
now perform competitive to supervised mod-
els. This progress is mainly due to advances in
deep learning and better access to computing
resources, which have made large pre-trained
speech models more widely available. An ex-
ample of this progress is the recently released
Wav2V ec2−BERT2.0 (Chung et al., 2023) is
trained on 4.5M hours of audio data covering
more than 143 languages. In line with this, the
whisper-large models (Radford et al., 2022) are
trained on 680, 000 hours of labeled audio data
and comprise 1550M parameters. These mod-
els capture complicated audio and linguistic
patterns properly, allowing them to generalize
across languages, accents, and sounds.

Training these models we need a extensive
amount of memory, storage, and computing
resources. Because of these high resource de-
mands, full parameter fine-tuning can be time-
consuming and resource-intensive. Parameter-
Efficient Fine-Tuning (PEFT) (Mangrulkar
et al., 2022) is ideal for resource-constrained
contexts and still yields comparable perfor-
mance. PEFT-based approach such as Low-
Rank Adaptation (LoRA) (Hu et al., 2022)
technique significantly reduces the number of
trainable parameters, making it computation-
ally efficient and reducing the risk of over-
fitting, particularly in low-resource settings.
For example, in the GPT − 3175B model,
LoRA reduced the trainable parameters by
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10,000 times and reduce the GPU requirements
by 3 times (Hu et al., 2022).

Connectionist Temporal Classifica-
tion (CTC) and cross-entropy loss are
popular choices for training ASR models.
CTC aligns input and target sequences
without predefined alignment, but struggles
with the complexities of the Devanagari
script, where ligatures and half-letters require
specific handling. Cross-entropy loss, used for
frame-wise classification, ensures alignment
but may miss linguistic nuances, especially
in scripts like Devanagari where characters
merge visually. Also, in low-resource settings,
fine-tuning can often lead to overfitting,
which may cause the model to overlook
language-specific patterns.

To address this issue, we propose a technique
that incorporates linguistic rules defined (de-
tails in Section 3) into the training process.
This is achieved by implementing a unique loss
function that utilizes the linguistic rules of a
particular language. Specifically, our proposed
loss function penalizes loss (cross-entropy loss
in our case) based on the word construction
rules of the Devanagari script (Nepali). This
enforces the model to learn the linguistic rules,
mitigates overfitting, and thereby improves
the prediction accuracy. We conducted exper-
iments using both full-parameter and PEFT-
based fine-tuning approaches.

The organization of the remainder of the
paper is as follows: In Section 2, the related
works are explained, followed by the method-
ology in Section 3. Section 4 presents the
experiments conducted. The discussion and
interpretation of the results are presented in
Section 5. Finally, the paper concludes with
Section 6, where a summary of the findings,
future plans, and potential extensions to the
work is explained.

2 Related Works

Pre-trained large speech models have revo-
lutionized speech-related downstream tasks,
such as ASR. We can use various types of
pre-trained models for the fine-tuning task.
We can effectively fine-tune multilingual, su-
pervised, semi-supervised, and unsupervised
models. Wav2Vec2-Conformer (Wang et al.,
2020), Whisper (Radford et al., 2022), MMS-

1B (Pratap et al., 2023), HuBERT (Hsu et al.,
2021), Wav2Vec2-BERT 2.0 (Chung et al.,
2023), Wav2Vec2-Phoneme (Xu et al., 2022),
Wav2Vec2.0 (Baevski et al., 2020a; Baevski
et al., 2020b), Wav2Vec (Schneider et al., 2019)
are some examples of pre-trained speech mod-
els trained on massive amounts of multilingual
speech datasets. Whisper, for example, is a
powerful encoder-decoder model that can be
used for multilingual ASR. Wav2Vec and its
successors (Chung et al., 2023; Xu et al., 2022;
Wang et al., 2020) use contrastive learning to
learn robust speech representations. These pre-
trained models have significantly improved the
accuracy and robustness of ASR systems, mak-
ing them more accessible and useful in a variety
of applications. However, this is only true for
resourceful languages.

Various published research (Arunkumar
et al., 2022; Khare et al., 2021; Luo et al.,
2021; Singh et al., 2023; Zheng et al., 2023;
Ghimire et al., 2023a) show that the accuracy
of the ASR in low-resourced languages, includ-
ing Nepali, can be improved by fine-tuning pre-
trained models. This has been proven in work
proposed by Ghimire et al. (2023a) by decreas-
ing the Character Error Rate significantly. As
per these researches, the fine-tuning approach
requires less computing and also reduces the
model training time significantly compared to
full model training. However, due to the higher
number of parameters involved in the network,
the full parameter fine-tuning is still challeng-
ing.

The use of the Parameter-Efficient Fine-
Tuning (PEFT) approach, such as Low-Rank
Adaptation (LoRA) and its variants, is becom-
ing very common in fine-tuning of speech mod-
els. The effectiveness of the LoRA on Whisper
model is reported by various scholars (Liu et al.,
2024; Song et al., 2024).

The Nepali ASR is still in its early stages
of research and development. However, there
are some promising results as reported in var-
ious works (Ghimire et al., 2023a; Shrestha
et al., 2021; Regmi and Bal, 2021; Ghimire
et al., 2023b). Among them, the work reported
by Ghimire et al. (2023a) is the only work re-
lated to fine-tuning for building the Nepali ASR
system. The author proposes semi-supervised
fine-tuning of a pre-trained model using an
active learning approach. This research uses
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the SLR54 (Kjartansson et al., 2018) dataset.
They obtained Character Error Rate (CER) of
6.77% by fine-tuning the Massively Multilin-
gual Speech (MMS-1B) model (Pratap et al.,
2023).

Dutta et al. (2018) has implemented three
complementary loss functions for the optical
character recognition task of Indic script while
training the model, but this is not explored
in the training of ASR model. The language-
specific rule-based ASR error correction mech-
anism is presented by Yang et al. (2022). This
work reported the use of rules in the decod-
ing phase. However, the use of the language-
specific loss function in ASR model training
and fine-tuning, which forces the model to learn
language-specific patterns, is not yet studied
for the Devanagari script.

Developing a customized loss function to
complement cross-entropy loss is essential when
dealing with sophisticated scripts like Devana-
gari, employed in languages like Nepali and
Hindi. Typically, cross-entropy loss penalizes
the inaccurate categorization of each character
separately, which may not adequately address
the complexities of scripts that include several
character combinations and contextual rela-
tionships.

An optimized loss function can incorporate
the linguistic feature of the Devanagari script,
including more efficient processing of conjuncts
and modifiers and enhanced management of
the sequence and context sensitivity necessary
for precise speech recognition. Adapting or
enhancing the cross-entropy loss by consider-
ing these aspects, the model can enhance its
resilience, reducing error rates while improving
its capacity to generalize from training data
to real-world scenarios. This overall purpose
serves as the primary motivation for our work.

3 Methodology

3.1 Fine-Tuning and
Parameter-Efficient Adaptation of
Pre-Trained Models

Fine-tuning a large, pre-trained model is criti-
cal for adapting it to the specific characteristics
of a new language dataset. Initially, we per-
form full-parameter fine-tuning to reintroduce
language-specific patterns into the model. Let
W represent the model weight matrix, with up-

dates ∆W derived as ∆W = α × (−∇LW ),
where α is the learning rate and LW the
loss function. The updated weights become
W ′ = W +∆W . This stage is performed on a
representative subset, Dintroduce, of the entire
data set D.

To achieve efficient adaptation with fewer
computational resources, we further apply
parameter-efficient fine-tuning, leveraging the
low intrinsic dimensionality of the model for
new tasks. Rather than updating the full
weight matrix, we approximate the weight up-
date ∆W by decomposing it into two smaller
matrices: ∆W = WAWB, where WA ∈ RA×r

and WB ∈ Rr×B, and r is a reduced dimension.
This approach, implemented through low-rank
adaptation (LoRA), keeps the original weights
(W ) frozen, updating only the smaller matri-
ces WA and WB, thus forming a lightweight
adapter for the specific task. Figure 1 illus-
trates this LoRA fine-tuning architecture.

3.2 Error Analysis
Identification of the transcription errors of the
existing model is very important while con-
ducting the fine tuning of larger models. Both
before and after we fine-tuned the parameters
using the default loss function (Cross Entropy
Loss in the case of Whisper), we observed a
similar pattern of errors. A few samples of
transcription along with an error description
are presented in Table 1.

Based on our inspection, we identified that
the model was unable to predict the proper
order of the vowel markers (◌ाक vs. क ◌ा).
Likewise, the model sometimes fails to identify
the similar sounding consonants (श vs स vs ष
OR व vs ब). Another issue arises when dealing
with complex characters. In Devanagari script,
a complex character typically consists of multi-
ple consonants or vowels, along with markers
or special characters. For example, क्ष is a com-
bination of क + ◌् + ष. Since all three characters
are valid tokens in the Whisper model, the way
cross-entropy loss cannot well represent the
scenarios when the model predicts only two
tokens क and ◌् instead of three tokens क , ◌्
and ष.

This analysis leads us to the conclusion that
handling the character complexity, positional
awareness of the markers and special symbols,
and properly choosing the similar sounding
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Figure 1: LoRA fine tuning of base model

letter causes the higher Character Error Rate
(CER) and Word Error Rate (WER) in the
Whisper models. We can resolve this by forcing
the model to learn those patterns during fine-
tuning. We designed a custom loss function
based on the rules that detect the transcription
error and penalize the cross-entropy loss.

3.3 RBCCL: Rule-Based Character
Constituency Loss

Character constituency in the Devanagari
script refers to the organizational arrangement
of individual vowels, consonants, and other
characters to create coherent units such as syl-
lables, words, or phrases. The Devanagari lan-
guage employs letters that represent a conso-
nant, a vowel, or a mixture of both. Letters
also combine with diacritical signs (matras) to
denote complete syllables. The constituency is
essential for recognizing the linguistic arrange-
ment of words, since the configuration of letters
determines both the sound and the meaning.
These types of complexities are not captured by
widely used loss functions such as CTC and/or
cross-entropy loss. This motivates us to ex-
plore the complementary loss function, which
forces the model to learn patterns guided by
the rules and proves useful for the Devanagari
script. We named our method RBCCL which
statnds Rule-Based Character Constituency
Loss.

3.3.1 Character Constituency Rules
It is very important to document the generic
and script-specific rules. For Devanagari text,

we considered following character constituency
rules as listed in the list below.

• Rule 1: The vowel markers should appear
only after consonants

• Rule 2: The vowel markers should not be
added to vowel characters

• Rule 3: Similar sounding characters should
be correct

The instances of those rules present in the word
will be used while computing RBCCL. Each
of these rules (Rules 1, 2, and 3) forms the
basis for calculating the counts Cm, Cn, Ce,
and Ca. We assess the labels and predicted
text by evaluating its adherence to these rules,
allowing us to measure character correctness
according to the following:
Cm: Represents the count of instances in

the ground truth (label) where Rules 1, 2, and
3 are correctly applied. This is obtained by
verifying compliance with each rule in the true
labels and accumulating the instances.
Cn: Counts the instances in the predicted

text where all rules should apply. This indi-
cates the expected adherence to each rule based
on the prediction output.
Ce: Measures errors in the predicted text by

calculating the instances where rules were not
followed, even though they should have been
based on the ground truth. This difference
identifies specific rule violations.
Ca: Counts additional instances where rules

were applied in the predicted text, despite no
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True Label Transcription Observation
टाउकोमा राख्ने संगठनको टाउँकोाम राख्ने सङ्गठनक - उँ ⇒ उ, ऊ, उँ, उं are similar sounding vowel

and its variations combined with matras.
- कोाम ⇒ ◌ा , but ◌ा should be associated with
म forming मा as कोा
- संग and सङ्ग sounds similar

आकष�णलाई अझै आकस�न्दलाई अजै - स and ष sound similar
- जै and झै are different sound but some speaker
with different mother tongue generate similar
sounding speech

समय �बताएका छन् समय �वटाएका छन - ब and व sound similar. In most case they
are unable to recognized by the model
- There are some community who unable to
produce ता as they do not have त syllable in
their mother tongue. So they sound like टा

यस क्षेत्रलाई आफ्नो यस क्◌ेतरलाई आफनो - क्ष is complex character made up of 3 charac-
ters (क + ◌् + ष). While recognizing only two
characters क + ◌् are capture which leads to
half letter क्
- त्र is also a complex character made from त +

◌् + र but त र is captured

Table 1: Analysis of transcription of full parameter fine tuned Whisper − Large− V 2 model with Cross
Entropy Loss (LCE).

corresponding rule requirement in the ground
truth.

3.3.2 Error Rate (LER)
The error rate provides the proportion of error
out of all predictions.

ErrorRate =
Ce

Cn
(1)

The error rate we calculated in Equation
(1) can be used for the loss function. We
should perform some mathematical operations
to smooth the value, prevent extreme gradi-
ents, and avoid negative values and logs of
zero. Following are the formulae for computing
LER:

LER = log(
Ce

Cn
+ 1) (2)

Equation (2) can be further expanded for
batch processing and reduced to mean loss of
batch as shown in Equation (3).

LER =

∑|B|
i log(Ce(Bi)

Cn(Bi)
+ 1)

|B| (3)

Where, |B| is number of batch and Bi repre-
sents the individual label and predicted labels
used to compute necessary counts.

3.3.3 Coverage Penalty (LCP )
Now we have to penalize the loss function for
any imbalance between the number of ground
truth instances and the number of predictions.
We can accomplish this by applying the cover-
age penalty:

CoveragePenalty =
|Cm − Cn|

Cm
(4)

This penalizes the difference between pre-
dictions and ground truth, normalized by the
number of ground truth instances. Using the
same convention as Equation 3, the loss value
based on the coverage penalty will be com-
puted, as in Equation 5.

LCP =

∑|B|
i log( |Cm(Bi)−Cn(Bi)|

Cm(Bi)
+ 1)

|B| (5)

3.3.4 Penalizing for Additional Rule
(LAR)

We can penalize any additional or missing rules
explicitly by defining an additional loss term
based on the absolute number of excess or miss-
ing rules. This loss can be calculated, as in
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Equation (7).

AdditionalRulePenalty =
Ca

Cm
(6)

LAR =

∑|B|
i log( Ca(Bi)

Cm(Bi)
+ 1)

|B| (7)

3.3.5 Combining all loss
All loss values are combined as a weighted sum
to obtain the total RBCCL.

LRBCCL = β1 × LER + β2 × LCP + β3 × LAR

We can adjust the individual value of β1, β2,
β3 depending on whether we want to prioritize
error rate, coverage penalty, or additional rule.

3.4 Combining Cross Entropy Loss
with RBCCL

We can combine the cross-entropy loss with
newly computed loss values. For computational
efficiency, we can combine these two losses us-
ing a weighted sum.

L = α× LCE + β × LRBCCL

Where,

L is a total loss value

LCE is a Cross Entropy Loss

LRBCCL is a Rule-BasedCharacter Con-
stituency Loss computed as of Section 3.3

α and β are the weight which control the
emphasis on each part of the combined loss
computed.

For the sake of simplicity, and for easier pa-
rameter setting, we generalized the weight (pa-
rameters) as follows.

β = (1− α)

β1 = β2 = β3 = β

Choosing the right values for α and β is
important. A higher value of α puts more em-
phasis on obtaining the correct classification
with the right probability, whereas a higher
value of the β directly penalizes the propor-
tion of incorrect predictions and the number
of prediction differences.

4 Experimental Setup

4.1 Speech Corpus
We, the authors, are native Nepali speakers,
a language that uses the Devanagari script
for writing. So, we decided to use the Nepali
Speech Corpus (SLR54) (Kjartansson et al.,
2018) for our experiment, which is available
under the Open Speech Language Resources1.
This is the only publicly available speech cor-
pus and is suitable for ASR tasks. A small
subset of the SLR54 dataset is used for the
experiment. This closely resembles the very
low-resource setting and also allows for con-
ducting experiments in a limited computing
environment.

4.2 Selection of pre-trained model
The Whisper (Radford et al., 2022) model fam-
ily is used as the pre-trained speech model.
They have tiny, base, small, medium, and
large models ranging from 39M parameters to
1550M parameters. We used the multilingual
Large V2 model, which also includes the Nepali
language. The claimed WER of selected model
is 47.1% (Radford et al., 2022). However, a
thorough examination reveals that the tran-
scribed texts align rather with Hindi. This is
due to the fact that both languages, being writ-
ten in Devanagari script, utilize the same token.
To solve this issue, we decided to reintroduce
the language by full-parameter fine-tuning us-
ing 30 minutes of the labeled dataset. In this
experiment, we used the default loss function.

4.3 Choosing parameters and
Experimental setup

For this experiment, we used the Hugging Face
Transformer library2 for training, fine-tuning,
data processing, etc.

We run each training for a total of 5 epochs.
All training parameters are summarized in Ta-
ble 2. These parameters are obtained from
hyperparameter tuning.

5 Result and Discussion

We performed various combinations of the ex-
periments that involve the full parameter fine-
tuning and LoRA fine-tuning. All experiments

1[SLR54] - https://www.openslr.org/54/
2Hugging Face: https://huggingface.co/docs/trans-

former
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Details Parameters
Full parameter
fine tuning

- Precision:float16(fp16)
- 8-bit Adam optimizer
(adamw_bnb_8bit)
- learning rate: 1e− 5
- batch size: 4

PEFT (LoRA) Pa-
rameters

- r : 32
- alpha : 64,
- dropout : 10%

Loss Weight Pa-
rameters

- α: 0.7
- β: 0.3

Table 2: Model training parameters for both full-
parameter and LoRA fine-tuning

we performed and used for comparison pur-
poses, with their descriptions and results in
terms of WER and CER, are listed in Table 3.

The Whisper−Large− V 2 (Radford et al.,
2022) is a base pre-trained model. Its WER
for Nepali is reported as 47.1%. When inspect-
ing the output, we found that the transcrip-
tion of the model more closely resembles the
Hindi text. To solve this issue, we reintroduced
the Nepali speech by full-parameter fine-tuning
the model using a 30-minute labeled dataset.
This fine-tuning itself significantly improved
the model, resulting in a WER of 36.2%. All
other subsequent experiments are now based
on this newly fine-tuned model, which we call
the fine-tuned base model (FTbase).

The performance of the fine-tuned model af-
ter incorporating the Cross-Entropy loss(LCE)
and RBCCL(LRBCCL) indivisually did not
show substantial improvement compared to
FTbase. Specifically, LRBCCL, although de-
signed to enhance the robustness of the model,
achieved a WER of 34.2%, which represents
only a marginal improvement over baseline
FTbase with a WER of 36.2%. This limited
improvement highlights the challenges of ef-
fectively using RBCCL in this context. In
contrast, using cross-entropy loss alone during
fine-tuning yielded a more notable improve-
ment, reducing the WER to 31.20%.

Among the various approaches explored,
the full parameter fine-tuning with the com-
bined loss function(L) achieved the best per-
formance, with a WER of 23.41% and a CER

of 5.37%. This represents a significant im-
provement of 23.69% relative to the pre-trained
Whisper−Large−V2 model and 12.79% relative
to FTbase, showcasing the effectiveness of the
loss function (L) in leveraging complementary
loss functions for improved transcription accu-
racy.

Full-parameter fine-tuning requires substan-
tial computational resources and time invest-
ment. To streamline the process and achieve
a high performance model efficiently, we ex-
plore directly fine-tuning the pre-trained Whis-
per−Large−V2 model. This approach yielded
a WER of 25.15% and a CER of 6.51%. Al-
though this performance is slightly lower than
the best results achieved through further fine-
tuning (23.41% WER and 5.37% CER), it rep-
resents a significant improvement over the base-
line Whisper−Large−V2 model with a WER of
47.1%. This outcome demonstrates that skip-
ping the initial fine-tuning step with FTbase

is a viable alternative to obtain a model with
competitive performance. Direct fine-tuning of
Whisper−Large−V2 offers a balance between
accuracy and efficiency, reducing the effort re-
quired to achieve substantial improvements in
both WER and CER. These results are par-
ticularly encouraging for scenarios where com-
putational resources or time are limited, high-
lighting the flexibility and adaptability of the
proposed fine-tuning strategies.

For LoRA-based fine-tuning, the combined
loss function (L) led to a WER of 31.50% and a
CER of 7.47%. Although this approach did not
outperform full parameter fine-tuning with L,
it demonstrated a clear advantage over cross-
entropy-based training alone. The results sug-
gest that incorporating L into the LoRA fine-
tuning framework effectively balances model
complexity and performance, achieving compet-
itive results with reduced parameter updates.

The findings highlight the efficacy of care-
fully designed loss functions, especially when
combining complementing objectives, to sig-
nificantly improve model performance in low-
resource ASR tasks. The exceptional results
obtained using L-based training, particularly
in terms of full-parameter fine-tuning, high-
light its importance as an essential element for
improving ASR models in Nepali.

67



Experiment Description WER% CER%
Whisper − Large− V 2 by (Radford et al., 2022) 47.1 ×
Nepali ASR module full-parameter fine-tuned on mms-1b by (Ghimire
et al., 2023a)

× 6.77%

FTbase: full parameter fine-tuning to (re)introduce Nepali to
Whisper − Large− V 2 with LCE

36.2 15.4

FTLCE
: full parameter fine-tuning of FTbase model with LCE 31.2 7.47

FTLRBCCL
: full parameter fine-tuning of FTbase model with LRBCCL 34.2 14.2

FTL: full parameter fine-tuning of FTbase model with L 23.41 5.37
FTL: full parameter fine-tuning of Whisper−Large−V 2 model with
L

25.15 6.51

FT_LoRALCE
: LoRA fine-tuning of FTbase model with LCE 32.60 8.01

FT_LoRAL: LoRA fine-tuning of FTbase model with L 31.50 7.47

Table 3: WER % of models produced during experiment

6 Conclusion

Low-resource fine-tuning of large language mod-
els is a prevalent and growing practice, partic-
ularly in the context of speech-related tasks.
Since Nepali is a low-resource language, the
fine-tuning task has received relatively less at-
tention. Our study focused on introducing the
language-specific loss function to regularize and
force the model to learn the language-specific
patterns. We proposed a loss function based on
the set of rules built on a basic mathematical
foundation. We named it Rule-Based Charac-
ter Constituency Loss (RBCCL).

Our strategy involves the initial (re)intro-
duction of the language into the larger model,
achieved through full-parameter tuning with
default training parameters. After forming
the base model, we apply our loss function
to complement the cross-entropy loss. We
experimented with both full-parameter fine-
tuning and adapter-based fine-tuning using
LoRA. The complemented loss function in both
cases compelled the model to learn features
that the default loss function failed to capture
effectively.

Although we observed significant improve-
ments in the implementation of the suggested
strategy, there is still plenty of room to enhance
the precision of the mode. Our study focused
on the Whisper model. We could expand the
study to include larger models and compare
the corresponding results in other languages
that use the Devanagari script.

7 Limitations

Throughout the experiments, we only inves-
tigated the Whisper model. Whisper uses
cross-entropy loss. We demonstrate through a
set of experiments that our loss function nicely
complements cross-entropy loss. However, we
did not extensively explore the impact of this
new function on other loss functions, such as
the CTC loss. We have a plan to extend this
to tests on other loss functions as well.

Another limitation of this work is computing
resources. Due to a lack of the high computing
resources demanded by the larger speech model,
we were unable to use the full available dataset.
We believe that using a full dataset further
enhances accuracy. We focused on the Nepali
language, but there are many other languages
that use the Devanagari script. Therefore, we
can expand the work to include other languages
as well.

Note: All the datasets (test, train, and
validation) and the final models can be ac-
cessed through Information and Language
Processing Research Lab’s website (https://il-
prl.ku.edu.np).
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Abstract
The growing use of Devanagari-script lan-
guages such as Hindi, Nepali, Marathi, San-
skrit, and Bhojpuri in digital form including
social media presents unique challenges for
natural language understanding (NLU), partic-
ularly in language identification, hate speech
detection, and target classification. To address
these challenges, we organized a shared task
with three subtasks: (i) identifying the lan-
guage of Devanagari-script text, (ii) detecting
hate speech, and (iii) classifying hate speech
targets into individual, community, or organi-
zation. A curated dataset combining multiple
corpora was provided, with splits for training,
evaluation, and testing. The task attracted 113
participants, with 32 teams submitting models
evaluated on accuracy, precision, recall, and
macro F1-score. Participants applied innova-
tive methods, including large language mod-
els, transformer models, and multilingual em-
beddings, to tackle the linguistic complexities
of Devanagari-script languages. This paper
summarizes the shared task, datasets, and re-
sults, and aims to contribute to advancing NLU
for low-resource languages and fostering in-
clusive, culturally aware natural language pro-
cessing (NLP) solutions.

1 Introduction

Languages written in the Devanagari script, such
as Hindi, Nepali, Marathi, Sanskrit, and Bho-
jpuri, are integral to the cultural and linguistic
heritage of millions of people across South Asia
and beyond. As digital technologies continue
to evolve, these languages are increasingly rep-
resented in various online domains, including so-
cial media, government communications, educa-
tion platforms, and digital archives. This growing
digital presence reflects the linguistic diversity and
cultural richness of their speakers but also presents
unique challenges for natural language understand-
ing (NLU). The development of robust computa-
tional tools for Devanagari-script languages is es-

sential for ensuring inclusivity in global digital
ecosystems (Patil et al., 2024).

Understanding and processing these languages
computationally is challenging due to their gram-
matical and syntactic complexities, the preva-
lence of dialectal variations, and frequent code-
switching with other languages (Gupta and Arora,
2022). While there has been substantial progress
in NLU for high-resource languages like English,
many low-resource languages, including those in
Devanagari script, remain underexplored (Rauni-
yar et al., 2023). This gap is exacerbated by the
scarcity of high-quality annotated datasets and the
limited adaptability of existing models designed
primarily for English or other high-resource lan-
guages.

Hate speech detection and language identifica-
tion are two critical NLU tasks for Devanagari-
script languages. Beyond their application in so-
cial media moderation, these tasks are vital for
promoting inclusive communication, safeguarding
digital platforms from harmful content, and sup-
porting broader societal goals such as equitable
access to technology. Accurate language iden-
tification serves as the foundation for effective
language-specific interventions, while understand-
ing hate speech and its targets ensures the devel-
opment of safer, more culturally sensitive tools for
digital spaces.

To address these challenges, we organized a
shared task that focuses on three critical NLU
tasks for Devanagari-script languages: (i) lan-
guage identification, (ii) hate speech detection,
and (iii) hate speech target classification. Subtask
A aims to identify the language of a given text writ-
ten in Devanagari script among Nepali, Marathi,
Sanskrit, Bhojpuri, and Hindi. Subtask B focuses
on detecting whether a given text contains hate
speech, addressing the growing need to combat on-
line toxicity. Subtask C delves deeper, seeking to
classify the target of hate speech into predefined
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categories, such as individual, community, or or-
ganization.

This shared task fosters advancements in low-
resource NLP research, encouraging the develop-
ment of models that are not only linguistically
robust but also culturally aware. In this report,
we provide an overview of the shared task, detail-
ing its structure, datasets, and evaluation metrics.
We also summarize the methodologies employed
by participants, the results they achieved, and the
lessons learned from this initiative. Through this
effort, we aim to contribute to a broader under-
standing of multilingual NLP and support the cre-
ation of inclusive and equitable digital technolo-
gies for underrepresented languages.

2 Shared Task Description

In this shared task, we focus on exploring the capa-
bilities of language models and classification sys-
tems to address three distinct challenges related to
Devanagari script languages. The goal is to pro-
mote advancements in NLU for low-resource lan-
guages, which are often underrepresented in main-
stream NLP research.

The shared task is divided into three subtasks,
each aimed at tackling a specific aspect of lan-
guage processing within the Devanagari script.
Participants are encouraged to develop robust and
generalizable models that can handle variations
in dialects, mixed-language content, and context-
specific nuances that are common in social media
texts written in Devanagari script. Further details
on subtasks can be found below:

2.1 Subtask A: Devanagari Script Language
Identification

This subtask involves determining whether a given
text is in Devanagari script or not. The dataset con-
sists of text that has been annotated to determine
the language it belongs to among Nepali, Marathi,
Sanskrit, Bhojpuri, and Hindi. This task focuses
on accurate language recognition in multilingual
contexts.

2.2 Subtask B: Hate Speech Detection in
Devanagari Script Language

The purpose of this subtask is to determine
whether a given text in the Devanagari script con-
tains hate speech. The dataset comprises single
utterances in Hindi and Nepali that have been
marked as either containing hate speech or not.

The dataset is further precisely divided into two
classes: texts that have been categorized as hate
speech and texts that have been categorized as non-
hate speech.

2.3 Subtask C: Target Identification for Hate
Speech in Devanagari Script Language

This subtask aims to identify the target audience of
hate speech within a specified set of hateful text in
Devanagari script. Classifying three specific tar-
gets listed in the dataset is the explicit focus of
the subtask, despite the fact that hate speech texts
may contain various potential targets across sev-
eral categories. The texts in the dataset are labeled
according to their targets, which can be classified
as community, individual, or organization. There-
fore, our goal is to identify these particular tar-
gets in Devanagari texts that contain hate speech.
Understanding the precise nature and direction of
hate speech requires completing this subtask.

3 Dataset

We conducted a total of three subtasks. Sub-
task A focused on identifying five different De-
vanagari languages and utilized six datasets. For
Nepali, we used two datasets: NEHATE (Thapa
et al., 2023) and NAET (Rauniyar et al., 2023).
The Marathi language was represented by the
L3CubeMahaSent dataset (Kulkarni et al., 2021),
and the Sanskrit language by the Itihasa dataset
(Aralikatte et al., 2021). Additionally, we used a
dedicated Bhojpuri dataset (Ojha, 2019), and for
Hindi, we employed the IEHate dataset (Jafri et al.,
2023). A total of 52,422 rows of data were used
for the training set, 11,233 rows for the evalua-
tion set, and 11,234 rows for the test set. Subtask
B focused on hate speech detection and utilized
three datasets: NEHATE, NAET, and IEHate. Ad-
ditionally, Subtask C, which aims to identify tar-
gets of hate speech, also employed the NEHATE
and NAET datasets. For Subtask C, we further in-
cluded the CHUNAV dataset (Jafri et al., 2024).
For each subtask, we stratified the dataset into
stages for training, evaluation, and testing, main-
taining a proportional split ratio of around 70-15-
15. Table 1 represents the dataset statistics for the
shared task.

4 Participants’ Methods

In this section, we describe the various methods
used by the participants who submitted the system
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Subtask Classes Train Eval Test Total

Nepali 12,544 2,688 2,688 17,920
Marathi 11,034 2,364 2,365 15,763

Subtask A Sanskrit 10,996 2,356 2,356 15,708
Bhojpuri 10,184 2,182 2,183 14,549

Hindi 7,664 1,643 1,642 10,949
Hate 2,214 474 475 3,163Subtask B Non-Hate 16,805 3,602 3,601 24,008

Individual 1,074 230 230 1,534
Organization 856 183 184 1,223Subtask C
Community 284 61 61 406

Table 1: Dataset statistics for our shared task.

description paper.

4.1 Overview

Out of the 113 participants who registered for the
shared task, a total of 25 participants submitted
scores for subtask A, 32 participants for subtask
B, and 27 participants for subtask C. The leader-
boards for these subtasks are provided in Table 2,
Table 3, and Table 4. In subtask A, team CUFE
(Ibrahim, 2025) achieved the highest performance
with an impressive F1-score of 99.97. Similarly, in
subtask B, Paramananda (Acharya et al., 2025) se-
cured the top position with an F1-score of 91.36,
while in subtask C, MDSBots (Thapaliya et al.,
2025) emerged as the leader with the highest F1-
score of 76.84.

4.2 Methods

Below, we provide a summary of the system de-
scriptions provided by the participating teams in
the shared task. These summaries are derived from
the approaches detailed by the participants in their
system description papers.

4.2.1 Subtask A
CUFE (Ibrahim, 2025) utilized fastText classifier
for language identification, leveraging its subword
modeling capabilities through n-grams along with
systematic token generation using the tokenizer
by Team et al. (2022). The proposed system
achieves a near-perfect F1 score of 99.97% on the
test set and secures the first position in the shared
task.

1-800-SHARED-TASKS (Purbey et al., 2025)
utilized ensemble model with IndicBERT V2
(Doddapaneni et al., 2022) and achieved an
exceptional F1-score of 99.79% and secured third
position on leaderboard. Individual models like
MuRIL (Khanuja et al., 2021) and Gemma-2

(Team et al., 2024) also delivered strong perfor-
mances. The results demonstrate the effectiveness
of multilingual transformer models in distin-
guishing between Devanagari-script languages.
Ensembling enhanced robustness and reduced
misclassifications, leveraging complementary
strengths of individual models to achieve near-
perfect classification accuracy.

byteSizedLLM (Manukonda and Kodali, 2025)
used a hybrid Attention BiLSTM-XLM-RoBERTa
model that achieved an F1-score of 99.74%.

MDSBots Thapaliya et al. (2025), used trans-
former models and TF-IDF feature extractor
methods in conjunction with traditional machine
learning models to achieve optimal outcomes.
They finetuned the mBERT, XLM-R-Base, XLM-
RoBERTa-Large, Varta-BERT, MuRIL-Base, and
MURTweet transformer models. They applied the
undersampling strategy, in which models were
trained on half of the task’s total data, to address
the issue of class imbalance. Using MURTweet,
they were able to attain a maximum f1-score and
recall of 99.68% and precision of 99.67%. Out
of all the competing teams, they achieved the
sixth-best ranking on this subtask-A.

Anisan (Shanto et al., 2025) used an ensemble
method that leverages the strengths of multiple
transformers namely mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020) and IndicBERT
(Doddapaneni et al., 2023) to achieve 99.68%
accuracy.

DSLNLP (Chauhan and Kumar, 2025)
employed mBERT, Distil-mBERT, and XLM-
RoBERTa models in an ensemble approach
to attain a higher F1-score; however, LaBSE
provides the highest performance on this task.
To achieve the best results, they first optimized
the bert variants, XLM-RoBERTa, DistilmBERT,
mBERT, LaBSE, and MuRIL, on the Devanagari
script dataset. To make the predictions, they in-
cluded important linguistic insights and employed
a variety of model designs using the majority vote
in the ensembling approach. On LaBSE, they
achieve the highest f1-score, recall, and precision
of 99.64%, 99.65%, and 99.64%, respectively.
Their LaBSE model placed eighth out of all the
teams who took part in subtask A.
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Rank Team Name Codalab Username Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 CUFE (Ibrahim, 2025) michaelibrahim 99.97 99.97 99.97 99.97
2 CLTL Yestin 99.82 99.82 99.82 99.84
3 1-800-SHARED-TASKS (Purbey et al., 2025) jebish7 99.79 99.81 99.80 99.82
4 1-800-SHARED-TASKS (Purbey et al., 2025) lazyboy.blk 99.76 99.76 99.76 99.79
5 byteSizedLLM (Manukonda and Kodali, 2025) mdp0999 99.75 99.73 99.74 99.76
6 MDS Bots (Thapaliya et al., 2025) sumanpaudel 99.68 99.67 99.68 99.72
7 AniSan (Shanto et al., 2025) Priya57 99.66 99.64 99.65 99.69
8 DSLNLP (Chauhan and Kumar, 2025) Abhinav05 99.65 99.64 99.65 99.68
9 - sandeep_S 99.58 99.59 99.58 99.63

10 Nepali Transformers (Khadka et al., 2025) Pilot-Khadka 99.56 99.54 99.55 99.60
11 - decem 99.56 99.55 99.55 99.60
12 - jerrytomy 99.50 99.55 99.53 99.57
13 CUET_Big_O (Hossan et al., 2025) dark_shadow 99.40 99.41 99.41 99.47
14 SKPD Emergency (Shakya et al., 2025) shubham_shakya 99.44 99.38 99.41 99.48
15 Paramananda (Acharya et al., 2025) sure 99.39 99.40 99.39 99.46
16 Nitro NLP menta27 99.38 99.37 99.38 99.46
17 NLP Champs abhay-43 99.34 99.34 99.34 99.40
18 Paramananda (Acharya et al., 2025) fulbutte 99.18 99.18 99.18 99.26
19 - samanjoy2 99.11 99.10 99.11 99.18
20 AGRJ getabhi89 96.78 96.43 96.49 96.90
21 - Tanvir_77 96.30 96.19 96.14 96.44
22 - RohanR 95.69 95.77 95.72 95.99
23 CUET_Big_O (Hossan et al., 2025) sakib07 94.24 95.11 94.54 95.08
24 CipherLoom Nikhil_7280 65.72 57.19 59.71 69.87
25 CNLP-NITS advaitha 56.70 67.72 50.46 53.53

Table 2: Sub-task A (Devanagari Script Language Identification) Leaderboard, Ranked by Macro F1-score. All
scores are presented as percentages (%). It is to be noted that this leaderboard contains the score till the test
deadline and does not consider further runs done by participants as a part of the system description paper.

Nepali Transformers (Khadka et al., 2025)
used the Twitter-trained multilingual RoBERTa
(Barbieri et al., 2020) and achieved exceptional
results, with F1-score reaching 99.55%, out-
performing other baseline models, including
general-purpose and Devanagari-specific archi-
tectures. This approach secured tenth position
on the leaderboard, demonstrating the model’s
effectiveness in handling the linguistic diversity
and complexity of the Devanagari script.

CUET_Big_O (Hossan et al., 2025) used
Traditional ML models such as Logistic Regres-
sion, SVM, Multinomial Naive Bayes, Random
Forest and Deep Learning models such as CNN,
LSTM, BiLSTM, along with the aggregation of
models like CNN+GRU, CNN+BiLSTM. The
best-performing model was CNN with BiLSTM
which achieved an F1-score of 99.41%.

SKPD Emergency (Shakya et al., 2025), used
an innovative approach using Continuous Bag
of Words (CBOW) embeddings and an attention-
enhanced Bidirectional Long Short-Term Memory
(BiLSTM) neural network to identify languages
written in Devanagari script. The results were
impressive, with the model achieving a remark-
able 99% overall accuracy. Sanskrit was perfectly
classified, while some challenges remained in
differentiating between highly similar languages

like Hindi and Bhojpuri. The CBOW embed-
dings significantly outperformed character-level
encoding, demonstrating their ability to capture
semantic relationships and linguistic subtleties
that character-based approaches miss.

Paramananda (Acharya et al., 2025) em-
ployed the FastText and BERT models, achieving
exceptional performance with F1-scores of
99.17% and 99.39%, respectively, securing the
seventeenth position on the leaderboard. While
BERT marginally outperformed FastText by
leveraging its deep contextual embeddings to
capture nuanced linguistic differences, FastText
demonstrated higher computational efficiency,
making it more suitable for large-scale applica-
tions.

CUET_Big_O (Hossan et al., 2025) used CNN
with BiLSTM to obtain F1-score of 99.41%. This
however differs from the official leaderboard.

4.2.2 Subtask B
Paramananda Acharya et al. (2025) utilized Fast-
Text and demonstrated superior performance, par-
ticularly with data augmentation, achieving an F1
score of 81.39% and scoring first position on the
leaderboard. This outperformed BERT, which
struggled with an F1 score of 0.5763. Despite
its contextual embedding strengths, BERT’s under-
performance was attributed to overfitting on sparse
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Rank Team Name Codalab Username Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 Paramananda (Acharya et al., 2025) fulbutte 85.52 78.47 81.39 91.36
2 CLTL Yestin 81.27 74.61 77.3 89.35
3 MDS Bots (Thapaliya et al., 2025) sumanpaudel 76.94 76.32 76.63 90.26
4 1-800-SHARED-TASKS (Purbey et al., 2025) jebish7 74.41 79.25 76.52 91.12
5 1-800-SHARED-TASKS (Purbey et al., 2025) lazyboy.blk 73.6 78.95 75.88 90.97
6 - MuhammadArham 72.61 78.14 74.94 90.68
7 byteSizedLLM (Rohith Gowtham Kodali and Iglesias, 2025) mdp0999 77.45 72.86 74.81 88.57
8 Dll5143A (Yadav and Singh, 2025) Dll5143A 75.76 73.45 74.52 88.98
8 Dll5143A (Yadav and Singh, 2025) Dll5143 75.76 73.45 74.52 88.98
9 LLMsAgainstHate (Sidibomma et al., 2025) rushendra910 71.19 78.84 74.19 90.75

10 - jerrytomy 73.14 74.12 73.61 89.35
11 1-800-SHARED-TASKS (Purbey et al., 2025) Siddartha-10 70.34 78.95 73.59 90.7
12 - sandeep_S 74.63 72.56 73.52 88.59
13 CUET_HateShield Aodhora et al. (2025) Sumaiya_127 73.52 72.38 72.93 88.57
14 Nepali Transformers (Khadka et al., 2025) Pilot-Khadka 73.24 72 72.59 88.4
15 - srikarkashyap 73.29 71.87 72.54 88.32
16 - decem 66.5 76.64 69.89 89.89
17 NLPineers (Guragain et al., 2025) anmol2059 77.62 66.39 69.14 82.58
18 CUET_823 ratnajit_dhar 67.28 71.6 69.07 88.52
19 NLP_Ninjaas Nadika 68.77 69.34 69.04 87.44
20 CUFE (Ibrahim, 2025) michaelibrahim 65.45 73.12 68.17 89.01
21 CIOL (Gupta et al., 2025) azminewasi 65.47 71.06 67.62 88.4
22 NLP Champs abhay-43 68.16 64.77 66.14 84.42
23 DSLNLP (Chauhan and Kumar, 2025) Abhinav05 62.57 76.49 66.13 89.57
24 CUET_Big_O (Hossan et al., 2025) dark_shadow 67.98 63.48 65.1 83.15
25 SKPD Emergency (Shakya et al., 2025) shubham_shakya 62.62 64.03 63.26 85.62
26 AniSan (Shanto et al., 2025) Priya57 59.47 70.69 62.06 88.44
27 - RohanR 58.22 66.37 60.2 87.54
28 - Tanvir_77 66.66 58.62 58.94 74.19
29 Paramananda (Acharya et al., 2025) sure 55.9 73.77 57.63 88.76
30 CNLP-NITS advaitha 50 44.17 46.91 88.35
31 Nitro NLP menta27 51.84 50.81 46.49 60.28

Table 3: Sub-task B (Hate Speech Detection) Leaderboard, Ranked by Macro F1-score. All scores are presented as
percentages (%). It is to be noted that this leaderboard contains the score till the test deadline and does not consider
further runs done by participants as a part of the system description paper.

datasets, as evidenced by a higher evaluation score
that did not generalize to test data.

MDSBots Thapaliya et al. (2025), experi-
mented with identical transformer and classical
models that were used in subtask-A. In order to
reduce class imbalance, samples from the non-
hate class were prioritized above samples from
the majority class. They achieved a maximum
f1-score, recall, and precision of 76.62%, 76.87%,
and 76.38%, respectively, using MURTweet. Out
of all the participating teams, they ranked third on
this subtask-B.

1-800-SHARED-TASKS (Purbey et al., 2025)
opted for the same ensemble technique as Subtask
A and the ensemble of models achieved the
highest F1-score of 0.7588 and placed fifth posi-
tion on the leaderboard. Fine-tuning with focal
loss (Lin, 2017) was instrumental in addressing
class imbalance, and improving the detection of
minority instances.

byteSizedLLM (Rohith Gowtham Kodali and
Iglesias, 2025) focused on a hybrid Attention
BiLSTM-XLM-RoBERTa architecture which
utilized BiLSTM’s sequential processing, atten-
tion mechanisms for contextual emphasis, and
XLM-RoBERTa embeddings for multilingual

adaption. The model attained an F1-score of
74.81% and secured seventh position on the
leaderboard, surpassing other models.

Dll5143A (Yadav and Singh, 2025) used the
Hierarchical Gated Adaptive Attention (HGAA)
model, leveraging XLM-RoBERTa embeddings,
achieved a competitive F1-score of 74.52% and
securing an eighth position on the leaderboard.
This model balanced precision and recall, demon-
strating its robustness in detecting hate speech in
Devanagari-scripted languages. Comparatively,
the non-gated architecture showed lower perfor-
mance. The introduction of gating mechanisms
significantly improved the models ability to
handle class imbalance, enhancing minority class
detection at the cost of some false positives.

LLMsAgainstHate (Sidibomma et al.,
2025) used Nemo-Instruct-2407 model (AI
and NVIDIA) and achieved the highest perfor-
mance with an F1-score of 74.52%, outperforming
alternatives such as Phi-3-medium (Abdin et al.,
2024) and Llama-3.1. Despite significant class
imbalance favoring non-hate class, Nemo demon-
strated robust detection capabilities, particularly
benefiting from Parameter-Efficient Fine-Tuning
using Low-Rank Adaptation (Hu et al., 2021).
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CUETHateShield Aodhora et al. (2025) used
the classical, deep learning, and transformer
models to experiment with this task. In classical
machine learning models, they incorporated the
Logistic Regression, Support Vector Machine,
and Random Forest model with TF-IDF feature
extractor, and for deep learning models, they used
CNN, Bi-LSTM, and CNNBiLSTM model with
fastText and keras embedding. In transformer
model, they used mBERT, MuRIL, IndicBERT,
Indic-SBERT, and XLM-RoBERTa. To obtain
higher-quality data, they eliminated noise in the
preprocessing step, which included punctuation,
emojis, hyperlinks, alphanumeric letters, and
special symbols (such as slashes, brackets, and
ampersands). They obtain an f1-score of 74% on
XLM-RoBERTa, recall of 75% on Indic-SBERT,
and precision of 72% on MuRIL.After competing
against all teams, they came in at number eleven
on this subtask.

Nepali Transformers (Khadka et al., 2025) de-
ployed the Twitter-trained multilingual RoBERTa
model (Barbieri et al., 2020), which achieved an
F1-score of 72.93% and secured the fourteenth
position on the leaderboard, outperforming
general-purpose and Devanagari-specific models.
This model excelled due to its domain-specific
pretraining on social media datasets, effec-
tively capturing nuanced hate speech patterns in
Devanagari-scripted languages.

NLPineers (Guragain et al., 2025) used an
ensemble of multilingual BERT to achieve a recall
of 77.62% (ranked 3rd out of 31 in terms of recall
and 17th out of 31 for an F1 score of 69.14%).
To address the class imbalance, the authors used
back-translation for data augmentation and cosine
similarity to preserve label consistency after
augmentation.

IITR-CIOL (Gupta et al., 2025) developed a
model called MultilingualRobertaClass, which is
a deep neural network built on the pre-trained IBM
transformer model “ia-multilingual-transliterated-
roberta". The model achieved an accuracy of
82.21%, a weighted precision of 79.84%, a
weighted Recall of 82.21%, and a weighted F1
Score of 80.97%.

DSLNLP (Chauhan and Kumar, 2025), XLM-

RoBERTa performs the best on this problem
despite using the same ensembling algorithm as
subtask-A. For the best results on hate speech
recognition on Devanagari scripts, they refined
the same models of Bert variations on all of
the scripts, just like in the prior task. They
achieved the highest precision of 78.9% by
LaBSE, whereas the maximum f1-score and recall
on XLM-RoBERTa were 66.13% and 62.57%,
respectively. In subtask B, their XLM-RoBERTa
model ended at number 23 out of all the teams
that took part.

4.2.3 Subtask C
MDSBots (Thapaliya et al., 2025), employed the
same models as the previous tasks, but they added
a hybrid model in this task. In the hybrid model,
they integrated named entity information (NER)
into features produced by BERT models and used
open-source large language models to reclassify
samples with low confidence scores by prompting.
They employed data augmentation to address
the class disparity, by augmenting the minority
class to represent community targets. Their best
f1-score, recall, and precision on NERMURTweet
were 70.98%, 70.38%, and 71.75%, respectively.
Out of all the teams, they won first place for this
subtask-C.

CUET_INSights (Tofa et al., 2025) combine
traditional ML and Deep Learning Techniques
while leveraging the multilingual capabilities of
Indic-BERT & m-BERT with the adoption of
Bhojpuri-to-Hindi translation along with class
weights to mitigate imbalance. By utilizing these
techniques including the almost perfect blend of
deeper embeddings with shallow ML (TFIDF)
features, the authors achieve a high F1 score of
69.17% thereby securing the third spot in the
leaderboard.

CUET_Big_O (Hossan et al., 2025) used
GridSearchCV for hyperparameter tuning and
tested different kernels (linear, RBF) for SVM.
They also tested multiple transformers: m-BERT,
Indic-BERT, MuRIL-BERT, XLM-R, and Verta-
BERT. The best performer was MuRIL-BERT
with an F1-score of 68.32%.

1-800-SHARED-TASKS (Purbey et al., 2025)
employed Gemma-2 27B model, fine-tuned using
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Rank Team Name Codalab Username Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 MDS Bots (Thapaliya et al., 2025) sumanpaudel 70.38 71.75 70.98 76.84
2 - Siddartha-10 68.73 74.11 70.33 77.89
3 CUET_INSights (Tofa et al., 2025) Tofa 67.17 74.18 69.17 76.63
4 CUET_Big_O (Hossan et al., 2025) sakib07 68.13 68.61 68.32 74.53
5 1-800-SHARED-TASKS (Purbey et al., 2025) jebish7 66.69 71.83 68.04 76.63
6 One_by_zero (Chakraborty et al., 2025) Dola_Chakraborty 68.1 67.88 67.98 73.68
7 byteSizedLLM (Rohith Gowtham Kodali and Iglesias, 2025) mdp0999 66.89 67.44 67.15 74.11
8 - jerrytomy 66.68 66.29 66.41 73.05
9 - sandeep_S 65.72 67.54 66.37 73.89

10 CLTL Yestin 65.46 67.4 66.12 74.53
11 Dll5143A (Yadav and Singh, 2025) Dll5143A 65.37 66.38 65.76 71.37
12 - srikarkashyap 64.78 67.58 65.69 72.42
13 Dll5143 Dll5143 64.75 64.76 64.74 72.21
14 LLMsAgainstHate (Sidibomma et al., 2025) rushendra910 63.36 65.29 64.08 72
15 CipherLoom Nikhil_7280 61.4 64.47 62.37 71.16
16 Nepali Transformers (Khadka et al., 2025) Pilot-Khadka 62.36 61.57 61.83 68.63
17 DSLNLP (Chauhan and Kumar, 2025) Abhinav05 60.61 61.98 61.01 68.42
18 - decem 59.39 63.81 59.96 71.16
19 CUET_SSTM aref111n 59.39 64.39 59.73 69.89
20 CIOL (Gupta et al., 2025) azminewasi 58.39 59.1 58.16 66.11
21 Paramananda (Acharya et al., 2025) sure 57.44 58.57 57.85 66.95
22 Paramananda (Acharya et al., 2025) fulbutte 53.3 56.67 53.74 63.58
23 NLP Champs abhay-43 50.77 51.16 50.57 58.32
24 CUFE michaelibrahim 50.27 54.55 50.08 62.53
25 - RohanR 45.77 56.41 44.22 60.42
26 - Tanvir_77 46.85 41.1 43.74 61.68
27 AniSan (Shanto et al., 2025) Priya57 45.33 44.94 42.07 61.68

Table 4: Sub-task C (Target Identification for Hate Speech) Leaderboard, Ranked by Macro F1-score. All scores
are presented as percentages (%). It is to be noted that this leaderboard contains the score till the test deadline and
does not consider further runs done by participants as a part of the system description paper.

ORPO (Hong et al., 2024), achieved the highest
F1-score of 68.04%, with recall and precision
scores of 66.69% and 71.83%, respectively. This
model outperformed alternatives like Gemma-2
9B and XLM-RoBERTa, which scored lower
due to challenges in detecting nuanced targets
like “community". The results highlighted the
model’s strong performance in identifying targets
such as “individual" and “organization," while
community-target detection remained a challenge,
underscoring the need for richer datasets.

One_by_zero (Chakraborty et al., 2025) uti-
lized traditional machine learning models such
as Logistic Regression, SVM leveraging TF-IDF
Feature Extraction, deep learning (DL) architec-
tures such as CNN, BiLSTM, CNN+BiLSTM
hybrid) utilizing Word2Vec and FastText embed-
dings and Transformer-based architectures such
as IndicBERT, MuRIL, XLM-R while adopt-
ing oversampling for underrepresented classes.
Specifically, along with IndicBERT they achieve a
notable high score of 67.85% percentage securing
the sixth spot in the leaderboard.

byteSizedLLM (Rohith Gowtham Kodali and
Iglesias, 2025) opted Attention BiLSTM-XLM-
RoBERTa architecture achieved a macro F1-score
of 67.15% and also secured a seventh position
on the leaderboard, effectively categorizing hate

speech targets as individual, organization, or
community. This model outperformed baseline
approaches, with the BiLSTM-XLM-RoBERTa
variant scoring 63.56% and the XLM-RoBERTa
base scoring 61.47%. The attention mechanism
improved focus on critical context, enhancing
accuracy for complex multilingual tasks.

Dll5143A (Yadav and Singh, 2025) imple-
mented the HGAA model which achieved a
macro F1-score of 65.76% and eleventh position
on the leaderboard, demonstrating effective
classification for individual and organizational
targets. Community target detection remained
challenging due to nuanced language and class
imbalance. The inclusion of gating mechanisms
improved performance compared to simpler archi-
tectures, particularly in minority class detection,
showcasing the model’s ability to balance pre-
cision and recall across diverse linguistic contexts.

LLMsAgainstHate (Sidibomma et al., 2025),
the Nemo-Instruct-2407 model (AI and NVIDIA)
delivered the strongest results with an F1-score
of 64.08%. It outperformed models like Phi-
3-medium and Qwen2.5 (Yang et al., 2024),
showcasing its robustness in handling target-
specific classifications. However, a detailed
class-wise breakdown revealed a notable perfor-
mance disparity, with high accuracy in detecting
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“Individual" and “Organization" targets, but a sig-
nificant drop for “Community". This discrepancy
underscores the challenge posed by imbalanced
datasets and under-represented categories.

For Nepali Transformers (Khadka et al.,
2025), the Twitter-trained multilingual RoBERTa
(Barbieri et al., 2020) demonstrated competitive
performance, achieving an F1-score of 61.83%.
While the model excelled in identifying “Individ-
ual" and “Organization" targets, it struggled with
“Community" due to the scarcity of labeled exam-
ples. Augmentation strategies using multilingual
embeddings provided modest improvements but
did not fully resolve the imbalance challenges.

DSLNLP (Chauhan and Kumar, 2025), their
MuRIL model performs the best on this task. In
order to achieve the greatest results on target
identification for hate speech on Devanagari
scripts, they improved the same models of Bert
variations and applied the same ensembling
techniques as in the prior tasks. The ensemble
method with a majority voting strategy yielded
the highest precision of 63.91%, whereas the
maximum F1-score and recall on MuRIL were
61.01% and 60.60%, respectively. Their MuRIL
model came in at number seventeen out of all the
teams who took part in subtask C.

IITR-CIOL (Gupta et al., 2025) built a model
that was pre-trained on a multilingual transformer
model to handle the linguistic diversity and
complexity of South Asian languages. While the
model performed exceptionally well in Subtask
B (hate speech detection), achieving an accuracy
of 88.40%, its performance in Subtask C was
notably lower, with an accuracy of 66.11%. The
ablation studies revealed that sequence length was
the most critical factor in model performance,
with longer sequences providing better context
and more accurate predictions.

Paramananda (Acharya et al., 2025) used
BERT which demonstrated superior performance
with an F1 score of 53.74%. BERT’s success is
attributed to its ability to leverage deep contextual
embeddings, enabling the identification and differ-
entiation of nuanced targets such as individuals, or-
ganizations, and communities.

5 Discussion

The shared task on Devanagari-script languages of-
fered unique insights into the complexities of NLU
for low-resource languages. Participants show-
cased a diverse range of approaches, from classical
machine learning models to transformer-based ar-
chitectures and large language models, each with
distinct strengths and limitations. Success of mod-
els like IndicBERT and XLM-RoBERTa in Sub-
task A underscores importance of multilingual and
domain-specific embeddings in effectively distin-
guishing between linguistically similar languages.

However, the results also illuminate several
challenges. Despite achieving high overall ac-
curacy, many models struggled with underrepre-
sented classes, such as ‘Community’ in Subtask
C, pointing to limitations of existing datasets and
the need for better class balance and data augmen-
tation techniques. Additionally, while transformer-
based models excelled in capturing contextual nu-
ances, their reliance on large-scale training data
highlights the necessity of domain-specific pre-
training and fine-tuning strategies tailored for low-
resource languages. Moving forward, fostering
collaboration within the NLP community and de-
veloping more comprehensive datasets will be cru-
cial to addressing these challenges and advancing
research in Devanagari-script languages.

6 Conclusion

This shared task on NLU for Devanagari-script
languages addressed critical challenges in lan-
guage identification, hate speech detection, and
target classification. Through the participation of
diverse teams and methodologies, the task high-
lighted the potential of transformer-based models,
ensemble approaches, and hybrid architectures in
tackling the linguistic and contextual intricacies of
low-resource languages. Substantial progress was
demonstrated, particularly in language identifica-
tion, where models achieved near-perfect scores,
showcasing the effectiveness of multilingual em-
beddings and pretraining on diverse datasets. Nev-
ertheless, challenges such as class imbalance, un-
derrepresentation of specific categories, and the
need for domain-specific pretraining were identi-
fied as key areas requiring further research. This
task has laid the groundwork for future exploration
and highlighted the importance of more research
in inclusive and culturally aware NLP solutions.
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A Related Works

Identifying Devanagari script in social media is
an increasingly challenging task that requires the
attention of scholars, policymakers, and society
(Sharma and Mithun, 2023; Singh et al., 2023).
Hate speech detection has been a prominent re-
search domain, with numerous studies concen-
trating on English and other widely spoken lan-
guages (Basile et al., 2019; Ousidhoum et al.,
2019). However, efforts to identify hate speech
in Devanagari-script languages, including Hindi,
Nepali, and Marathi, are still insufficient (Sharma
et al., 2024; Velankar et al., 2022; Singh and
Thakur, 2024). Few studies have made substan-
tial progress in identifying the targets of hate
speech. Current studies generally expand hate
speech classification to identify targets as persons
or groups based on established criteria (Mathew
et al., 2021; Mollas et al., 2022). Nevertheless,
these approaches often rely primarily on English-
centric models, with minimal adaptations for De-
vanagari script. Few studies have begun to fill
the gap by leveraging multilingual embeddings
to identify Devanagari script and its applications
(Magdum et al., 2023; Timilsina et al., 2022;
Gupta et al., 2022). Despite these advancements,
the domain continues to encounter obstacles due
to the varied linguistic attributes of the Devana-
gari script and the restricted availability of high-
quality labeled datasets. To overcome the prob-
lem of reliable annotated datasets, researchers cu-
rated the corpus specifically focused on Devana-
gari languages like Hindi, Marathi, Bhojpuri, San-
skrit and Nepali (Jafri et al., 2024; Kulkarni et al.,
2021; Ojha, 2019; Aralikatte et al., 2021; Rauniyar

et al., 2023). This shared task utilizes the Devana-
gari dataset to engage scholars and professionals
in addressing the problem of language identifica-
tion, hate speech, and its target identification in
the corpus.

B Evaluation and Competition

This section explains the nature of our competi-
tion, including the system for calculating rankings
and other important details.

B.1 Evaluation Metrics
We employed accuracy, precision, recall, and
macro F1-score to evaluate the performance. The
macro F1-score sorting method was used to estab-
lish the participants’ rank.

B.2 Competition Setup
We used the Codalab1 to organize our competition.
There were two stages to the competition: an eval-
uation stage where participants were introduced
to the Codalab system, and a testing phase where
the ultimate leaderboard ranking was established
based on performance.

Registration: The shared task attracted 113 par-
ticipants. Our shared task had interest from a di-
verse range of backgrounds and regions as antic-
ipated by the email domains they registered with.
Of these, 32 teams submitted their predictions.

Competition Timelines: On August 19, 2024,
participants received access to the training and
evaluation data, marking the beginning of the task.
This initial phase aimed to help participants be-
come familiar with the dataset and task require-
ments. The test phase started on September 27,
2024, when test data was made available with-
out ground truth labels. Originally scheduled to
end on October 17, 2024, the testing period was
extended to October 27, 2024, in response to re-
quests from participants, allowing additional time
to complete submissions. The deadline for system
description paper submissions was also extended
from November 3 to November 10, 2024, provid-
ing more time for participants to document their
methods. This structured timeline allowed partici-
pants to fully engage with each phase. We also en-
sured that support was provided to the participants
in case of technical difficulties.

1The competition page can be found here: https://
codalab.lisn.upsaclay.fr/competitions/20000.
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Abstract

The dynamic field of speaker diarization con-
tinues to present significant challenges, despite
notable advancements in recent years and the
rising focus on complex acoustic scenarios em-
phasizes the importance of sustained research
efforts in this area. While speech resources
for speaker diarization are expanding rapidly,
aided by semi-automated techniques, many ex-
isting datasets remain outdated and lack au-
thentic real-world conversational data. This
challenge is particularly acute for low-resource
South Asian languages, due to limited public
media data and reduced research efforts. Sin-
hala and Tamil are two such languages with
limited speaker diarization datasets. To address
this gap, we introduce a new speaker diariza-
tion dataset for these languages and evaluate
multiple existing models to assess their perfor-
mance. This work provides essential resources,
a novel dataset1 and valuable insights from
model benchmarks to advance speaker diariza-
tion for low-resource languages, particularly
Sinhala and Tamil.

1 Introduction

The history of speaker diarization dates back to the
early 1990s (Park et al., 2022), primarily driven by
the need to enhance Automatic Speech Recognition
(ASR) systems. Early diarization systems focused
on tasks such as transcribing radio broadcasts, con-
ference calls, and speech communication systems,
with a major emphasis on improving the accuracy
of ASR in multi-speaker environments (Jain et al.,
1996; Padmanabhan et al., 1996; Gish et al., 1991).
Since then, speaker diarization has been extensively
researched over the last few decades, leading to sig-
nificant advancements in its techniques and appli-
cations. Initially, basic clustering (Ng et al., 2001;
Tung et al., 2010) and segmentation algorithms

1The dataset is available at https://github.com/
SiTa-SpeakerDiarization/SiTa

were used, but over time, more sophisticated meth-
ods, such as deep learning-based approaches, have
emerged to perform single-module optimizations
(Xie et al., 2016; Lin et al., 2020; Wang et al.,
2020), as well as completely end-to-end neural di-
arization (EEND) systems (Fujita et al., 2019a,b;
Horiguchi et al., 2022), pushing the boundaries of
diarization performance.

When examining state-of-the-art diarization
models, the requirement for large, well-developed
diarization datasets can be identified as one of
the major factors contributing to the performance
of these models. While diarization datasets for
languages such as English, Spanish, French, Ger-
man, and other European languages, along with
Asian languages such as Chinese, Japanese, and
Korean, possess significantly larger volumes of
content, the available datasets for low-resource lan-
guages frequently prove inadequate. This scarcity
of data often leads to suboptimal performance in
speaker diarization models for low-resource lan-
guages, where the lack of diversity and size in
datasets becomes a major hindrance to model train-
ing and evaluation.

The South Asian region is home to many lan-
guages that are natively spoken but are often classi-
fied as low-resource, resulting in a significant lack
of available datasets. Among these languages, Sin-
hala and Tamil are the two most widely spoken
languages in Sri Lanka. Sinhala is an Indo-Aryan
language, primarily used by the Sinhalese popula-
tion of more than 15 million, and Tamil is a Dra-
vidian language, spoken by more than 3 million
Tamils in Sri Lanka (Department of Census and
Statistics, Sri Lanka, 2012). Despite their large
speaker bases, there is a significant lack of rich,
diverse linguistic datasets for both languages, espe-
cially in fields like speech processing and speaker
diarization. Developing diarization datasets for
Sinhala and Tamil is essential to advancing speech
recognition and diarization systems, which will, in
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turn, improve digital accessibility and linguistic
resources for these populations.

In this paper, we introduce SiTa, a speech dataset
specifically curated for speaker diarization tasks
in Tamil and Sinhala languages. We detail the
methodology utilized in developing this dataset,
which includes data collection, preprocessing, and
the annotation pipeline. Additionally, we present
experimental results obtained from applying SiTa
to state-of-the-art diarization models. Our efforts
aim to address the scarcity of resources for low-
resource languages like Sinhala and Tamil, thereby
contributing to the advancement of multilingual
speaker diarization research.

2 Related Work

Over the years, many speaker diarization datasets
have been released, particularly in English lan-
guage. The NIST SRE 2000 (Przybocki and Martin,
2001) or more commonly known as CALLHOME
dataset has been the most commonly used speaker
diarization dataset, especially for benchmarking
purposes. This dataset consists of approximately
500 recordings of multilingual telephone conver-
sations with each session containing two to seven
speakers. The CHiME-5/6 challenge (Barker et al.,
2018; Watanabe et al., 2020) contains a 50 hour
dataset of casual conversations recorded in homes
with multi-array microphones that focused on over-
lapping speech and noisy environments.

The DIHARD Challenges (Ryant et al., 2018,
2019, 2020) are a series of annual events designed
to tackle "hard" diarization scenarios where exist-
ing systems frequently underperform. The evalua-
tion dataset spans complex domains, including clin-
ical interviews, child language acquisition record-
ings, restaurant conversations, and online videos.
In scoring, overlapped speech was accounted for,
and no forgiveness collar was applied, making the
challenge even more rigorous.

Following advancements in audio-only diariza-
tion, a new frontier opened in audio-visual diariza-
tion aimed at enhancing robustness and accuracy.
This shift has been facilitated by the introduction
of comprehensive multimodal datasets such as the
AMI (Mccowan et al., 2005) and AVDIAR (Ge-
bru et al., 2017) corpora. A common character-
istic of these datasets is that they are recorded in
controlled indoor environments, featuring scripted
conversations performed by actors, which contrasts
with more naturalistic settings typically encoun-

tered in real-world interactions. The AMI (Aug-
mented Multi-party Interaction) Corpus contains
100 hours of meeting recordings captured across
multiple locations, offering multi-microphone au-
dio and multi camera video. This dataset also
provides synchronized audio-visual streams and
transcriptions, enabling the development of sophis-
ticated Automatic Speech Recognition (ASR) sys-
tems integrated with speaker diarization. The AV-
DIAR dataset is designed to encompass a wide va-
riety of multi-speaker scenarios, featuring diverse
configurations such as static and moving partici-
pants, which facilitate the benchmarking of audio-
visual diarization methods in complex interaction
settings.

The REPERE (Giraudel et al., 2012) corpus is a
multimodal French video dataset developed for ad-
vancing automatic people recognition systems, fea-
turing annotated news and debate segments from
French television with a focus on varied audio-
visual conditions. The RTVE datasets (Lleida
et al., 2019, 2020; Ortega et al., 2022) compris-
ing 6 hours, 33 hours, and 25 hours of annotated
Spanish speech data respectively, primarily focus
on speaker diarization and include enrollment mate-
rial for speaker identification. These datasets cover
diverse accents, spontaneous speech, and overlap-
ping dialogues across various broadcast scenarios.

Having utilized TV shows, meetings, and tele-
phonic data, datasets began incorporating "in
the wild" data, primarily from publicly available
YouTube videos, to address challenges such as
the limited diversity of speech patterns, low pres-
ence of overlapping conversations, and the lim-
ited variability in background noise that can com-
promise model performance in real-world appli-
cations. The first significant effort in this direc-
tion was the VoxCeleb Speaker Recognition Chal-
lenge (VoxSRC) series (Chung et al., 2019; Nagrani
et al., 2020; Brown et al., 2022; Huh et al., 2023),
which initially focused solely on speaker verifica-
tion tasks; however, the diarization task was later
introduced as Track 4 in subsequent iterations. Fol-
lowing this initiative, several novel "in the wild"
speaker diarization datasets were created. Vox-
converse (Chung et al., 2020) is one of the first
dedicated large-scale diarization datasets, contain-
ing 64 hours of diverse YouTube videos which in-
cluded a test set of 232 videos and a dev set of
216 videos. Its contributions also include a semi-
automatic dataset creation pipeline, which signifi-
cantly reduces the time required to annotate videos
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with speaker labels. This innovation addresses a
key reason for the scarcity of large-scale diarization
datasets derived from natural conversations such
as those in YouTube videos. Atomic Visual Action
Audio-Visual Diarization (AVA-AVD) dataset (Xu
et al., 2022) is another comparable multilingual
speaker diarization dataset developed based on the
AVA-Active Speaker dataset (Roth et al., 2020),
which focuses on detecting active speakers in au-
diovisual contexts but excluding the videos with
dubbed scenes, as dubbing can disrupt the audio-
visual synchronization. The AVA-AVD dataset con-
sists of 351 videos totaling 29 hours of content,
extracted from movies produced worldwide with
diversity in ethnicity, language, accents, dialects,
and age. Similarly, MSDWild (Liu et al., 2022)
is a large multilingual speaker diarization dataset,
featuring 3,143 YouTube videos with an emphasis
on daily conversations, totaling 80 annotated hours.

During the early development of speaker diariza-
tion, publications focusing on low-resource speaker
diarization datasets were limited, as initial research
efforts primarily concentrated on larger corpora
in English. Nonetheless, attempts to create non-
English diarization datasets were made during the
late 1990s and early 2000s, coinciding with the
expanding interest in speech recognition. Among
these early initiatives were the CALLHOME col-
lections (Canavan and Zipperlen, 1996; Wheatley,
1996), which includes multilingual telephone con-
versational data for both diarization and speaker
identification. In 2002, the Karlsruhe Institute
of Technology introduced the GlobePhone cor-
pus (Schultz, 2002), encompassing audio record-
ings and transcriptions in 20 languages, includ-
ing Hausa, Swahili, and Vietnamese. Additionally,
in 2005, the International Institute of Information
Technology in India developed speech corpora for
Tamil, Telugu, and Marathi languages (Chitturi
et al., 2005). Released in 2021, AISHELL-4 (Fu
et al., 2021) provided a Mandarin Chinese meet-
ing corpus of 118 hours. In addition, AliMeeting
(Yu et al., 2022) and RAMC (Yang et al., 2022)
datasets feature meeting scenarios in distinct room
environments and Mandarin phone call recordings
respectively. The Corpus of Spontaneous Japanese
(Maekawa, 2003) offered 12 hours of dialogue data
captured using headset microphones, highlighting
natural, spontaneous conversations between two
speakers.

In the scope of South Asian languages, the
DIarization of SPeaker and LAnguage in Con-

versational Environments (DISPLACE) challenge
(Baghel et al., 2023) introduced a unique dataset for
diarization tasks in multilingual, multi-speaker con-
versational contexts, highlighting the challenges
posed by code-mixed and code-switched speech.
In the second DISPLACE challenge (Kalluri et al.,
2024), three tasks were introduced: speaker di-
arization (SD), identifying "who spoke when"; lan-
guage diarization (LD), determining "which lan-
guage was spoken when"; and automatic speech
recognition (ASR), all of which are complicated by
speaker overlaps and frequent language transitions.
The dataset includes recorded conversations in var-
ious room settings, covering topics such as culture,
lifestyle, entertainment, and sports. It spans nine
Indian languages such as Hindi, Kannada, Ben-
gali, Malayalam, Telugu, Tamil, and Indian En-
glish totaling 38 hours of conversational speech
across 197 speakers. CONVURL (Zaheer et al.,
2025) is a 24-hour dataset that consists of natu-
ral spontaneous conversations in Urdu, featuring
212 unique speakers. The dataset includes 38 clips
sourced from YouTube videos, primarily encom-
passing scholarly debates and political talk shows.
In 2022, another YouTube-based Tamil diarization
dataset (Jarashanth et al., 2022) was published fo-
cusing more on overlapped speech. The develop-
ment of speech corpora for Sinhala language has
also gained attention, particularly within the do-
main of automatic speech recognition (ASR). No-
table efforts include the publication of a 65-hour
speech corpus in 2013 (Nadungodage et al., 2013),
and the release of a 4.15-hour Sinhala speech cor-
pus (Dinushika et al., 2019) in 2019. However,
research literature on speaker diarization in Sinhala
remains limited, indicating an insufficient focus
in this domain. This study seeks to address this
gap by introducing a speaker diarization corpus in
the Sinhala and Tamil language to support further
research and development in this area.

3 SiTa

3.1 Dataset Description

SiTa is an audio-only speaker diarization dataset for
Sinhala and Tamil languages, comprising two dis-
tinct subsets: one for Sinhala speech and the other
for Tamil. The Sinhala subset includes 60 videos
totaling approximately 600 minutes (10 hours) of
audio, while the Tamil subset contains 14 videos,
accounting for around 120 minutes (2 hours) of
audio. SiTa features multi-speaker conversations
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set # videos # mins # speakers video durations (min) speech % overlap %
Sinhala 60 602 1 / 3.4 / 10 5.1 / 10.0 / 16.6 37.3 / 88.6 / 99.1 0 / 1.5 / 9.2
Tamil 14 121 2 / 3.0 / 6 5.0 / 8.7 / 14.5 78.6 / 92.7 / 97.4 0 / 3.3 / 14.21

Table 1: Statistics of the SiTa Dataset. Each entry with three values represents the minimum, mean, and maximum.
speech %: is the proportion of audio time that contains speech. overlap %: is the proportion of speech occurring
when two or more speakers are active simultaneously.

captured "in the wild" and encompasses a range of
conversation types, from controlled settings with
few speakers, slow-paced dialogue, minimal noise,
and negligible speaker overlap such as panel discus-
sions and interviews to more dynamic and challeng-
ing contexts. These include political debates, quiz
programs, and lively discussions with numerous
speaker turns, background noise, and frequent over-
laps among a larger group of speakers. A unique as-
pect of SiTa is its inclusion of code-mixing, where
English terms appear interspersed within native
Tamil and Sinhala sentences. This phenomenon,
common in South Asian languages, introduces an
additional layer of complexity absent in most En-
glish speaker diarization datasets. Table 1 provides
a comprehensive statistical overview of the Tamil
and Sinhala subsets within the SiTa dataset.

3.2 Data Collection

In line with approaches used in in-the-wild datasets,
YouTube videos were manually selected from di-
verse domains, including intellectual discussions,
education, morning shows, celebrity interviews, po-
litical debates, and children’s programs. Figure 1
illustrates the distribution percentages of video
types selected for data collection in the Sinhala
and Tamil languages. To ensure a broad selection,
keywords from Sinhala, Tamil, and English were
used in the search, as many content creators use
English titles regardless of the content’s spoken
language. Videos were sourced from independent
YouTube channels as well as the official YouTube
channels of public television networks. Addition-
ally, videos with extensive code-switching, those
containing full sentences in English rather than iso-
lated terms were avoided to allow for a focused
study of language-specific dynamics in Sinhala and
Tamil. Only one excerpt from each of these videos
were carefully chosen for the dataset to maximize
speech activity, speaker turns, and instances of over-
lapping speech. Videos with excessive noise or
crowd laughter were avoided to ensure label clarity,
although segments with applause were included
without explicit labeling. All selected video ex-

cerpts were converted to a mono-channel wave-
form audio (WAV) format with a sampling rate of
16 kHz.

3.3 Annotation
A semi-automated, two-stage pipeline was imple-
mented in the development of both Sinhala and
Tamil subsets of SiTa. In the Initial stage, speaker
labels and timestamps were generated using Pyan-
note 3.12, which were then manually reviewed
and corrected using VGG Image Annotator (VIA)
(Dutta and Zisserman, 2019), a standalone annota-
tion tool for images, audio, and video during the
second stage. VIA facilitates the addition of multi-
ple timelines for different speakers, adjustable play-
back speeds, timeline zooming, selective playback
of labeled segments, and the seamless insertion of
new labels at the current playback position with-
out manual adjustments. Figure 2 illustrates the
user-friendly interface employed for the manual
annotation of audio files.

3.3.1 Guidelines
Annotation guidelines and verification protocols
were adopted from established datasets such as
VoxConverse (Chung et al., 2020), MSDWild (Liu
et al., 2022), and AVA-AVD (Xu et al., 2022). Mi-
nor non-verbal sounds, such as short utterances
("mmm", "ooo"), were ignored unless they were at
least 100 ms in duration and clearly audible. Within
a speech segment from the same speaker, pauses
were not treated as split points unless the pause
duration exceeded 250 ms. Additionally, annota-
tors were instructed to ensure that label timestamp
boundaries did not deviate from the actual speech
boundaries by more than 100 ms to maintain preci-
sion. Music segments were excluded from labeling.
In instances where speaker distinction was chal-
lenging based solely on audio, annotators referred
to the corresponding YouTube video to accurately
identify each speaker. The average time required
for annotating an audio file, adhering to aforemen-
tioned guidelines, was approximately 8–10 times

2https://huggingface.co/pyannote/speaker-diarization-3.1
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Figure 1: Percentage distribution of video types selected for data collection in Sinhala and Tamil languages.

Figure 2: The user interface of the VGG Image Annota-
tor (VIA), showing the audio playback timeline, speaker
timelines, and temporal segments representing speaker
labels.

the duration of the original audio. This duration
could be reduced for audio clips with fewer speak-
ers and minimal overlap.

3.3.2 Quality Assurance

To ensure consistency and maintain high-quality
annotations, periodic double-annotations were con-
ducted during which annotators independently an-
notated the same video, and the diarization error
between the two annotations was calculated using
one as the reference and the other as the hypothesis.
This diarization error rate was maintained below
1%, and annotators were reminded to strictly fol-
low the guidelines if this threshold was exceeded.
Finally, a separate reviewer, distinct from the initial
annotator, verified that the annotations accurately
matched the WAV files and confirmed the overall
quality and consistency of the annotations.

4 Experiments

4.1 Evaluation Metric

In this study, we used the Diarization Error Rate
(DER) as our primary evaluation metric to assess
the performance of speaker diarization. DER is de-
fined as the sum of missed speech (MS), false alarm
(FA), and speaker confusion (SC), normalized by
the total duration of speech. Mathematically, it can
be expressed as:

DER =
MS + FA+ SC

Total Speech
(1)

Consistent with prior research, the DER is cal-
culated with a forgiveness collar of 0.25 seconds
around each detected speech segment to account for
slight temporal discrepancies in speaker labeling.

4.2 Baseline Models

We evaluated three baseline models to test our pro-
posed SiTa dataset. These models include both
modular and end-to-end (EEND) systems. The
modular systems allow for distinct components to
be developed and optimized separately, while the
EEND systems aim to streamline the process by
integrating all stages of speaker diarization into a
single framework. This diversity in model architec-
tures chosen enables a comprehensive assessment
of our dataset’s performance across different ap-
proaches to speaker diarization. All selected mod-
els utilized publicly available pre-trained versions,
and their corresponding results on SiTa dataset are
presented in Table 2.

87



Set Model MS FA SC DER
Sinhala End-to-End Segmentation (Bredin and Laurent, 2021) 2.5 12.9 9.5 6.4

Powerset Cross-Entropy Diarization (Plaquet and Bredin, 2023) 1.6 12.0 9.7 6.0
DiaPer (Landini et al., 2024) 19.4 6.8 42.4 14.3

Tamil End-to-End Segmentation (Bredin and Laurent, 2021) 3.9 10.0 11.2 6.0
Powerset Cross-Entropy Diarization (Plaquet and Bredin, 2023) 1.9 9.3 16.1 6.6
DiaPer (Landini et al., 2024) 14.0 6.3 30.1 11.5

Table 2: Performance Metrics of Speaker Diarization Models on the SiTa Dataset. MS: Missed Speech; FA: False
Alarms; SC: Speaker Confusion; DER: Diarization Error Rate.

4.2.1 End-to-End Speaker Segmentation with
Overlap-Aware Re-segmentation

The End-to-End Speaker Segmentation model3

(Bredin and Laurent, 2021) integrates voice activ-
ity, speaker change, and overlap detection into a
single architecture by modeling it as a multi-label
classification problem incorporating permutation-
invariant training. The second contribution of this
model is the incorporation of overlap-aware re-
segmentation, which refines the initial segmenta-
tion output by based on contextual and temporal in-
formation across segments, ultimately enabling ac-
curate assignment of overlapping speech segments
to their corresponding speakers.

4.2.2 Powerset Cross-Entropy Diarization
The Powerset Cross-Entropy diarization model4

(Plaquet and Bredin, 2023) uses the concept of as-
signing unique label combinations to overlapping
speakers, using a powerset approach replacing the
existing multi label classification approach. By rep-
resenting all possible speaker combinations as dis-
tinct classes, this method allows for the removal of
the detection threshold hyperparameter and thereby
accurately handling overlaps in speech.

4.2.3 DiaPer: Perceiver-based Diarization
DiaPer5 (Landini et al., 2024) introduces a novel ar-
chitecture that replaces the encoder-decoder attrac-
tor component of the EEND-EDA (Horiguchi et al.,
2022) with a Perceiver-based module. This new
design, features a decoder that generates speaker
attractors using a transformer-based Perceiver with
fixed-size latent representations and cross-attention
mechanisms, thereby eliminating the sequential
processing typically associated with the LSTM-
based EEND-EDA. Ultimately, DiaPer enhances

3https://huggingface.co/pyannote/segmentation
4https://github.com/FrenchKrab/IS2023-powerset-

diarization
5https://github.com/BUTSpeechFIT/DiaPer

speaker count estimation, accelerates inference
speed, and improves diarization accuracy through
this innovative module.

4.3 Results and Discussion
For both modular systems (End-to-End Segmen-
tation and Powerset Cross-Entropy Diarization),
the Diarization Error Rate (DER) for the Sinhala
and Tamil sets in our SiTa dataset closely aligns
with the values reported by the original authors
of each model for the VoxConverse dataset. The
lower DER observed for the SiTa dataset, com-
pared to the reported DER for VoxConverse by the
authors, in the EEND model, DiaPer, can be at-
tributed to the training approach. While DiaPer
was primarily trained on simulated speech data for
its evaluation on VoxConverse, the version used
for evaluating our dataset was fine-tuned on the
MSDWild dataset. Additionally, when compared
to the other two modular systems, DiaPer exhibits
a relatively higher DER. This can be attributed to
its lack of Voice Activity Detection (VAD) or other
pre-processing steps, making it more susceptible to
noise. Moreover, EEND models, including DiaPer,
are empirically known to overfit more than other
diarization approaches, further contributing to the
higher DER observed.

Apart from that, the DER is closely influenced by
the percentage of overlapping speech within each
dataset. According to the statistics, the Sinhala set
has an average overlap of 1.5%, while the Tamil set
exhibits a higher mean overlap of 3.3%. This dif-
ference results in higher speaker confusion in the
two modular diarization systems on the Tamil set,
as increased overlap poses challenges in accurately
distinguishing between speakers. This suggests
that overlap handling is crucial for improving DER
in multi-speaker environments. Code-mixing, how-
ever, shows minimal impact on DER across our
dataset. Common issues observed in the generated
diarization results included excessive speaker la-
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bels in non-speech segments, missing labels for
speech segments, omitted speaker timelines result-
ing in fewer identified speakers, and instances of
swapped speaker labels. Specifically, male speak-
ers with similarly rough voices were frequently as-
signed identical labels. Female speakers were often
mislabeled, with extreme cases where all female
speech segments were assigned the same speaker
label. In some cases, even though the labeling was
mostly correct, short utterances such as ’mmmm’s
and ’aaah’s were mislabeled. Non-speech sounds,
such as chimes in quiz programs, were occasionally
mislabeled as speakers. In children’s speech seg-
ments, the initial utterances of female child voices
were often misattributed to the wrong female child
speaker, similar to cases in clips with only adult fe-
male speakers. Male child voices were sometimes
misattributed to female child speakers or even to
adult female speakers if present. Additionally, seg-
ments of speech, which preceded or followed mu-
sic, exhibited slight misalignments in timestamps.
Furthermore, the staccato rhythm of the Sinhala
language was particularly prominent in intellectual
discussions. In such cases, continuous speech from
a single speaker was often fragmented into multiple
segments.

5 Limitations

The size of the Sinhala and Tamil subsets in our
SiTa dataset is limited to around 12 hours, which
restricts its use for reliably training speaker diariza-
tion models from scratch. As a result, these subsets
were only used as test sets to evaluate the models’
performance. Furthermore, the amount of overlap-
ping speech in the larger Sinhala subset is relatively
low, as the annotation of such segments is an error-
prone and time-intensive process. While the dataset
does encompass a range of domains, the number
of audio samples from each domain remains lim-
ited, which could affect the robustness of model
evaluation across different contexts. We did not
intentionally include all regional dialects present
in Sinhala and Tamil in the SiTa dataset and the
selected YouTube videos primarily consisted of the
standard language typically spoken in TV broad-
casts, as well as in formal and urban settings. Even
in more casual videos, this was largely the case. As
a result, the dataset lacks representation of regional
dialectal diversity, and we are unable to evaluate
the potential dynamics or impacts of it on speaker
diarization performance.

6 Conclusion

In this study, we introduced SiTa, a speaker di-
arization dataset comprising subsets in Sinhala and
Tamil languages. Through evaluations using di-
verse baseline models, including modular and end-
to-end (EEND) approaches, we observed the ef-
fects of language-specific characteristics, overlap
levels, and continuous speech patterns on diariza-
tion performance. Our results reveal that over-
lapping speech significantly impacts DER, high-
lighting the need for effective overlap handling
in speaker diarization. For the Sinhala subset, we
found that increasing gap tolerance before segment-
ing speech can mitigate over-segmentation, thereby
enhancing diarization accuracy.

Though the dataset size limits its use to test-
ing rather than training, SiTa serves as a valu-
able benchmark for evaluating diarization in low-
resource languages and presents a first step to-
wards more comprehensive multilingual diariza-
tion datasets. Future work could focus on expand-
ing SiTa and improving overlap annotation to en-
able training applications and further insights into
language-specific diarization challenges.

References
Shikha Baghel, Shreyas Ramoji, Sidharth, Ranjana H,

Prachi Singh, Somil Jain, Pratik Roy Chowdhuri,
Kaustubh Kulkarni, Swapnil Padhi, Deepu Vijayase-
nan, and Sriram Ganapathy. 2023. The displace chal-
lenge 2023 - diarization of speaker and language
in conversational environments. In INTERSPEECH
2023, pages 3562–3566.

Jon Barker, Shinji Watanabe, Emmanuel Vincent, and
Jan Trmal. 2018. The fifth ’chime’ speech separa-
tion and recognition challenge: Dataset, task and
baselines. In Interspeech 2018, pages 1561–1565.

Hervé Bredin and Antoine Laurent. 2021. End-to-end
speaker segmentation for overlap-aware resegmenta-
tion. arXiv preprint arXiv:2104.04045.

Andrew Brown, Jaesung Huh, Joon Son Chung, Ar-
sha Nagrani, Daniel Garcia-Romero, and Andrew
Zisserman. 2022. Voxsrc 2021: The third vox-
celeb speaker recognition challenge. arXiv preprint
arXiv:2201.04583.

Alexandra Canavan and George Zipperlen. 1996. Call-
home japanese speech. Web Download.

Rahul Chitturi, Sachin Joshi, Rohit Kumar, Satinderpal
Singh, R. N. V. Sitaram, and S. P. Kishore. 2005.
Development of indian language speech databases
for large vocabulary speech recognition systems.

89



Joon Son Chung, Jaesung Huh, Arsha Nagrani, Tri-
antafyllos Afouras, and Andrew Zisserman. 2020.
Spot the conversation: speaker diarisation in the wild.
arXiv preprint arXiv:2007.01216.

Joon Son Chung, Arsha Nagrani, Ernesto Coto, Weidi
Xie, Mitchell McLaren, Douglas A Reynolds, and
Andrew Zisserman. 2019. Voxsrc 2019: The first
voxceleb speaker recognition challenge. arXiv
preprint arXiv:1912.02522.

Department of Census and Statistics, Sri Lanka.
2012. Census of population and housing
of sri lanka, 2012 – table a3: Population
by district, ethnic group and sex. http:
//203.94.94.83:8041/Pages/Activities/
Reports/SriLanka.pdf. Additional data available
at https://www.statistics.gov.lk/PopHouSat/
CPH2012Visualization/htdocs/index.php?
action=Map&indId=10&usecase=indicator and
https://www.statistics.gov.lk/pophousat/
cph2012visualization/htdocs/index.php?
usecase=indicator&action=Data&indId=10.

Thilini Dinushika, Lakshika Kavmini, Pamoda
Abeyawardhana, Uthayasanker Thayasivam, and
Sanath Jayasena. 2019. Speech command classifica-
tion system for sinhala language based on automatic
speech recognition. 2019 International Conference
on Asian Language Processing (IALP), pages 205–
210.

Abhishek Dutta and Andrew Zisserman. 2019. The VIA
annotation software for images, audio and video. In
Proceedings of the 27th ACM International Confer-
ence on Multimedia, MM ’19, New York, NY, USA.
ACM.

Yihui Fu, Luyao Cheng, Shubo Lv, Yukai Jv, Yuxiang
Kong, Zhuo Chen, Yanxin Hu, Lei Xie, Jian Wu, Hui
Bu, et al. 2021. Aishell-4: An open source dataset
for speech enhancement, separation, recognition and
speaker diarization in conference scenario. arXiv
preprint arXiv:2104.03603.

Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Kenji
Nagamatsu, and Shinji Watanabe. 2019a. End-to-
end neural speaker diarization with permutation-free
objectives. arXiv preprint arXiv:1909.05952.

Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Yawen
Xue, Kenji Nagamatsu, and Shinji Watanabe. 2019b.
End-to-end neural speaker diarization with self-
attention. In 2019 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages
296–303.

Israel D Gebru, Sileye Ba, Xiaofei Li, and Radu Ho-
raud. 2017. Audio-visual speaker diarization based
on spatiotemporal bayesian fusion. IEEE transac-
tions on pattern analysis and machine intelligence,
40(5):1086–1099.

Aude Giraudel, Matthieu Carré, Valérie Mapelli, Juli-
ette Kahn, Olivier Galibert, and Ludovic Quintard.
2012. The repere corpus : a multimodal corpus for

person recognition. In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European
Language Resources Association (ELRA).

H. Gish, M.-H. Siu, and R. Rohlicek. 1991. Segrega-
tion of speakers for speech recognition and speaker
identification. In [Proceedings] ICASSP 91: 1991
International Conference on Acoustics, Speech, and
Signal Processing, pages 873–876 vol.2.

Shota Horiguchi, Yusuke Fujita, Shinji Watanabe,
Yawen Xue, and Paola Garcia. 2022. Encoder-
decoder based attractors for end-to-end neural di-
arization. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 30:1493–1507.

Jaesung Huh, Andrew Brown, Jee-weon Jung, Joon Son
Chung, Arsha Nagrani, Daniel Garcia-Romero, and
Andrew Zisserman. 2023. Voxsrc 2022: The fourth
voxceleb speaker recognition challenge. arXiv
preprint arXiv:2302.10248.

Udeeta Jain, Matthew Siegler, Sam-Joo Doh, Evandro
Gouvea, Juan Huerta, Pedro Moreno, Bhiksha Raj,
and Richard Stern. 1996. Recognition of continuous
broadcast news with multiple unknown speakers and
environments.

S.T. Jarashanth, K. Ahilan, R. Valluvan, T. Thiruvaran,
and A. Kaneswaran. 2022. Overlapped speech detec-
tion for improved speaker diarization on tamil dataset.
In 2022 6th SLAAI International Conference on Arti-
ficial Intelligence (SLAAI-ICAI), pages 1–5.

Shareef Babu Kalluri, Prachi Singh, Pratik Roy Chowd-
huri, Apoorva Kulkarni, Shikha Baghel, Pradyoth
Hegde, Swapnil Sontakke, Deepak K T, S.R. Ma-
hadeva Prasanna, Deepu Vijayasenan, and Sriram
Ganapathy. 2024. The second displace challenge: Di-
arization of speaker and language in conversational
environments. In Interspeech 2024, pages 1630–
1634.

Federico Landini, Themos Stafylakis, Lukáš Burget,
et al. 2024. Diaper: End-to-end neural diarization
with perceiver-based attractors. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing.

Qingjian Lin, Yu Hou, and Ming Li. 2020. Self-attentive
similarity measurement strategies in speaker diariza-
tion. In Interspeech 2020, pages 284–288.

Tao Liu, Shuai Fan, Xu Xiang, Hongbo Song, Shaox-
iong Lin, Jiaqi Sun, Tianyuan Han, Siyuan Chen,
Binwei Yao, Sen Liu, Yifei Wu, Yanmin Qian, and
Kai Yu. 2022. Msdwild: Multi-modal speaker di-
arization dataset in the wild. In Interspeech 2022,
pages 1476–1480.

Eduardo Lleida, Alfonso Ortega, Antonio Miguel,
Virginia Bazán, Carmen Pérez, Manuel Gómez,
and Alberto de Prada. 2020. Albayzin evaluation:
Iberspeech-rtve 2020 multimodal diarization and
scene description challenge.

90



Eduardo Lleida, Alfonso Ortega, Antonio Miguel, Vir-
ginia Bazán-Gil, Carmen Pérez, Manuel Gómez, and
Alberto de Prada. 2019. Albayzin 2018 evaluation:
The iberspeech-rtve challenge on speech technolo-
gies for spanish broadcast media. Applied Sciences,
9(24).

Kikuo Maekawa. 2003. Corpus of spontaneous japanese
: Its design and evaluation.

Iain Mccowan, J Carletta, Wessel Kraaij, Simone Ashby,
S Bourban, M Flynn, M Guillemot, Thomas Hain,
J Kadlec, V Karaiskos, M Kronenthal, Guillaume
Lathoud, Mike Lincoln, Agnes Lisowska Masson,
Wilfried Post, Dennis Reidsma, and P Wellner. 2005.
The ami meeting corpus. Int’l. Conf. on Methods and
Techniques in Behavioral Research.

Thilini Nadungodage, Viraj Welgama, and Ruvan
Weerasinghe. 2013. Developing a speech corpus
for sinhala speech recognition.

Arsha Nagrani, Joon Son Chung, Jaesung Huh, Andrew
Brown, Ernesto Coto, Weidi Xie, Mitchell McLaren,
Douglas A Reynolds, and Andrew Zisserman. 2020.
Voxsrc 2020: The second voxceleb speaker recogni-
tion challenge. arXiv preprint arXiv:2012.06867.

Andrew Ng, Michael Jordan, and Yair Weiss. 2001. On
spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems,
volume 14. MIT Press.

Alfonso Ortega, Antonio Miguel, Eduardo Lleida, Vir-
ginia Bazán, Carmen Pérez, and Alberto de Prada.
2022. Iberspeech-rtve 2022 speaker diarization and
identity assignment. In Albayzin Evaluation. Ac-
cessed: 2024-11-05.

M. Padmanabhan, L.R. Bahl, D. Nahamoo, and M.A.
Picheny. 1996. Speaker clustering and transfor-
mation for speaker adaptation in large-vocabulary
speech recognition systems. In 1996 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing Conference Proceedings, volume 2, pages
701–704 vol. 2.

Tae Jin Park, Naoyuki Kanda, Dimitrios Dimitri-
adis, Kyu J Han, Shinji Watanabe, and Shrikanth
Narayanan. 2022. A review of speaker diarization:
Recent advances with deep learning. Computer
Speech & Language, 72:101317.

Alexis Plaquet and Hervé Bredin. 2023. Powerset multi-
class cross entropy loss for neural speaker diarization.
arXiv preprint arXiv:2310.13025.

Mark Przybocki and Alvin Martin. 2001. 2000 nist
speaker recognition evaluation. Web Download.
LDC2001S97.

Joseph Roth, Sourish Chaudhuri, Ondrej Klejch, Rad-
hika Marvin, Andrew Gallagher, Liat Kaver, Sharadh
Ramaswamy, Arkadiusz Stopczynski, Cordelia
Schmid, Zhonghua Xi, et al. 2020. Ava active
speaker: An audio-visual dataset for active speaker

detection. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 4492–4496. IEEE.

Neville Ryant, Kenneth Church, Christopher Cieri, Ale-
jandrina Cristia, Jun Du, Sriram Ganapathy, and
Mark Liberman. 2019. The second dihard diariza-
tion challenge: Dataset, task, and baselines. arXiv
preprint arXiv:1906.07839.

Neville Ryant, Mark Liberman, James Fiumara, and
Christopher Cieri. 2018. First dihard challenge eval-
uation - nine sources. Web Download. LDC Catalog
No. LDC2019S12, DOI: 10.35111/1bsf-4c55.

Neville Ryant, Prachi Singh, Venkat Krishnamohan,
Rajat Varma, Kenneth Church, Christopher Cieri, Jun
Du, Sriram Ganapathy, and Mark Liberman. 2020.
The third dihard diarization challenge. arXiv preprint
arXiv:2012.01477.

Tanja Schultz. 2002. Globalphone: a multilingual
speech and text database developed at karlsruhe uni-
versity. In 7th International Conference on Spoken
Language Processing (ICSLP 2002), pages 345–348.

Frederick Tung, Alexander Wong, and David A. Clausi.
2010. Enabling scalable spectral clustering for im-
age segmentation. Pattern Recognition, 43(12):4069–
4076.

Jixuan Wang, Xiong Xiao, Jian Wu, Ranjani Rama-
murthy, Frank Rudzicz, and Michael Brudno. 2020.
Speaker diarization with session-level speaker em-
bedding refinement using graph neural networks.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7109–7113. IEEE.

Shinji Watanabe, Michael Mandel, Jon Barker, Em-
manuel Vincent, Ashish Arora, Xuankai Chang, San-
jeev Khudanpur, Vimal Manohar, Daniel Povey, Desh
Raj, David Snyder, Aswin Shanmugam Subramanian,
Jan Trmal, Bar Ben Yair, Christoph Boeddeker, Zhao-
heng Ni, Yusuke Fujita, Shota Horiguchi, Naoyuki
Kanda, Takuya Yoshioka, and Neville Ryant. 2020.
Chime-6 challenge: Tackling multispeaker speech
recognition for unsegmented recordings. In 6th Inter-
national Workshop on Speech Processing in Everyday
Environments (CHiME 2020), pages 1–7.

Barbara Wheatley. 1996. Callhome mandarin chinese
transcripts. Web Download.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analy-
sis. In International conference on machine learning,
pages 478–487. PMLR.

Eric Zhongcong Xu, Zeyang Song, Satoshi Tsutsui,
Chao Feng, Mang Ye, and Mike Zheng Shou. 2022.
Ava-avd: Audio-visual speaker diarization in the wild.
In Proceedings of the 30th ACM International Con-
ference on Multimedia, pages 3838–3847.

91



Zehui Yang, Yifan Chen, Lei Luo, Runyan Yang, Lingx-
uan Ye, Gaofeng Cheng, Ji Xu, Yaohui Jin, Qingqing
Zhang, Pengyuan Zhang, Lei Xie, and Yonghong Yan.
2022. Open source magicdata-ramc: A rich anno-
tated mandarin conversational(ramc) speech dataset.
pages 1736–1740.

Fan Yu, Shiliang Zhang, Yihui Fu, Lei Xie, Siqi Zheng,
Zhihao Du, Weilong Huang, Pengcheng Guo, Zhijie
Yan, Bin Ma, Xin Xu, and Hui Bu. 2022. M2MeT:
The ICASSP 2022 multi-channel multi-party meeting
transcription challenge. In Proc. ICASSP. IEEE.

Nimra Zaheer, Agha Ali Raza, and Mudassir Shabbir.
2025. Conversations in the wild: Data collection, au-
tomatic generation and evaluation. Computer Speech
Language, 89:101699.

92



Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025), pages 93–103
January 19, 2025. ©2025 International Committee on Computational Linguistics

Sandhi Splitting in Tamil and Telugu: A Sequence-to-Sequence
Approach Leveraging Transformer Models

Priyanka Dasari1, Nagaraju Vuppala1, Mupparapu Sohan Gupta1,
Pruthwik Mishra2, Parameswari Krishnamurthy1

1IIIT Hyderabad; 2SVNIT Surat
{dasari.priyanka, nagaraju.vuppala, sohan.mupparapu}@research.iiit.ac.in

pruthwikmishra@aid.svnit.ac.in, param.krishna@iiit.ac.in,

Abstract
Dravidian languages like Tamil and Telugu
are agglutinative languages, they form
wordforms by combining two or more
elements into a single string with morpho-
phonemic changes at the point of concate-
nation, known as sandhi. This linguistic
feature adds complexity to automatic
language processing, making the pre-
processing of sandhi words essential for
NLP applications. We developed extensive
sandhi-annotated corpora of 15K for Tel-
ugu and Tamil, focusing on the systematic
application of sandhi rules which explains
the word formation patterns by showing
how lexical and functional categories com-
bine to create composite non-compound
words. We implemented compact sequence-
to-sequence transformer networks for the
automatic sandhi processing. To evalu-
ate our models, we manually annotated
Telugu and Tamil IN22-Conv Benchmark
datasets (Gala et al., 2023) with sandhi
annotations. Our experiments aim to
enhance the language processing tasks
like machine translation in morphologically
rich languages.

1 Introduction
In a text, the identification of individual
words is necessary for the computational
processing of the text. Due to the high
agglutinative nature of Dravidian languages,
word identification often becomes complex
because of Sandhi. Sandhi, in linguistics, is
a process in which two or more morphemes
or word forms unite to form a complex word.
It involves the alteration of sounds at word
boundaries when two words are combined to
form a new word (Uma Maheshwar Rao, 2012).
Sandhi, as derived from Sanskrit, means ‘join
together’. It refers to the natural phonetic
transformations that occur when two or more
words are juxtaposed. These transformations

are often guided by a particular language’s
phonological rules. These phenomena can
include merging phonemes (units of sound),
omitting phonemes, and adding phonemes to
facilitate smooth word transitions.

The task of sandhi splitting becomes
complex in agglutinative languages as tokens
obtained through tokenization can contain
more than one morphological word within
them. Shallow parsers (Abney, 2022), which
are useful in both text (Collins, 1996), and
speech processing domains (Wahlster, 2013) is
a task of automatic identification of correlated
groups of words or chunks. A shallow
parser is not a single module but is a set
of modules with a tokenizer, parts-of-speech
tagger, and chunker or phrase identifier which
are put in a pipeline that can be affected
by the sandhi words. Tokenization serves
as the initial step before engaging in sandhi
splitting. Hence, sandhi splitting must be
done as part of the tokenization step, as
composite words cause the fusion of tokens.
This sequential approach ensures that the
text is appropriately structured and analyzed,
thus facilitating a deeper understanding of the
intricate morphological processes.

We conduct our experiments on sandhi split-
ting in Tamil and Telugu using the OpenNMT
framework, (Open-Source Neural Machine
Translation) (Klein et al., 2017) which is a
popular open-source toolkit for building and
training neural machine translation models.
It is a deep learning framework designed
specifically for seq2seq modeling tasks, such as
machine translation (Bahdanau et al., 2014),
text summarization (Nenkova et al., 2011),
and speech recognition (Yu and Deng, 2016).
We utilized this framework for simulating the
task of sandhi splitting as it can be modeled
as a Seq2Seq task.
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This study evaluates the effectiveness of
transformer architectures in handling sandhi
splitting for Tamil and Telugu texts. We
trained our models using the datasets of
15K sandhi annotated sentences per language,
which encompasses both splitting and non-
splitting sentences to enable the model
to discern when to split words. We
evaluated our approach using two distinct
test sets: a held-out portion of our 15K
annotated corpus and the sandhi-annotated
IN22-Conv benchmark dataset (Gala et al.,
2023). Through this study, we seek to enhance
sandhi splitting accuracy in text processing,
ultimately contributing to the advancement
of NLP applications in morphologically rich
languages.

2 Sandhi Splitting in Dravidian
languages

Dravidian languages like Tamil and Telugu are
agglutinative languages as they form words
by attaching various morphemes (meaningful
word units) as suffixes to a root or base word
(Krishnamurti and Gwynn, 1985). These mor-
phemes can convey grammatical information
such as gender, number, person, case markers,
tense, aspect, mood, and more. In these
languages, nouns can be highly inflected to
indicate case and number. And verbs are also
richly inflected, with extensive conjugation
patterns for tense, aspect, mood, gender,
person, and number.

Sandhi can be understood in two ways.
Internal sandhi refers to different types
of sound changes that occur within words
(internally) in the word-formation processes,
such as inflection and derivation, whereas
external sandhi refers to sound changes that
happen between two or more fully-formed
word boundaries (externally). In our study
compound words are considered as single
tokens and can not be split because as they
derive new lexical sense on combining. The
composite words which are non-compound
words in external sandhi do not derive new
meanings on combining, these word forms are
considered as multiple different tokens and we
consider these to be the split points in our
model.

1. Telugu

īMṭikoccāḍu = īMṭiki + occāḍu (He came
home)
home + come-PST.SG.3.M

2. Tamil
camayttukkoṭuttān̲ = camayttuk + koṭut-
tān̲ (Cooked and gave)
cook + give-PST.SG.3.M

Further detailed explanations of the various
types of sandhi and the rules for sandhi
splitting are provided in Appendix A, which
formed the basis for constructing our datasets.

Sandhi Splitting is the process of splitting
a given composite word into its constituent
word forms1. This explicit study on splitting
composite words is essential as it necessitates
a deep understanding of morphological dis-
tinctions, syntactic variations, and semantic
clarity. Composite words are usually formed
with multiple word forms with different roots
including suffixes and their grammatical fea-
tures. Along with morphological distinctions,
they exhibit various syntactic relationships
that affect overall sentence structure and
meaning. They may also carry multiple lexical
senses and splitting them into constituent
parts clarifies their individual contributions
to the overall context. These linguistic
aspects are interconnected and essential for
understanding the complexity of language.

3 Challanges in downstream tasks:
Machine Translation (MT) systems often
struggle with accurate translations, particu-
larly when handling morphologically complex
languages. One of such challenge arises from
sandhi formations - where two distinct words
combine with phonological changes at their
boundaries. This phenomenon is especially
prevalent in Dravidian languages like Telugu
and Tamil. Table[1] compares translation
outputs for the same sentences under two
conditions: before and after applying sandhi
splitting.

As shown in Table[1], in Telugu-English
translation, the Telugu sandhi word ‘māy-
iṃṭikocci - to come our home’ is transliter-
ated in translation output as ‘Maintikochi’.

1the first wordform is termed as W1, the second
wordform as W2, and subsequent words are termed
W3... Wn.
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Language Sandhi Splitting Source Google-Translate

Before

మాయింటికొచిచ్ నాలుగు
జానపద గేయాలు పాడేసి వెళళ్వా?
‘māyiṃṭikocci nālugu jānapada
gēyālu pāḍ̣ēsi veḷḷavā? ’

Shall we sing four folk
songs in Maintikochi?

Telugu-English After

మా ఇంటికి వచిచ్ నాలుగు
జానపద గేయాలు పాడేసి వెళళ్వా?
‘mā iṃṭiki vacci
nālugu jānapada
gēyālu pāḍ̣ēsi veḷḷavā? ’

Will you come to
my house and sing four
folk songs and leave?

Before

ల̟దేవి, చోళరాజుకు
కూతురౖెయియ్ంది.
‘lakṢmīdēvi, cōḷ̣arājuku
kŪturayyiṃdi ’

லட்சுமி ேதவி ேசாழராஜாவின்
மகள்ஆவார்.
‘Laxmi devi will become
Chola Raja’s daughter.’

Telugu-Tamil After

ల̟దేవి, చోళరాజుకు
కూతురు అయియ్ంది
‘lakṢmīdēvi, cōḷ̣arājuku
kŪturu ayyiṃdi’ .

லட்சுமி ேதவி ேசாழராஜாவின்
மகள்ஆனார்.
‘Laxmi devi became the
daughter of Chola Raja.’

Table 1: Differences in translation outputs in before and after sandhi splitting

However, after sandhi splitting, ‘māyiṃṭikocci’
is splitted into ‘mā iṃṭiki vacci’ gives the
accurate translation. Here, the sandhi word
combines; pronoun (mā- our) + noun (iṃṭiki-
home) + verb (vacci - to come), providing the
correct syntactic structure for a meaningful
translation.

In Telugu-Tamil translation example, the
Telugu word ‘kŪturayyyiṃdi - became daugh-
ter’ is translated incorrectly in the future tense
as ‘makaḷ āvār - will become daughter’. After
sandhi splitting ‘kŪturu ayyiṃdi’ produces
the correct translation. In this case, the
sandhi word combines the noun (kŪturu -
daughter) with verb (ayyiṃdi - became),
accurately conveying the intended past tense
in translation.

4 Related Work

A significant amount of research has focused
on sandhi splitting in Indian languages.
However, most of this research has concen-
trated on internal sandhi phenomena. Our
study, in contrast, addresses the splitting of
external sandhi words where two or more
fully formed composite words are combined.
Among the traditional approaches, a rule-
based sandhi splitter was developed as part
of a morphological analyzer and spell checker
tool for Telugu (Uma Maheshwar Rao, 2012).
However, this method fails to split new words
not covered by the predefined rules.

Kuncham et al. (2015) employs a statistical
method to perform sandhi splitting in Telugu
and Malayalam languages. The testing results
indicated an accuracy of 89.07% for Telugu
and 90.50% for Malayalam, demonstrating
the effectiveness of this approach. This
methodology comprised two main components:
segmentation and word generation, both of
which utilized Conditional Random Fields
(CRFs) as a key tool. Devadath et al.
(2014) devise a hybrid method that leverages
the phonological changes occurring when
words are joined together in the context of
external sandhi. This approach combines
the statistical identification of split points
with the application of predefined character-
level linguistic rules. As a result, their
system currently achieves an accuracy rate
of 91.1%. The study by Devadath and
Sharma (2016) addresses issues related to
the Malayalam Dependency Treebank in the
context of external sandhi explaining the
challenges posed by external sandhi in the
syntactic annotation of Malayalam sentences.
Their experiment uses a statistical parser
to empirically validate the improvements
made to the treebank, stating that even
the separation of a single type of external
sandhi significantly enhances overall parsing
accuracy.

Vempaty and Nagalla (2011) introduce a
method that employs finite state automata
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to identify possible words within compound
words in Telugu. It is built using the syllables
of base words, enabling the recognition of
candidate words within compound structures.
Nair and Peter (2011) design an algorithm
aimed at breaking down Malayalam compound
words into a series of morphemes by employing
multiple levels of finite state automata. Shree
et al. (2016) have adopted an approach to
the internal sandhi splitting technique in the
Kannada language. Gupta and Goyal (2009)
conduct Sandhi-Vicheda on Hindi words and
assess their software using a dataset of over
200 words through their rule-based algorithm.
The studies highlighted employ a variety
of approaches, including rule-based methods,
statistical techniques, finite state automata,
and hybrid approaches combining rules and
statistics for tackling the sandhi splitting
problem in different Indian languages like
Telugu, Malayalam, Kannada, and Hindi.

More recent studies indicate that neural
network approaches perform well for sandhi
splitting implemented for Sanskrit. The work
by Hellwig (2015) is the first in formulating
the problem as a neural sequence labeling task,
and this was further improved upon by Hellwig
and Nehrdich (2018). Hellwig and Nehrdich
(2018) introduce end-to-end neural network
models that tokenize Sanskrit words by jointly
separating compound words and resolving
phonetic merge (sandhi) cases. These models
do not require hand-crafted features or
external linguistic resources, operating solely
on parallel data of raw and segmented text.

Additionally, Reddy et al. (2018); Aralikatte
et al. (2018) propose Seq2Seq models for this
task. Aralikatte et al. (2018) treat word
segmentation as a multi-task problem, using
a shared encoder with two decoders, where
one decoder predicts the split locations and
the other generates the characters in the
split words. Unlike earlier rule-based or
statistical methods, these studies demonstrate
the application of neural architectures like
sequence labeling and Seq2Seq models to
tackle the sandhi splitting problem in an end-
to-end fashion directly from data.

5 Need for Sandhi Splitting
This explicit focus on the sandhi split of
composite words is essential for several key
reasons:

1. Morphological Distinctions: Compos-
ite words are often formed by joining
distinct roots, each with its own gram-
matical and morphological properties.
By splitting these words, the language
retains clarity in morphological structure,
enabling a precise understanding of the
constituent roots and their individual
roles within the word.

2. Syntactic Variations: In composite
words, the constituent word forms can
display various syntactic relationships.
These relationships help in understanding
the overall sentence structure and mean-
ing. Splitting these word forms helps
disambiguate syntactic relationships and
ensure the sentence retains its intended
syntax.

3. Semantic Clarity: Composite words
may convey multiple, distinct lexical
senses when examined as separate com-
ponents. Splitting them into their
constituent parts enables a clearer un-
derstanding of the individual lexical
meanings they contribute to the overall
context. Combining multiple roots
and grammatical features often leads to
nuanced and context-specific meanings.
Sandhi rules help in preserving and re-
vealing these semantic nuances, ensuring
that the intended message is conveyed
accurately.

6 Implementation
6.1 Data Collection and Annotations
Experiments are conducted on Tamil and
Telugu sandhi data using Transformer models
at both sentence and character levels to
capture morphological patterns effectively.
For each language, we developed a dataset
comprising 15,000 manually annotated sandhi
sentences. Tamil data was sourced from di-
verse online repositories, including Wikipedia
and the Tamil Nadu Tourism website2, while

2https://www.tamilnadutourism.tn.gov.in/tamil
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Telugu data was gathered from Wikimedia
and publicly available datasets on GitHub3.
The models were trained and evaluated on
both levels to compare their performance and
efficacy in handling sandhi variations.

We created two test sets to evaluate
model performance on sandhi detection and
splitting. The first set was randomly
sampled from the 15,000 annotated sentences,
while the second set is from the IN22-Conv
benchmark dataset (Gala et al., 2023), chosen
over FLORES-200(NLLB Team, 2022) for its
higher frequency of sandhi splits. In each
test set, we formatted the data so that
each line in the source side consists of a
single sentence, while the target side contains
either the single equivalent word or its sandhi
form(s), with components separated by a ‘+’
symbol when applicable. The annotations are
carried in accordance with sandhi guidelines as
mentioned in Appendix A. To ensure accuracy,
the annotations were thoroughly reviewed and
verified by expert linguists proficient in the
respective languages. Our curated datasets
include both sandhi and non-sandhi sentences,
allowing the model to distinguish contexts
where splitting is required from those where
it is not, promoting a balanced understanding
of natural language structure.

Splits of Dataset No. of sentneces
Train 10000
Valid 3000
Test 2000

IN22-Conv 1503

Table 2: Statistics of Dataset

Splits Tamil Telugu
Train and Valid 3200 4002

Testset 853 809
IN22-Conv 145 374

Table 3: Statistics of sandhi split

The dataset is divided into training, valida-
tion, and test sets. The statistics for each split
are presented in Table[ 2], while the number of
sandhi occurrences within each split is shown
in Table[ 3]. Careful measures have been taken

3https://github.com/AnushaMotamarri/
Telugu-Books-Dataset?tab=readme-ov-file

to ensure that the test set remains entirely
separate from the training data, eliminating
any risk of data leakage and ensuring unbiased
predictions.

6.2 Experiments
We employ the Transformer architecture
(Vaswani et al., 2017), a state-of-the-art
deep learning model with proven success
across numerous natural language processing
tasks. Transformer’s capacity to capture
contextual information makes it especially
suitable for sandhi splitting. Our model
follows the typical encoder-decoder structure:
the encoder processes input text, and the
decoder predicts sandhi splits upon detecting
sandhi words. We implement the Transformer
model using the PyTorch-based OpenNMT
toolkit (Klein et al., 2018).

The first set of experiments is conducted on
sentence-level data, where the source sentences
are non-sandhi split sentences, and the target
sentences are sandhi-annotated, with sandhi
words marked using the ‘+’ symbol. We refer
to this as the Sentence Level Model (SLM).

In a variation of this experiment, we used
subword-nmt (Sennrich et al., 2016) to apply
byte-pair encoding (BPE) on the training data,
creating the Sentence Level Subword Model
(SLSM). This approach allowed us to evaluate
the impact of subword tokenization on the
model’s performance.

In the character-level experiment, we have
arranged the sentence-level data such that
every single character is separated by a space.
This structure enables the model to process
the text at a granular, character-by-character
level, which is particularly useful for capturing
detailed morphological patterns in sandhi
splits. We refer to this setup as the Character
Level Model (CLM).

In addition to our custom models, we fine-
tuned the mt5-small model (Xue, 2020) for
the task of sandhi splitting in Tamil and
Telugu . mT5 (multilingual T5) is a variant
of the T5 (Text-To-Text Transfer Transformer)
architecture specifically designed to handle 101
languages, including low-resource ones. Fine-
tuning on our annotated dataset refines the
model’s focus on the sandhi splitting task,
improving its ability to identify and split
sandhi words accurately. Results are discussed
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Gloss Mom, let’s go for a movie tomorrow.
Input Type Sentence Level Sentence Level

Subword Model Character Model

Telugu అమామ్, రేపు సినిమాకి వెళాద్ ం. అ@@మామ్@@ , రే@@ పు సి@@ ని@@
మా@@ కి వె@@ ళ్@@ దా@@ ◌ం.

అ మ ◌్ మ ◌ా , # ర ◌ే ప ◌ు
# స ◌ి న ◌ి మ ◌ా క ◌ి #
వ ◌ె ళ ◌్ ద ◌ా ◌ం .

Tamil
அம்மா, நாம்
நாைளக்கு சினிமா
பார்க்கப் ேபாகலாமா?

அ@@ ம்@@ மா@@,
ந@@ ◌ாம@@ ◌்ந@@ ◌ாள@@ ை◌
க்க@@ ◌ுச@@ ◌ின@@
◌ிம@@ ◌ாப@@ ◌ார@@
◌்க்க@@ப@@ ◌்ேபா@@க@@
லாம@@ ◌ா@@?

அ ம ◌் ம ◌ா , # ந ◌ா ம ◌்
# ந ◌ா ள ை◌ க ◌் க ◌ு #
ச ◌ி ன ◌ி ம ◌ா #
ப ◌ா ர ◌் க ◌் க ப ◌்
# ப ே◌ா க ல ◌ா ம ◌ா ?

Table 4: Illustration of the sample input format used for the models.

Testset Character Sentence Sentence-subword mT5
Metrics Tamil Telugu Tamil Telugu Tamil Telugu Tamil Telugu

Precision 0.8076 0.7832 0.7715 0.7351 0.8124 0.7639 0.8045 0.7568
Recall 0.7384 0.731 0.7423 0.6924 0.7532 0.745 0.7862 0.731

F1 Score 0.7714 0.7562 0.7566 0.7133 0.7818 0.7544 0.8132 0.7437
Accuracy 0.8205 0.7485 0.7902 0.7319 0.7841 0.7832 0.7917 0.7742

Table 5: Evaluation metrics on Testset

IN22-Conv Character Sentence Sentence-subword mT5
Metrics Tamil Telugu Tamil Telugu Tamil Telugu Tamil Telugu

Precision 0.7532 0.7413 0.7398 0.6774 0.7856 0.7559 0.7583 0.7553
Recall 0.7421 0.6754 0.7123 0.6342 0.7521 0.7221 0.7245 0.7218

F1 Score 0.7476 0.7075 0.7256 0.6551 0.7685 0.7383 0.7408 0.7384
Accuracy 0.7595 0.6912 0.7451 0.6653 0.7793 0.7625 0.7632 0.7496

Table 6: Evaluation metrics on IN22-Conv

in next section 6.3. Table [4] illustrates
the sample input format sentence taken from
the IN22-conv test set used for three models:
sentence-level, sentence-level subword, and
character-level. For the mT5 model, the
standard sentence-level data format is utilized
during training.

6.3 Results

Our experiments treat sandhi splitting as a
Seq2Seq task, evaluating our models using
precision, recall, f1 score, and accuracy. We
define true positives as correctly split sandhis
and true negatives as accurately identified
non-sandhis. False positives count when non-
sandhis are incorrectly predicted as sandhis,
while false negatives represent instances
where fewer sandhi splits are predicted than
expected. Our performance evaluation is
based on these definitions.

Across all models, Tamil character-level
models achieve higher accuracy, with 82%

as shown in Table [5]. This is due to
the character-level nature of sandhi, where
conjugation occurs within the characters of
words. On the IN22-Conv test set, sentence-
level subword models outperform others, as
shown in Table [6] due to their ability to
capture broader contextual information and
handle diverse sandhi constructions effectively.
We also considered a rule-based sandhi splitter
for Telugu (Uma Maheshwar Rao, 2012) as
a baseline model, which resulted in 65%
accuracy on our test set and 59% on the
IN22-Conv set. This method struggles to
split new words not covered by the predefined
rules, limiting its performance compared to
the learned models.

Overall, Tamil models achieve higher ac-
curacy than Telugu models, likely because
Telugu, being more agglutinative, requires
larger datasets to capture its complex lin-
guistic intricacies. Furthermore, the greater
number of sandhi splits in Telugu as in
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Table [3] increases the challenge. The
higher number of true negatives, representing
correctly predicted non-sandhi sentences, also
contributes to the improved performance of
Tamil models.

7 Observations and Limitations

Our findings indicate that the effectiveness
of sandhi splitting techniques varies between
languages, with Telugu resulting in lower
accuracies as it exhibits more sandhi words
naturally as shown in Table [3].

In some cases, the model tended to
overgenerate or hallucinate outputs. However,
it performed well in sandhi splitting for
functional category contexts, as detailed in
Section B. For example, in Telugu, the model
correctly split combinations like అదేమిటంటే
‘adēmiṭaṃṭē’ (what it means) into అది ‘adi’
(it’) + ఏమిటి ‘ēmiṭi’ (what) + అంటే ‘aṃṭē’
(means) and మానేదద్మని ‘mānēddamani’ (to
quit) into మానేదాద్ ము ‘mānēddāmu’ ( quit) + అని
‘ani’ (particle). Similarly, in Tamil, examples
like பிறெகங்ேக ‘piṟakeṅke’ (then where) into
பிறகு ‘piṟaku’ ( then) + எங்ேக ‘eṅke’
(where) and இலங்ைகயாகும் ‘ilaṅkayyākum’
(Srilanka) into இலங்ைக ‘ilaṅkay’ (Srilanka)
+ ஆகும் ‘ākum’ (be-copula).

Functional categories are typically finite,
shorter (mono or bisyllabic), and easier for the
model to generalize, especially when paired
with longer, non-monosyllabic lexical cate-
gories. However, the model faced difficulties
with more complex lexical category combina-
tions, such as in Telugu, పో̫తస్హిసాత్ రనుకుంటావా?
‘prōtsahistāranukuṃṭāvā?’ (Do you think they
will encourage?) should be split as పో̫తస్హిసాత్ రు
‘prōtsahistāru’ (encourage) + అనుకుంటావా?
‘anukuṃṭāvā’ (do you think) — and in Tamil,
ஆட்டமிழந்து ‘āṭṭamiḻantu’ (lost the game)
split as ஆட்டம் ‘āṭṭam’ (game) +இழந்து
‘iḻantu’ (lost). These longer and different
lexical category combinations posed greater
challenges for the model, making accurate
splitting more difficult.

To address this, more high-quality data
with richer sandhi splits is needed and due
to limited computational resources couldn’t
fine-tune the model for more epochs. We
attempted to train a language model, specif-
ically, Llama-3.1-8B (Touvron et al., 2023),

which requires substantial datasets and higher
computational power. However, our efforts
using the comparatively smaller dataset did
not yield higher accuracies, as the outcomes
were very low.

8 Conclusion and Future work
This study examined the challenges of sandhi
splitting in Dravidian languages, focusing on
Tamil and Telugu. Future work will extend
this research to other Dravidian languages,
such as Kannada and Malayalam, and fine-
tune additional large language models (LLMs)
with more data to address issues of overgen-
eration and hallucination. Additionally, by
fine-tuning machine translation (MT) systems
using sandhi-split annotated datasets, we
aim to assess their performance on existing
benchmarks. This approach will enhance
translation evaluation metrics and contribute
to the advancement of MT systems for
more accurate translations across Dravidian
languages.
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A Appendix
A.1 Types of Sandhi
Sandhi is realized in two ways: Internal
Sandhi and External Sandhi. Detailed
explanations of Internal sandhi and External
sandhi are given here:

Internal Sandhi:
Internal Sandhi, also known as antar sandhi,
refers to phonological changes that occur
within a single word, typically due to
morphological processes like inflection and
derivation.

1. Inflections: Inflected words are base
words that undergo grammatical changes
to convey different meanings, such as verb
conjugations, noun plurals, prepositions
or postpositions, and case markers are
considered inflectional markers. Tables[7]
and [8] explain the inflectional suffixes in
Telugu and Tamil.

Wordforms Inflections Gloss
kattitō katti + tō ‘with the knife’

knife + INS
guḷlō guḍi + lo ‘in the temple’

temple + LOC
ūḷlu uru + lu ‘villages’

village + PL
cēstāḍu ces + tā + ḍu ‘he will do’

come+will
-FUT+SG.3.M

Table 7: Inflectional Suffixes of Telugu

Wordforms Inflections Gloss
pēn̲āvaykkoṇṭu pēn̲āvayk+koṇṭu ‘with pen’

pen + INS
valatupura̲ttil valatupur̲am+il ‘towards

right side + LOC right side’
par

¯
kal

˙
pal+̲kaḷ ‘teeth’
tooth + PL

āṭuvāḷ āṭu+vā+ḷ ‘she will
dance +will dance’
-FUT+SG.3.F

Table 8: Inflectional Suffixes of Tamil

2. Derivations: Derivation involves creat-
ing new words or modifying the meaning
of existing words by adding prefixes,
suffixes or infixes. These affixes alter

the root word’s meaning or grammatical
category. Tables [9] and [10] explain the
derivational suffixes in Telugu and Tamil.

Wordforms Derivations Gloss
aṃdamayna aṃdam+ ayna ‘beauteous’

pleasant + ADJV
vēgaṃgā vēgaṃ+ gā ‘fastly’

fast + ADV
cēyavaddu cēyu + vaddu ‘do not do’

do + not-AUX

Table 9: Derivational Suffixes in Telugu

Wordforms Derivations Gloss
ar̲ivān̲a ar̲ivu+ān̲a ‘intelligent’

Intelligent + ADJ
nērāka nēr+āka ‘straightly’

Straight + ADV
pārkkakkūṭātu pārkkak + kūṭātu ‘do not see’

see + not-AUX

Table 10: Derivational Suffixes in Tamil

External Sandhi:
External sandhi, also known as bahya sandhi,
involves phonological changes that occur at
the boundaries of words when they come into
contact, either due to word combination or
sentence formation as a result of stylistic
variation. External sandhi can be divided into
two types.

1. Compound Words: Compound words
are formed by combining two or more
complete words to create a new word with
a distinct meaning.
Examples in Telugu:

(a) rāmālayaM ‘Rama’s temple’ = rāmā
+ ālayaM

(b) paramārdhaM ‘great meaning’ =
parama + ardhaM

Examples in Tamil:

(a) matiyavēḷay ‘‘afternoon’’ = matiya +
veḷay

(b) tuvaramparuppu ‘toor dal’ = tuvaram
+ paruppu

2. Composite words or Non-compound
Words: Composite words, also known
as Non-compound words, contain two or
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more complete words within them but
do not derive new or distinct meanings
from this combination. Since these
composite words do not derive new
meanings on combining, these word forms
are considered as two different tokens and
hence to be split.
Examples in Telugu

(a) īMṭikoccāḍu = īMṭiki + occāḍu
home + come-PST.SG.3.M

(b) vaccānannāḍu = vaccānu + annāḍu
come-PST.SG.3 + say-PST.SG.3.M

(c) atanoccāḍēmō = atanu + occāḍu +
ēmō
‘he + come-PST.SG.3.M + emo-
ADV

Examples in Tamil

(a) camayttukkoṭuttān̲ = camayttu +
koṭuttān̲
cook + give-PST.SG.3.M

(b) koṭumayceyvāḷ = koṭumay + ceyvāḷ
torture + do-FUT.SG.3.F

(c) virayvākappo = virayvāka + pō
fast -ADV +go

B Contexts for Sandhi Splitting
Sandhi rules allow us to unravel the com-
plexities of composite words, leading to
a deeper comprehension of their structure,
syntax, and meaning in language analysis
and interpretation. These rules for sandhi
are made based on the distinction between
the lexical and functional categories. lexical
categories such as nouns (N), verbs (V),
pronouns (PR), adjectives (JJ), and number
words, can take inflectional and derivational
suffixes and often carry the core meaning
in a sentence. Functional categories in
Telugu, including quantifiers (QT), particles
(RP), quotatives (UT), intensifiers (INTF),
negations (NEG), etc., are often considered as
closed-class words, and they are more stable in
their form and do not readily take inflections
or any derivational suffixes. We identify
four major contexts in which word forms are
conjoined that need to be split. The contexts
are:

1. Lexical Categories + Lexical Cate-
gories:

This combination involves sandhi be-
tween two lexical categories of words.
Examples are given in Tables [11] and
[12].

W1+W2 W1 W2
dēvuḍiccina dēvuḍu(N) ‘god’ iccina(V) ‘given’
mēmanukōvaccu mēmu(PR) ‘we’ anukōvaccu(V) ‘thought’
vaccāḍokasāri vaccāḍu(V) okasāri(N) ‘once’

‘come-PST.M.SG’
aydaMtasthula aydu(N) ‘five’ aMtasthula(N) ‘floors’

Table 11: Lexical Categories (W1) + Lexical
Categories (W2) in Telugu

W1+W2 W1 W2
aḷavilirukkum aḷavil(N) ‘in amount’ irukkum(N)

‘be-FUT.3.NEU’
atikamān̲avay atikam(N) ‘‘More’’ ān̲avay(V)

‘become-PST.PL.3.NEU’
aticayamākum aticayam(N) ‘miracle’ ākum (V) ‘is’
atar̲kuḷḷākave atar̲ku(N) ‘for that’ uḷḷākave(ADV) ‘‘within’’
ārampakālaṅkaḷ ārampam(ADJ) ‘‘begin’’ kālaṅkaḷ(N) ‘‘seasons’’

Table 12: Lexical Categories (W1) + Lexical
Categories (W2) in Tamil

2. Functional Categories + Functional
Categories:
This combination involves sandhi be-
tween two functional categories of words.
Examples are given in Tables [13] and
[14].

W1+W2 W1 W2
lēḍakkaḍa lēḍu ‘not’ akkaḍa ‘there’
ippuḍakkaḍa ippuḍu ‘now’ akkaḍa ‘there’
appuḍaMdarikī appuḍu ‘then’ aMdarikī ‘all’
ekkaḍikaMṭe ekkaḍiki ‘where’ aMṭe ‘means’

Table 13: Functional Categories (W1) + Func-
tional Categories (W2) in Telugu

W1+W2 W1 W2
avvār̲illay avvār̲u ‘like that’ illay ‘not’
pir̲akaṅke pir̲aku ‘then’ aṅke ‘there’
vēr̲ellām vēr̲u ‘something else’ ellām ‘all’
eppaṭiyen̲r̲āl eppaṭi ‘how’ en̲r̲āl ‘means’

Table 14: Functional Categories (W1) + Func-
tional Categories (W2) in Tamil

3. Lexical Categories + Functional
Categories:
This combination is the interaction
between lexical categories and functional
categories. Lexical categories provide the
core meaning, while functional categories
modify the sense of the sentence being in
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the W2 position. Examples are given in
Tables [15] and [16].

W2 Type W1+W2 W1 W2
Concessive koMḍalaynā koMḍalu (N) ‘mountains’ ayinā ‘

even though’
Conditional pillalayite pillalu (N) ‘children’ ayite ‘if’
Quantifiers abhivr̲ddhaMtā abhivr̲ddhi (N) ‘development’ aMtā/aMta

‘all (that much)‘
Interogatives āhārālēmī āhārālu(N) ‘food’ ēmī ‘What’
Distals vāḷlakkaḍa vāḷlu (PR) ‘they’ akkaḍa ‘place’
Proximals pillalitlA pillalu (N) ‘children’ iṭlā ‘manner’

Table 15: Lexical Categories (W1) + Functional
Category (W2) in Telugu

W2 Type W1+W2 W1 W2
Concessive taṭaṅkaliruppin̲um taṭan̲kal (N) ‘obstacles’ iruppin̲um

’in spite of’
Conditional avan̲iruntāl avan̲ (PRON) ‘he’ iruntāl ‘if’
Quantifiers kavalayyan̲ayttum kavalay (N) ‘worries’ an̲ayttum

‘all (that much)‘
Interogatives pạṭuvateṅkē? pāṭuvatu(N) ‘to sing’ eṅkē? ‘Where’
Distals avan̲aṅku avan̲ (PR) ‘he’ aṅku ‘there’
Proximals ivan̲iṅku ivan̲ (PR) ‘he’ iṅku ‘here’

Table 16: Lexical Categories (W1) + Functional
Category (W2) in Tamil

4. Functional Categories + Lexical
Categories:
In this combination, functional categories
are supplementary to Lexical categories,
often modifying or specifying the meaning
of the lexical category word in the W2
position. Examples are given in Tables
[17] and [18].

W1 Type W1+W2 W1 W2
Quantifiers aṃḍarunna aṃḍaru unna (V) ‘to be’

‘that many
/so many (people)’

Interogatives ēmiṭammāyi ēmiṭi ‘What’ ammāyi (N) ‘girl’
Distals akkaḍokaru akkaḍa ‘place’ okaru (N) ‘one person’
Proximals ikkaḍunnavāḷlu ikkaḍa ‘place’ unnavāḷlu (N) ‘people’

Table 17: Functional Categories + Lexical
Categories in Telugu

W1 Type W1+W2 W1 W2
Quantifiers palapēr pala ‘many’ pēr ‘members’
Interogatives ekkāriyam? enta ‘Which’ kāriyam? ‘matter’
Distals aṅkuḷḷōr aṅku ‘there’ uḷḷōr ‘people-be’
Proximals iṅkuḷḷōr iṅku ‘here’ uḷḷōr ‘people-be’

Table 18: Functional Categories + Lexical
Categories in Tamil
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Abstract

Coreference resolution, the process of deter-
mining what a referring expression (a pronoun
or a noun phrase) refers to in discourse, is a
critical aspect of natural language understand-
ing. However, the development of compu-
tational models for coreference resolution in
low-resource languages, such as the Dravid-
ian (and more broadly all South Asian) lan-
guages, still remains a significant challenge due
to the scarcity of annotated corpora in these
languages. To address this data scarcity, we
adopt a pipeline that translates the English GAP
dataset into various South Asian languages, cre-
ating a multi-lingual coreference dataset mGAP.
Our research aims to leverage this dataset and
develop two novel models, namely the joint em-
bedding model and the cross attention model
for coreference resolution with Dravidian lan-
guages in mind. We also demonstrate that cross-
attention captures pronoun-candidate relations
better leading to improved coreference reso-
lution. We also harness the similarity across
South Asian languages via transfer learning in
order to use high resource languages to learn
coreference for low resource languages.

1 Introduction

Coreference resolution involves identifying and
linking referring expressions (pronouns or noun
phrases) to their respective referents. Accurate res-
olution is essential for discourse-level tasks such
as dialogue understanding (Tseng et al., 2021), ma-
chine translation (Stojanovski and Fraser, 2019),
summarization (Steinberger et al., 2007), ques-
tion answering (Castagnola, 2002) and sentiment
analysis (De Clercq and Hoste, 2020). Prominent
datasets such as OntoNotes 5.0 (Pradhan et al.,
2013a) (English, Chinese & Arabic), ParCorFull
(Lapshinova-Koltunski et al., 2018) (English &
German) and TransMuCoRes (Mishra et al., 2024)

*These authors contributed equally to this work.

(31 South Asian languages) have focused on multi-
lingual coreference resolution.

Transformer-based methods have been proposed
for multilingual coreference resolution (Martinelli
et al., 2024; Liu et al., 2022). Additionally, Chat-
GPT (Chen, 2024), despite its advances on the
WinoGrand Challenge, could not learn linguistic
features of Chinese such as zero pronouns. South
Asian languages (SALs) exhibit similar unique
traits which we investigate in this paper.

Pronominal coreference resolution, the most
common type of coreference (Lappin and Leass,
1994), identifies the referents of pronouns. In lan-
guages with complex grammatical structures such
as pro-drop, gender-neutral pronouns or elaborate
gender agreement — resolving pronominal corefer-
ence is quite challenging. Indo-European and Sino-
Tibetan are the two largest language families with
4.7 billion speakers together (eth, 2024). Despite
its prevalance, pronominal coreference resolution
remains unexplored in SALs. Addressing this gap
is crucial for the growing need for NLP solutions
tailored to these populations. We aim to bridge this
gap by making the following key contributions:

1. Multilingual GAP (mGAP): mGAP is a mul-
tilingual ambiguous pronoun resolution cor-
pus of 8,908 ambiguous pronoun-name pairs
derived from the GAP Coreference Dataset for
27 SALs. This includes a manually translated
Gold subset for few languages to address auto-
matic translation errors and a pronoun lexicon,
PronounLex.

2. Coreference Resolution Multilingual Mod-
els: We develop multilingual models for coref-
erence resolution and train them on mGAP.
We also demonstrate that cross-attention im-
proves pronoun resolution.

3. Transfer Learning for South Asian lan-
guages: We explore transfer learning by train-
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ing our models on one language and testing
on other SALs. This provides insights into
the cross-lingual adaptability of coreference
resolution systems and the similarity between
various languages.

2 Related Work

Several datasets have been developed for corefer-
ence resolution. OntoNotes (Pradhan et al., 2013b)
spans English, Chinese, and Arabic, providing
coreference annotations along with syntactic, se-
mantic, and discourse-level information. It adopts
a span-detection approach, where models identify
text spans referring to the same entity, offering
a comprehensive framework for coreference res-
olution. LitBank (Bamman et al., 2019) contains
longer documents annotated with ACE entity cate-
gories, including person, location, geopolitical en-
tity, facility, organization, and vehicle. The Wino-
grad Schema Challenge (WSC) (Levesque et al.,
2012) serves as a key benchmark for evaluating
models under ambiguous pronoun resolution sce-
narios that demand contextual reasoning beyond
simple linguistic cues to handle complex pronoun
disambiguation.

The GAP Coreference Dataset (Webster et al.,
2018) contains 8,908 coreference-labeled pairs of
ambiguous pronouns and candidate names, sam-
pled from Wikipedia. It provides a gender-balanced
dataset designed to evaluate gender bias in lan-
guage models. The current state-of-the-art on the
GAP dataset is achieved by the Coref-MTL(Liu
et al., 2023) model, which attains an overall score
of 92.72 and demonstrates a bias score of 99.76.
This model jointly learns to identify mentions and
establish coreferential links.

Cross-attention enables deeper interactions be-
tween pronouns, candidates and surrounding con-
text, addressing limitations of dual-encoder mod-
els that rely on fixed vector representations (Agar-
wal and Bikel, 2020; Li and Zhang, 2024). It also
captures dependencies across discourse in linguis-
tically rich contexts (Liu et al., 2022). Inspired
by recent advances in entity linking using cross-
attention encoders, we propose applying cross-
attention mechanisms to pronoun resolution.

2.1 SAL Coreference Resolution

In the context of SALs, coreference resolution
has traditionally relied on rule-based approaches,
which require extensive linguistic analysis and man-

ual annotation. Initial work on Hindi (Dakwale
et al., 2013) and Telugu (Jonnalagadda and Mamidi,
2015) made use of manually-crafted rules. Fur-
ther strategies involved the integrating of Gender-
Number-Person (GNP) features and using Condi-
tional Random Fields (CRFs). These approaches
were investigated in Hindi (Lalitha Devi et al.,
2014) and Tamil (A and Lalitha Devi, 2012) to
ascertain coreference relationships. Nevertheless,
the application of GNP features in SALs presents
a challenge due to their highly unique and intri-
cate inflectional system, and thus would limit the
scalability of such rule-based approaches.

Meanwhile, recent work on Chinese anaphora
resolution demonstrated the ability of ChatGPT to
accurately resolve anaphora on a Chinese Wino-
grad Schema (Chen, 2024), thereby illustrating the
significant potential of transformer-based models
for non-English languages.

Despite these advancements, there is a signifi-
cant gap in resources and models for South Asian
languages especially those that are low resource.
Previous efforts by Mishra et al. (2024) address
this gap by introducing a dataset encompassing 31
South Asian languages, created using translation
and word-alignment tools from OntoNotes and Lit-
Bank. The study demonstrates that 75% of the
English references align with their predicted trans-
lations, showing promise in the accuracy of the
dataset.

2.2 Transfer Learning
Major pre-trained multilingual models like mBERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020) learn language agnostic representations and
have set strong baselines across benchmarks like
XGLUE (Liang et al., 2020), XCOPA (Edoardo
M. Ponti and Korhonen, 2020) and XNLI (Conneau
et al., 2018).

Radford (2018) highlight that complete fine-
tuning of language models utilizing task-aware
input transformations can enhance performance
across diverse natural language understanding
benchmarks, outperforming traditional discrimi-
natively trained models. Additionally, Hu et al.
(2020) demonstrate the effectiveness of zero-shot
learning for cross-lingual transfer across diverse
NLP tasks and languages, highlighting its potential
in low-resource settings. Models jointly trained on
multiple datasets with sampling for data augmen-
tation outperform those trained on individual ones,
achieving robust and state-of-the-art coreference
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resolution across varied domains (Toshniwal et al.,
2021).

3 Dataset

In this research, we incorporate the human an-
notated corpus on gendered ambiguous pronoun,
GAP (Webster et al., 2018) to create mGAP. The
GAP dataset, sourced from Wikipedia consists of
the following attributes, the text, pronoun, candi-
dateA and candidateB along with their character
offsets in the text. There are 4,454 contexts (a
balanced set between masculine and feminine con-
texts) each of which contains two annotated names,
this results in 8,908 pronoun–candidate pair labels.

3.1 Dataset creation

We follow a slightly modified version of the
pipeline proposed by Mishra et al. (2024) to create
mGAP. The pipeline consists of the following tasks:
machine translation and alignment.

3.1.1 Machine Translation
nllb-200-1.3B (Costa jussà et al., 2022) an MT
model based on Sparsely Gated Mixture of Ex-
perts based approach which has been trained on
more than 200 languages. It’s high coverage makes
it suitable for translating even low resource lan-
guages. For the GAP dataset, we translate the text,
pronoun and the candidates to the target language
using nllb-200-1.3B model.

3.1.2 Text Alignment
The GAP dataset also annotated the character off-
sets of the the pronoun and candidates for each
text. These offsets facilitated evaluation of addi-
tional span-based models. Section 4.2 also presents
a span-based model which harnesses coreference
cross-attention using these spans. To obtain the off-
sets in the target languages, we use awesome-align
(Dou and Neubig, 2021), a multilingual BERT-
based aligner. It leverages mBERT’s rich multilin-
gual representations, fine-tuning it for alignment re-
sulting in broad language support and high-quality
alignments.

However, the model was built to only return "pos-
itive" alignments based on a confidence threshold,
which often excluded essential alignments, particu-
larly for the pronouns and nouns. To resolve this
issue, we modified the architecture to prioritize re-
call over precision, selecting the highest alignment
for each word regardless of a threshold. While this
approach could be more noisy for the general task

of alignment, it effectively improved the identifica-
tion of pronouns and nouns. Furthermore, analysis
of the aligned data revealed that the model makes
fewer errors with pronouns and nouns compared
to other grammatical categories, underscoring the
effectiveness of this approach.

Figure 1: Translate and align pipeline used to generate
mGAP. nllb (Costa jussà et al., 2022) translates the En-
glish sentences to respective SAL and awesome-align
(Dou and Neubig, 2021) generates the candidate and
pronoun span indices.

3.1.3 PronounLex
We used hand curated lexicon of pronouns for a spe-
cific SAL, PronounLex to perform a sanity check
on the alignments to see how well the Aligner per-
forms before and after the change in architecture
of the Aligner. This step helps us gauge whether
the system is correctly identifying and aligning
pronouns in the target languages. This acts as a
safeguard to ensure that the system has at least
identified and aligned a pronoun, it is not foolproof
since although the pronoun could be pointing to
a word that belongs in the lexicon in the target
language, it need not be the right pronoun. This
approach still provides a simple check to monitor
the aligner’s accuracy and identify potential areas
for improvement.

3.2 Gold Dataset

To scale the dataset across many SALs, we rely on
nllb and awesome-align. However, errors can accu-
mulate across translation and alignment stemming
from each model’s errors, affecting the final output.
To address this, we include gold test sets by taking
a subset of 200 random samples from the test split
and manually cleaning the translations and align-
ments for a few key languages (Tamil, Malayalam,
Kannada, Hindi and Bengali).

During the manual dataset creation, we observed
certain linguistic phenomena that make mGAP
challenging. One such feature is pro-drop, which
omits the pronoun entirely. However, this was ob-
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served in a negligible fraction of samples across
languages. Additionally, longer sentences often un-
dergo phrase rearrangement. For Hindi, pronouns
sometimes align with the object’s gender instead
of the subject’s. Moreover, certain honorific pro-
nouns lose gender distinction while verbs become
gendered. These linguistic variations illustrate the
unique challenges involved in resolving ambiguous
pronouns in SALs.

4 Model Architecture

We introduce two coreference resolution models,
each targeting distinct challenges. The Joint Em-
bedding Model (JEM) is centered on harnessing
the efficacy of the multilingual embeddings across
multiple languages. The goal of this model is to
investigate how pronoun resolution in multilingual
contexts can be improved by leveraging shared rep-
resentations across languages.

In contrast, the Cross Attention Model (CAM)
relies on a cross-attention mechanism to capture the
relationships between pronouns and the potential
candidates. CAM investigates how architectural im-
provements can improve the coreference resolution
procedure by specifically attending to candidate
spans inside phrases, whereas JEM highlights the
effectiveness of multilingual embeddings.

4.1 Joint Embedding Model (JEM)

Figure 2: Architecture of Joint Embedding Model
(JEM). Each sentence is passed twice with a positive
and negative sample during training. The model outputs
the probability of the pronoun referring to sampled can-
didate thresholded by ϵ.

Our Joint Embedding Model leverages multilin-
gual BERT fine-tuned for coreference resolution
(see Figure 2). We reformulate GAP’s three-way
classification task (candidate A, candidate B or nei-
ther (ϕ)) to a binary classification task that predicts
whether the candidate present in the data point ei-
ther corresponds to the pronoun or not. We selected
this objective because our experiments revealed

that the three-way classification objective led to
suboptimal performance.

In this binary framework, each data point is
sampled twice: once with the pronoun paired
with its correct candidate (positive sample) and
once with an incorrect candidate (negative sample).
Cases where the pronoun refers to neither candi-
date are excluded during training and handled via
a threshold-based mechanism at inference. We hy-
pothesize that in the three-way setup, by focusing
on a direct relationship between the pronoun and a
single candidate, the model can learns relevant fea-
tures without the distraction of multiple competing
candidates (or even learning to predict neither). Ad-
ditionally an increased number of samples further
leads to better results.

We format the input sequence as follows:

x = [[CLS] ;S ; [SEP] ;P ; [SEP] ;Ci]

where x is the input to the model, S is the context
sentence containing the ambiguous pronoun, P
is the target pronoun requiring resolution, Ci are
possible candidates (Ci ∈ {A,B}).

During training, we perform the binary classifi-
cation by obtaining the probabilities for each can-
didate using the following formula:

ŷ = σ(W2 · ReLU(W1 · h+ b1) + b2)

where h is the [CLS] token output from mBERT
for the concatenated input, W1 and W2 are the
weights of the linear layers, and b1 and b2 are the
biases.

During inference, we implement the 3-way clas-
sification as follows. For each data point, the model
evaluates the label l, by computing the probabilities
for both candidates A and B (using their respective
BERT representations ha and hb) and comparing
them with the threshold:

ŷa = σ(W2 · ReLU(W1 · ha + b1) + b2)

ŷb = σ(W2 · ReLU(W1 · hb + b1) + b2)

l =





A, if ŷa ≤ ŷb and ŷa > ϵ

B, if ŷb > ŷa and ŷb > ϵ

ϕ, if ŷa ≤ ϵ and ŷb ≤ ϵ

If the probabilities for both candidates are be-
low a pre-defined threshold ϵ (0.2 in our case), the
model classifies the pronouns as referring to "nei-
ther". Otherwise, it classifies the pronoun to the
candidate with the higher probability.
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This architecture enables the model to effectively
resolve ambiguous pronouns by leveraging contex-
tual information. In the future, this approach could
be also implemented for more than 3 classes, or
can be implemented after identifying possible can-
didate spans within the sentence.

4.2 Cross Attention Model (CAM)

We present our other approach, a multi-headed
cross attention network that computes the similar-
ity between the candidates and pronouns from the
underlying vector representations of the pronouns
and candidates. This architecture consists of two
main components, namely the candidate / pronoun
encoders and the coreference resolver. Figure 3,
illustrates the architecture.

Figure 3: Architecture of Cross Attention Model (CAM).
The model outputs a probability distribution over the
possible candidates.

4.2.1 Candidate-Pronoun Encoder
Since the candidates and pronouns in SALs
can span several tokens, we employed a Gated-
Recurrent Unit (GRU) (Cho et al., 2014) based fea-
ture aggregation layer for the candidate-pronoun
encoder to address this variation in token length for
the candidates-pronouns between language. This
application case is well suited to the GRU’s ca-
pacity to maintain sequential information while
aggregating the embeddings into a fixed-length rep-
resentation. It efficiently condenses the multiple-
token words ∈ RNt x m (where Nt represents the
token length) into a single, cohesive vector so that
the resolver can process it more easily.

While the pronoun encoder encodes the pronoun
P as Ep ∈ R1 x m, the candidate A, B are inde-
pendently encoded as Ea ∈ R1 x m, Eb ∈ R1 x m

respectively. The "neither" class En ∈ R1 x m

is represented with a zero vector. It is then con-
catenated with the candidate embeddings as shown
below. Since all three potential outputs (A, B or
neither) will now be represented consistently as Et,
this should simplify the categorization work. By re-
lying on the model to learn this structure, we avoid
arbitrary threshold-based cutoffs methods which
were proposed in the previous sections.

Et = [[Ea] : A; [Eb] : B; [En] : N ]

4.2.2 Coreference Resolver
The network is given the concatenated candidate
embeddings Et ∈ R3 x m as Key K and value V,
and the pronoun embedding Ep ∈ R1 x m as query
Q. The cross attention is defined as follows :

σ(xi) =
exi

∑m
j=1 e

xj
, σ(xi) ∈ (0, 1)m (1)

Sim(Q,K) = σ(
QKT

√
dk

), dk =
m

nheads
(2)

Attn = Sim(Q,K) ∗ V (3)

This attention mechanism allows the model to
attend to the most relevant parts of the concate-
nated candidate representations in relation to the
pronoun’s representation. The model dynamically
focuses on the specific features of candidate A, can-
didate B and even the absence of an appropriate
candidate (indicated by the zero vector for "nei-
ther").

4.3 Implementation & Hyper-parameters
For JEM, the models were trained on a single
NVIDIA GTX 1080Ti for 40 epochs, using a batch
size of 8. For optimizer, we used the Adam op-
timizer with a learning rate of 10−5 and Binary
Cross Entropy (BCE) loss. We used early stopping
to prevent overfitting.

For CAM, the models were trained on a single
NVIDIA RTX 2070 Super Max-Q GPU for 100
epochs, using a batch size of 64. We employed
the Adam optimizer with a learning rate of 10−5

and Categorical Cross Entropy (CCE) loss. Early
stopping was used to prevent overfitting, and the
best model was selected based on its performance
on the validation set.
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5 Results and Discussions

We trained our proposed approaches on the devel-
opment sets of the mGAP dataset (28 languages)
and evaluated it on the test sets of mGAP. The eval-
uation metrics used were F1 and Bias (Table 1). As
reported by Webster et al. (2018), bias is the ratio
of F1 scores of the female to male pronouns. A
bias of less than one indicates the model predicts
masculine pronouns better. Additionally, we as-
sess the zero-shot transfer performance of both the
models across various SALs.

5.1 Comparison of the Proposed Approaches

The Joint Embedding Model (JEM) and Cross-
Attention Model (CAM) present two distinct ap-

Language JEM CAM

F1 Bias F1 Bias

English 76.13 1.02 71.06 1.03

Assamese 49.27 0.99 57.08 0.98
Awadhi 67.7 0.98 61.81 0.97
Bengali 66.99 1.00 67.08 1.00
Bhojpuri 62.32 1.00 60.71 1.00
Burmese 56.24 0.95 55.06 1.02
Chhattisgarhi 42.95 0.98 63.46 0.95
Gujarati 65.92 0.95 66.48 0.97
Hindi 70.74 0.94 67.66 1.00
Kannada 68.38 0.98 65.30 1.03
Kashmiri 58.5 0.93 57.38 0.96
Magahi 65.84 0.97 62.21 0.96
Maithili 66.57 0.95 62.47 1.01
Malayalam 64.75 0.95 60.11 1.02
Marathi 64.65 0.95 65.32 1.02
Meitei 52.55 0.97 57.79 0.96
Nepali 62.89 1.04 65.16 0.98
Pashto 44.6 0.97 56.27 0.99
Persian 68.09 0.98 65.56 1.01
Punjabi 64.44 0.99 69.44 1.00
Santali 50.9 0.91 55.66 0.96
Sindhi 44.26 0.98 57.37 1.01
Tajik 56.42 0.92 59.23 1.03
Tamil 65.73 0.95 64.30 0.99
Telugu 70.02 1.04 66.84 1.00
Urdu 66.89 0.95 66.47 0.98
Uyghur 52.5 0.95 54.76 1.05
Uzbek 60.10 0.96 60.36 1.02

Average 60.94 0.97 62.23 0.99

Table 1: Results of our proposed approaches across
English and 27 South Asian languages of mGAP

proaches to pronominal anaphora resolution, each
with different parameter footprints and computa-
tional requirements. JEM, which utilizes mBERT’s
CLS token through fully connected layers, requires
training both the mBERT backbone and the addi-
tional FC layers. In contrast, CAM maintains a
frozen mBERT backbone and only trains the cross-
attention layer. Training only the Cross Attention
layer significantly reduces the number of trainable
parameters, leading to faster convergence, lower
memory requirements and shorter training times.

With an average F1 score of 62.23 across all
languages, CAM performs marginally better than
JEM, which averages 60.94. With JEM at 0.97 and
CAM at 0.99, the bias levels of the two models
are comparable. In terms of F1 scores, CAM often
outperforms JEM, particularly for languages with
less resources. With a large difference between
its best score (76.13 for English) and lowest score
(42.95 for Chhattisgarhi), JEM exhibits a greater
variance in F1 scores across languages. CAM per-
forms more consistently across languages and ex-
hibits less variation in F1 score. CAM’s greatest
score (71.06 for English) and lowest score (55.06
for Burmese) fall within a more constrained range
than JEM’s.

5.2 Transfer Learning in SALs
In our research on zero-shot transfer learning,
we looked at 27 different South Asian languages
including English. In order to evaluate the
model’s cross-lingual generalization and pronomi-
nal anaphora resolution capabilities, we trained the
models on one language and tested it on the remain-
ing 27 languages for each experiment. With this
setup, we were able to investigate the efficacy of

Figure 4: F1 scores of the Zero-Shot Transfer Experi-
ments on JEM for a subset of languages in mGAP109



Figure 5: F1 scores of the Zero-Shot Transfer Experiments on CAM for all languages in mGAP

mBERT embeddings and the cross-lingual robust-
ness of our architecture in a range of script-based
and linguistic challenges.

5.2.1 JEM
Due to the large memory footprint of JEM, we
limited our transfer learning trials to only five lan-
guages as it requires fine-tuning of mBERT (Figure
4). Consequently, we focused the assessment of
the model’s cross-lingual performance only on the
Dravidian languages and Hindi.

In our experiments, we observed the models per-
form best when trained and evaluated on the same
languages, with Telugu (70.02) and Hindi (70.74)
exhibiting the highest self-performance. The high
adaptability of Telugu and Kannada with one an-
other (68.47 and 68.60) and with other languages
is probably caused by the common Dravidian lin-
guistic traits that mBERT has identified. Despite
having a lower overall cross-lingual transferabil-
ity, Malayalam outperforms Hindi (58.6) in other
Dravidian languages like Tamil (63.6) and Telugu
(62.36). These findings demonstrate the efficacy of
mBERT in cross-lingual transfer learning, particu-
larly among linguistically related populations.

5.2.2 CAM
With CAM, we were able to perform transfer learn-
ing for every language pair, enabling a comprehen-

sive evaluation of cross-lingual performance across
all 28 languages (Figure 5).

The analysis of CAM’s zero shot transfer matrix
reveals that the performance is relatively symmet-
ric - if language A transfers well to language B,
the reverse is often true as well. Similar to JEM,
the model works better when trained and tested
on the same language, as seen by the higher F1
scores along the diagonal for several languages.
The languages (like Santali, Sindhi, Ughyur) that
make poor sources and target are those that which
mBERT isn’t trained on. Indo-Aryan languages
(Hindi, Bengali, Urdu, Punjabi, Marathi, and Gu-
jarati) have high mutual scores (60–68%), particu-
larly as pairings between Hindi and Urdu and Ben-
gali and Hindi. Punjabi shows decent transfer with
Hindi, Urdu, and Persian and vice-versa, likely be-
cause of its less rigid gender system, especially for
loanwords. Tamil, Telugu and Kannada are all Dra-
vidian languages that fare well together (58–65%),
despite variations in script. Telugu has a high de-
gree of cross-family transmission with Indo-Aryan
languages. Persian and Tajik have higher scores
because of script alignment, but Pashto, Persian,
and Tajik all perform moderately (56–61%). It is
evident that common linguistic traits have a greater
impact than script similarity alone because San-
tali, which is linguistically and script-wise isolated,
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routinely ranks lower (48–50%). In general, cross-
lingual performance is improved by shared scripts,
such as Devanagari across Indo-Aryan languages.
Nevertheless, it appears that language family pre-
dicts transfer success more accurately than script
sharing.

Figure 6: t-SNE Projections of Spectral Language Clus-
ters obtained from Figure 5

We employed spectral clustering to find lan-
guage groupings based on CAM’s zero-shot
pronominal coreference resolution performance
(Figure 5). Groups were identified by t-SNE visual-
ization (Figure 6): The clustering of the Dravidian
languages (Kannada, Tamil, and Telugu) suggests
that they have many structural traits and are highly
transferable. Bengali, Marathi, and Hindi are Indo-
Aryan languages that also clustered, indicating lin-
guistic commonality. On the periphery, Malay-
alam implies less cross-lingual flexibility because
of its distinct linguistic characteristics. This anal-
ysis highlights CAM’s ability to capture nuanced
cross-lingual relationships, enabling interpretation
of model performance through a linguistic lens.

5.3 Gender Bias across SALs

As indicated in Table 1, JEM demonstrated gender
bias that favours female pronouns in 5 out of the 28
languages. In contrast, CAM shows a preference
for female pronouns in a broader range - 16 out of
28 languages. This could be attributed to CAM’s
ability to capture better representations from the
dataset. Furthermore, CAM’s average bias score is
closer to 1 than JEM’s, suggesting a more equitable
performance across genders.

6 Conclusion and Future Work

In this study, we addressed data limitations and
used multilingual transfer learning techniques to
propose a comprehensive approach to resolving

coreference in South Asian Languages that are
severely under-resourced. We implement a pipeline
that allowed us to produce a multilingual coref-
erence dataset - mGAP, for 27 languages, with
an addition manually-curated gold subset for a
few key languages like Tamil, Malayalam, Hindi
and Kannada. This dataset enabled us to test two
novel model architectures, namely the Joint Embed-
ding Model (JEM) and the Cross-Attention Model
(CAM).

We evaluated the performance of multilingual
embeddings and cross-attention architecture using
JEM and CAM respectively. Strong zero shot trans-
fer learning potential between a number of South
Asian languages was validated by our results. The
scores were also significantly impacted by the lin-
guistic and cultural proximity of these languages.
Additionally, we demonstrated the potential bene-
fits of sequentially fine-tuning two languages, es-
pecially those with limited resources.

Ultimately, this work suggests practical meth-
ods for model adaption and offers insightful mul-
tilingual resources for coreference resolution in
under-represented languages. Future research may
expand on these findings by including additional
under-resourced languages and exploring language-
specific fine-tuning strategies for improved cross-
lingual efficacy.

7 Limitations

Our approaches face a few constraints, primarily
originating from limitations in the dataset and the
challenges inherent in creating high-quality multi-
lingual resources. We worked with only 27 out of
the 31 languages used in Mishra et al. (2024) due
to missing support for certain scripts in mBERT
like Odia, Tibetan and Sinhalese.

Another significant limitation is the potential for
error propagation throughout the dataset creation
process, as each stage- translation and alignment-
carries a risk of introducing inaccuracies. Although
we modified the awesome-align model to enhance
recall rather than precision, this adjustment may
introduce further noise. Errors can accumulate
through all these stages, affecting the overall qual-
ity of the dataset, and any model trained on this
data.

Lastly, our gold standard dataset consists of
merely 200 samples from the original dataset,
which were manually annotated. Since creating
gold data requires skilled annotators, the number
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of languages we currently cover, and the number of
samples we annotate is greatly limited. The small
size implies that it may not be able to cover all the
linguistic and syntactical diversity found in larger,
more varied datasets. While it provides a valuable
benchmark for quality control, its limited scope
may not fully capture the complexity of larger cor-
pora.
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A Appendix: Transfer Learning

We experiment with a sequential transfer learning
methodology where we initially fine-tune a coref-
erence resolution model using a source language,
followed by additional finetuning on the target lan-
guage. We aim to determine if this two-step process
would improve cross-lingual performance.

Figure 7: F1 Scores of JEM on a subset of the languages
first finetuned on the source language, and then further
on the target language.

Figure 8: Difference in F1 scores from zero shot setting.
(ref Fig. 4)

These experiments show us patterns in the cross-
lingual training that highlight the impact of lan-
guage families and linguistic distance between lan-
guages. The improvement from Hindi to the Dra-
vidian languages show substantial growth with the
double finetuning approach, with gains up to 6.19
F1 points (Hindi −→ Malayalam). This improve-
ment suggests that zero shot transfer across these
language families could be challenging due to the
linguistic distance, and this gap could be effec-
tively bridged by finetuning on the target language

as well.
The case for Malayalam is especially interesting

as a target language, as it consistently demonstrates
the highest average improvements across various
language sources. The significant enhancements
noted when transitioning to Malayalam (6.19 from
Hindi, 4.20 from Kannada) suggests that Malay-
alam could be distinct in its structural characteris-
tics that render zero-shot transfer particularly dif-
ficult; however, these obstacles can be effectively
mitigated through further finetuning. This observa-
tion has important implications for the allocation
of resources in multilingual NLP initiatives that
involve Malayalam.

In the context of the Dravidian language fam-
ily, we observe more modest improvements result-
ing from double finetuning. These lesser gains
likely indicate the stronger initial zero-shot trans-
fer capabilities among these languages, which can
be attributed to their shared linguistic traits and
close linguistic distance. These results align with
linguistic reasoning, indicating that models are
more capable of transferring knowledge between
closely related languages, even in zero-shot sce-
narios, thereby leaving limited opportunities for
enhancement through additional fine-tuning. They
also highlight the necessity of considering lan-
guage family relationships when formulating trans-
fer learning strategies for low-resource languages.
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Abstract

Hate speech on social media platforms is a crit-
ical issue, especially in low-resource languages
such as Sinhala and Tamil, where the lack of
annotated datasets and linguistic tools hampers
the development of effective detection systems.
This research introduces a novel framework for
detecting hate speech in low resource languages
by leveraging Multilingual Large Language
Models (MLLMs) integrated with a Dual Con-
trastive Learning (DCL) strategy. Our approach
enhances detection by capturing the nuances
of hate speech in low-resource settings, apply-
ing both self-supervised and supervised con-
trastive learning techniques. We evaluated our
framework using datasets from Facebook and
Twitter, demonstrating its superior performance
compared to traditional deep learning models
such as CNN, LSTM, and BiGRU. The results
highlight the efficacy of DCL models, particu-
larly when fine-tuned on domain-specific data,
with the best performance achieved using the
TwHIN-BERT model. This study underscores
the potential of advanced machine learning
techniques in improving hate speech detection
for under-resourced languages, paving the way
for further research in this domain.

1 Introduction

Hate speech has become a significant problem in
the digital age, particularly on social media plat-
forms where communication is fast, widespread,
and often anonymous. The rise of online platforms
has not only enhanced global connectivity but has
also provided a fertile ground for the dissemination
of harmful content, including hate speech.We adopt
the definition by Lu et al. (2023): “Hate speech is
subjective and derogatory speech towards protected
characteristics expressed directly or indirectly to
such groups in textual form”. This form of expres-
sion, which targets individuals or groups based on
attributes such as race, religion, ethnicity, gender,
or sexual orientation, has severe societal impacts,

including the escalation of violence, promotion
of discrimination, and deepening of social divides.
The urgency to address hate speech is further under-
scored by its ability to rapidly spread and amplify
through social networks, making it a formidable
challenge for regulatory bodies and social media
companies alike.

In multicultural societies, hate speech has been a
particular concern due to its potential to incite eth-
nic and religious violence. However, while consid-
erable research has been devoted to hate speech de-
tection in languages like English, less attention has
been given to low-resource languages such as Sin-
hala and Tamil. The lack of resources, such as anno-
tated datasets and linguistic tools, has posed signif-
icant challenges to developing robust hate speech
detection systems in low-resource languages.

Despite the growing interest in using advanced
technologies to combat hate speech, the applica-
tion of Large Language Models (LLMs) in this
domain remains underexplored, particularly in the
context of Sinhala. LLMs, with their ability to
understand and generate human-like text, offer a
promising avenue for improving hate speech de-
tection. However, existing studies (Munasinghe
and Thayasivam, 2022) (Samarasinghe et al., 2020)
(Hettiarachchi et al., 2020) (Sandaruwan et al.,
2019) in Sinhala have predominantly relied on tra-
ditional machine learning models, which, while
effective, may not capture the nuances of the lan-
guage or the context of the speech as effectively
as LLMs. Therefore, this research aims to bridge
this gap by exploring the potential of LLMs for de-
tecting hate speech in Sinhala as well as providing
a different approach for hate speech detection in
low resource languages, focusing specifically on
content generated on social media platforms.

This study aims to contribute to the field by de-
veloping and evaluating a hate speech detection
model for Sinhala and Tamil, two low-resource lan-
guages, utilizing the capabilities of large language
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models (LLMs). The findings of this research could
provide valuable insights into the effectiveness of
LLMs in low-resource languages and offer a foun-
dation for future work in this critical area of study.

2 Related Work

We have conducted an extensive literature review,
primarily focused on hate speech detection in Sin-
hala, a low-resource language, as our main fo-
cus lies within this linguistic domain. The re-
search into hate speech detection in the Sinhala
language, particularly in the context of social me-
dia, has garnered significant attention due to the
growing prevalence of online abusive content. Vari-
ous studies have employed different machine learn-
ing techniques and natural language processing
(NLP) methods to address this issue, highlighting
the unique challenges presented by the Sinhala lan-
guage and its Romanized form.

In the study by Munasinghe and Thayasivam
(2022), a deep learning ensemble method was intro-
duced to detect hate speech in Sinhala tweets. Their
approach contrasts with previous models that pri-
marily relied on traditional machine learning meth-
ods like Naive Bayes, Support Vector Machines
(SVM), and Random Forest classifiers, which often
struggled to generalize due to limited dataset sizes
and suboptimal results. By creating a new dataset
using Twitter API and applying techniques such
as stop word removal, stemming, and tokenization,
they were able to develop a deep learning model
based on convolutional neural networks (CNN),
Long Short-Term Memory (LSTM), and Bi-GRU
models. This ensemble method yielded superior
performance, achieving over 90% accuracy, preci-
sion, recall, and F-scores. The ensemble’s ability
to outperform individual models demonstrates the
potential of deep learning for hate speech detection
in low-resource languages like Sinhala.

The research by Samarasinghe et al. (2020) fo-
cused on the detection of hate speech in Sinhala
Unicode text, utilizing a CNN model with Fast-
Text word embeddings. This study introduced a
two-stage classification process where the first step
identified hate speech, and the second classified it
according to the severity of the hate. While the
study achieved high accuracy in the hate speech
classification (83%), it highlighted the challenges
in identifying varying levels of hate speech, partic-
ularly due to the imbalanced dataset. The difficulty
in accessing larger, more diverse datasets further

limited the model’s ability to generalize, underlin-
ing a significant barrier in hate speech detection for
Sinhala.

Hettiarachchi et al. (2020) extended the scope of
hate speech detection by focusing on Romanized
Sinhala, a unique form of Sinhala written using the
English script. Their research applied a variety of
machine learning algorithms, including Logistic
Regression, Naive Bayes, SVM, and Random For-
est, to a dataset of Facebook comments written in
Romanized Sinhala. Despite the language’s com-
plexities, including inconsistencies in spelling and
grammar, the study found that the Naive Bayes clas-
sifier performed best with bigram features, achiev-
ing an accuracy of 71%. This research emphasized
the potential of applying machine learning methods
to non-standard linguistic forms, particularly for
low-resource languages like Sinhala.

Further research conducted by Dias et al. (2018)
explored racist comments in Sinhala social media
using text analytics models. They experimented
with a Support Vector Machine (SVM) classifier
using a set of Facebook comments labeled as either
racist or non-racist. Their results, with a 70.8%
accuracy, highlighted the challenges of detecting
racist comments specifically, which share many
linguistic traits with general offensive comments.
The imbalanced dataset and the difficulty of sepa-
rating intent from context were key hurdles. The
study recommended that future research use more
sophisticated NLP techniques to improve detection
rates.

In a similar vein, Fernando and Deng (2023)
introduced a novel approach that enhanced hate
speech detection in Sinhala by applying feature
selection techniques. Their study proposed a
global feature selection process to tackle high-
dimensional input data challenges, using classifiers
such as SVM, Multinomial Naive Bayes (MNB),
and Random Forest. The research demonstrated
that advanced feature selection could significantly
improve detection performance in the sparse and
noisy datasets typical of Sinhala social media, par-
ticularly when combined with character and word
n-grams. This approach also revealed improve-
ments in model generalization across training and
testing datasets.

Moreover, Sandaruwan et al. (2019) explored
the lexicon-based and machine learning approaches
for hate speech detection in Sinhala social media,
where they used a corpus of 3,000 comments. Their
study revealed that the Multinomial Naive Bayes
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classifier, when combined with character trigrams,
achieved the highest accuracy of 92.33%. This
lexicon-based approach also showed promise in
identifying hate, offensive, and neutral speech cat-
egories, though the study underlined the need for
better feature engineering and larger datasets to
improve the model’s scalability.

Across these studies, common themes emerge,
including the importance of dataset size, feature
engineering, and model selection. Traditional ma-
chine learning models, while effective in certain
cases, struggle with generalization when faced with
small or imbalanced datasets, as evidenced by the
drop in performance in various studies. Deep learn-
ing models, particularly those that leverage ensem-
ble techniques, have demonstrated more robust per-
formance, although they require significantly more
data and computational resources. Moreover, the
detection of hate speech in Romanized Sinhala adds
another layer of complexity, necessitating the ex-
ploration of feature extraction methods that can
handle linguistic variations. In conclusion, the ad-
vancement of hate speech detection in the Sinhala
language relies heavily on the availability of large,
annotated datasets and the continued development
of sophisticated NLP models.

3 Methodology

In this research, we introduce a novel framework
designed specifically for hate speech detection in
low-resource languages, by leveraging multilin-
gual Large Language Models (MLLMs). This
framework adapts and extends the Dual Contrastive
Learning (DCL) strategy proposed by Lu et al.
(2023), integrating enhancements suitable for han-
dling the nuances of low resource language hate
speech on social media platforms.

3.1 Dual Contrastive Learning Framework
for Low Resource Languages

The framework depicted in figure 1 represents a
novel Dual Contrastive Learning (DCL) approach
specifically tailored for hate speech detection in
low resource languages, leveraging multilingual
Large Language Models (MLLMs) that support
low-resource languages. The overall framework
involves the following steps:

1. Embedding Generation with Multilingual
LLM: Input sentences, including both hate
and non-hate speech, are processed using a
pre-trained multilingual LLM that supports

low-resource languages. This model gener-
ates contextual embeddings that capture the
semantic meaning of the input text.

2. Data Augmentation through Dropout: To en-
hance the training data, dropout-based data
augmentation is applied to the embeddings
generated by the LLM. This process cre-
ates multiple augmented views of each input,
which are used in subsequent contrastive learn-
ing stages.

3. Dual Contrastive Learning Mechanisms: The
proposed framework employs two stages of
contrastive learning:

• Self-Supervised Contrastive Learning:
This stage focuses on learning invariant
representations by creating positive pairs
from augmented views of the same hate
speech sample. Strong data augmenta-
tion techniques are used to generate these
pairs, aiming to maximize the separation
between these positive pairs and negative
pairs (non-hate speech) in the embedding
space.

• Supervised Contrastive Learning:
This stage utilizes label information
to refine the representation space by
pulling samples from the same class
closer together while pushing apart those
from different classes. This clustering
effect improves the model’s ability to
distinguish between hate and non-hate
speech effectively.

The integration of these stages allows the
framework to capture both intrinsic patterns
within hate speech and the discriminative
features between hate and non-hate content,
thereby enhancing the detection capabilities
for low resource language hate speech on so-
cial media platforms. For the above learn-
ing, there will be losses to identify the perfor-
mance of the Model.

3.2 Self-Supervised Contrastive Learning

Considering the complexity and ambiguity
of hate speech expressions, we use self-
supervised contrastive learning for data aug-
mentation and deeper semantic feature extrac-
tion. By constructing positive and negative
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Figure 1: Dual Contrastive Learning Framework for Low Resource Languages
.

samples, this approach captures more com-
prehensive span-level features, going beyond
token-level semantics, to better distinguish
subtle differences (Gao et al., 2021).

CLse = −∑2N
j=1 log

esim(zj ,z
+
j )/Γse

∑2N
k=1 1[j ̸=k] · esim(zj ,zk)/Γse

,

(1)

CLse represent the Self-Supervised Contrastive
Learning loss and for a given input sentence xi,

standard dropout is applied twice to create the sen-
tence embedding Emb(xi) that retains maximum
semantic information (Srivastava et al., 2014). This
embedding is then used to generate two augmented
samples, zj and z+j , through independently sam-
pled dropout masks on fully-connected layers. The
pair (zj , z+j ) serves as positive samples, while other
samples in the batch are treated as negatives. The
parameters include N for batch size before data
augmentation and τse as a non-negative tempera-
ture hyperparameter. The function sim(·) calcu-
lates the similarity scoring between zj and z+j using
cosine similarity to guide the contrastive objective,
encouraging similar embeddings for augmented
variants of the same input and contrasting them
against others.
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3.3 Supervised Contrastive Learning

To improve hate speech detection, we first apply
self-supervised contrastive learning to highlight im-
portant span-level semantics within the data. Next,
we incorporate label information through super-
vised contrastive learning. This approach ensures
that examples sharing the same label (positive sam-
ples) are drawn closer together in the embedding
space, while those with different labels (negative
samples) are pushed apart. By doing so, the model
benefits from both the self-supervised augmenta-
tion and the explicit label guidance.

Given a batch of N samples, the supervised con-
trastive loss CLsu is defined as:

CLsu = −∑N
i=1

1
Nyi−1

∑N
j=1 1[i ̸=j] · 1[yi ̸=yj ]

· log esim(zj ,zj)/Γsu

∑N
k=1 1[i ̸=k]e

sim(zj ,zk)/Γsu

(2)

Here, (zi, zj) is a pair of positive samples (with
the same label),and (zi, zk) represents a compari-
son to a randomly chosen sample.The labels of zi
and zj are denoted by yi and yj , respectively, with
Nyi representing the count of samples sharing the
same label as zi. The non-negative temperature co-
efficient Γsu modulates the supervised contrastive
loss.

3.4 Dual Contrastive and Focal losses
Integration

To jointly integrate both self-supervised and super-
vised signals, we define our overall loss function
for contrastive learning as follows:

CL = CLse + CLsu (3)

Dual contrastive learning objectives (losses) are
then integrated with the focal loss(Ross and Dollár,
2017) function which addresses data imbalance
issues in hate speech detection to obtain the total
loss function, which will be optimized to obtain the
fine-tuned DCL model.
The Focal loss is defined as follows:

FL = −
N∑

i=1

αi(1− p̂i)
γlog(p̂i) (4)

The parameter γ, a non-negative tuning factor,
distinguishes between easy and challenging sam-
ples in the context of model’s learning. A lower
γ encourages the model to prioritize misclassified
instances, diminishing the impact of well-classified
samples. Additionally, α, ranging from 0 to 1,
serves as a weighting factor, ensuring a balance in
the significance attributed to positive and negative
samples, which is defined as,

αi =

{
α, if yi = 1

1− α, otherwise
(5)

p̂i in (4) reflects the relationship between the
estimated probability and the target class.

p̂i =

{
pi if yi = 1

1− pi otherwise
(6)

pi ∈ [0, 1] is the estimated probability for the
class with the label yi = 1 in each sentence embed-
ding zi.

This adaptive approach enhances the model’s
ability to focus on challenging instances and effec-
tively balances the influence of different sample
types in the learning process.

The Total Loss function is defined as follows:

Loss = FL+ λ · CL (7)

A weighting coefficient λ is used to balance the
impact of these two losses, where λ ∈ [0, 1].

4 Experiments

In this section, we evaluate the performance of our
DCL Framework for low-resource languages using
two multilingual LLMs: xlm-roberta-base (Con-
neau et al., 2019) and twhin-bert-base (Zhang et al.,
2022), both of which support Sinhala and Tamil.
We introduce three publicly available datasets, de-
scribe our experimental setups, and present eval-
uation results that compare our model with other
baseline deep learning models. We then analyze
these results in detail.

For hyperparameter tuning, we employed Op-
tuna (Akiba et al., 2019), and for improved exper-
iment tracking and monitoring, we incorporated
Neptune.ai. Our experiments primarily focus on
the Sinhala language, providing a comparative anal-
ysis of model performance. We also conducted
experiments for the Tamil language, but without a
comparative perspective.
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4.1 Datasets
For our research, we used the following three pub-
licly available datasets. 1

4.1.1 Facebook Sinhala Hate Speech Dataset
This dataset contains a total of 6,345 samples,
sourced from Facebook. It features a near-balanced
distribution with 3,455 instances of hate speech
(54.45%) and 2,890 instances of non-hate speech
(45.55%). The balanced nature of this dataset, com-
bined with its real-world context from Facebook,
makes it highly applicable for developing and as-
sessing hate speech detection models tailored for
social media platforms. Its comprehensive repre-
sentation of both hate and non-hate speech ensures
that models trained on this data can effectively gen-
eralize to similar scenarios on Facebook.

4.1.2 Twitter Sinhala Hate Speech Dataset
Comprising 4,502 samples collected from Twitter,
this dataset includes 1,108 instances of hate speech
(24.62%) and 3,394 instances of non-hate speech
(75.38%). The dataset’s higher proportion of non-
hate speech mirrors the typical distribution on Twit-
ter, providing valuable insights for detecting hate
speech in real-world social media environments. Its
focus on the Twitter platform allows for effective
training and evaluation of hate speech detection
models, particularly in handling imbalanced data
and adapting to the nuances of Twitter’s social me-
dia interactions.

4.1.3 Tamil Hate Speech Dataset
The Tamil hate speech dataset consists of a total
of 5,503 labeled instances, with 3,573 classified as
non-hate speech and 1,930 as hate speech. This
distribution indicates that approximately 64.9% of
the dataset is non-hate speech, while 35.1% is hate
speech. The dataset is slightly imbalanced, with a
higher proportion of non-hate speech compared to
hate speech, though the imbalance is not extreme.

4.2 Experimental Settings
In this section, we describe the experimental setup
for our framework. We conducted experiments us-
ing two multilingual large language models (LLMs)
integrated with our framework and evaluated their
performance on the datasets. These experiments
demonstrate that our approach outperforms tradi-
tional state-of-the-art deep learning methods. The

1Here are the publicly available Datasets: (1) Facebook
Sinhala Hate Speech (2) Twitter Sinhala Hate Speech (3) Tamil
Hate Speech

datasets were divided into training and test sets,
and we employed 5-fold cross-validation for each
dataset to assess model performance on the test set.

For training, we used a dropout rate of 0.5 and
the AdamW optimizer (Kingma and Ba, 2014). Hy-
perparameter tuning was performed to optimize the
batch size, learning rate, number of epochs, and
additional parameters such as λ, τse, τsu, as well
as the focal loss parameters α and γ.

Model performance was primarily assessed us-
ing the weighted F1 score with cross-validation.
We selected the models and hyperparameters that
achieved the best validation results and further eval-
uated these on the test set using metrics such as
accuracy, weighted F1 score, precision, and recall.

All models were trained on an NVIDIA T4 GPU
to ensure efficient computation.

5 Results & Analysis

The performance metrics of several deep
learning models, including CNN, LSTM,
BiGRU, an ensemble of these models,
and DCL models(DCLXLM−RoBERTa and
DCLTwHIN−BERT ), were evaluated on two
sinhala datasets: the Twitter Sinhala Hate Speech
Dataset and the Facebook Sinhala Hate Speech
Dataset. The results are presented in Table 1 and
Table 2. In addition, the results presented in Table
3 show the performance of the DCL models on the
Tamil Hate Speech Dataset.

Based on the results, our DCLTwHIN−BERT

model outperformed on both Sinhala datasets (Ta-
ble 1 and Table 2). This highlights the impor-
tance of employing advanced machine learning
techniques to address challenges in hate speech de-
tection within under-resourced language contexts.

The DCLTwHIN−BERT model achieved the
highest performance on the Twitter Sinhala Hate
Speech Dataset, with 94.00% accuracy and bal-
anced F1, recall, and precision scores, highlighting
its robustness. The Ensemble(CNN,LSTM,BiGRU)

model slightly surpassed in accuracy (94.10%)
but underperformed in F1 score, recall and pre-
cision, suggesting less balanced generalization. On
the Facebook Sinhala Hate Speech Dataset, the
DCLTwHIN−BERT model again excelled, achiev-
ing 87.29% accuracy, outperforming the ensemble
model (85.70%) and other models.
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Table 1: Performance Metrics for Deep Learning Models on the Twitter Sinhala Hate Speech Dataset

Model Accuracy F1 Score Recall Precision
CNN2 90.10% 90.10% 90.10% 90.10%

LSTM2 91.90 % 91.90% 91.90% 91.90%
BiGRU2 92.80% 92.80% 92.80% 92.80%

Ensemble(CNN,LSTM,BiGRU)
2 94.10% 91.90% 93.00% 90.10%

DCLXLM−RoBERTa 91.50% 91.60% 91.50% 91.90%
DCLTwHIN−BERT 94.00% 94.00% 94.00% 94.00%

2denotes results obtained from the literature

Table 2: Performance Metrics for Deep Learning Models on the Facebook Sinhala Hate Speech Dataset

Model Accuracy F1 Score Recall Precision
CNN3 84.80 % 84.80% 84.80% 84.80%

LSTM3 83.10% 83.10% 83.10% 83.10%
BiGRU3 85.10% 85.10% 85.10% 85.10%

Ensemble(CNN,LSTM,BiGRU)
3 85.70% 85.70% 85.70% 85.70%

DCLXLM−RoBERTa 85.82% 85.85% 85.82% 86.08%
DCLTwHIN−BERT 87.29% 87.19% 87.29% 87.61%

3denotes results obtained from the literature

5.1 Key Observations
• DCLTwHIN−BERT model was the top per-

former across all datasets, highlighting the
power of DCL-based approach in detecting
hate speech on low resource languages.

• Ensemble(CNN,LSTM,BiGRU) model
showed competitive results, particularly on
the Twitter dataset, but were outperformed
by the DCL model, especially in terms of F1
score, recall, and precision.

• The traditional models (CNN, LSTM, Bi-
GRU) demonstrated reasonable performance
but did not reach the level of the DCL mod-
els, emphasizing the importance of pre-trained
language models fine-tuned for specific tasks
such as hate speech detection.

5.2 Performance Comparison between
XLM-RoBERTa and TwHIN-BERT based
DCL Models

The XLM-RoBERTa model is pre-trained on the
CommonCrawl Corpus (CC-100), which primar-
ily comprises data collected from open web pages
(Conneau et al., 2019). In particular, this corpus ex-
cludes social media data. Consequently, the model
lacks exposure to social media-specific patterns,
trends, and expressions, which are often informal,
context-specific, and culturally nuanced. Further-
more, low-resource languages such as Sinhala and

Tamil have limited representation in digital content
(Joshi et al., 2020), making it challenging for the
model to capture the unique linguistic character-
istics of these languages as they appear in social
media contexts.

We hypothesize that this limitation in XLM-
RoBERTa’s pre-training significantly restricts the
potential performance gains achievable through
its integration with the DCL framework. This
stands in contrast to the DCL framework em-
ploying TwHIN-BERT, a model pre-trained on
7 billion tweets across 100 languages. TwHIN-
BERT leverages textual data alongside social en-
gagement signals through the Twitter Heteroge-
neous Information Network (TwHIN) (Zhang et al.,
2022). This socially enriched pretraining enables
TwHIN-BERT to better understand the informal
and context-specific linguistic expressions preva-
lent on social media platforms.

Given these differences, our results demonstrate
that the DCLTwHIN−BERT model excels in hate
speech detection, which requires social media-
specific linguistic understanding. The inclusion
of social media data during TwHIN-BERT’s pre-
training enables it to capture cultural nuances and
informal language variations more effectively than
XLM-RoBERTa. This advantage is reflected in the
observed superior performance of TwHIN-BERT-
based implementations compared to their XLM-
RoBERTa counterparts in hate speech detection for
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Table 3: Performance Metrics for Deep Learning Models on a Tamil Hate Speech Dataset

Model Accuracy F1 Score Recall Precision
DCLXLM−RoBERTa 65.86% 56.32% 65.86% 63.86%
DCLTwHIN−BERT 74.58% 74.38% 74.58% 74.26%

low-resource languages on social media.

5.3 Limitations

Our work primarily focuses on hate speech in the
Sinhala language, with limited exploration of Tamil
among low-resource languages. Experiments were
conducted exclusively with XLM-RoBERTa and
TwHIN-BERT models, leaving scope for future
exploration of other multilingual large language
models (MLLMs).

Conclusion

This study highlights the potential of advanced ma-
chine learning techniques, particularly use of dual
contrastive learning with pre-trained multilingual
LLMs like XLM-RoBERTa and TwHIN-BERT, for
hate speech detection in low-resource languages
such as Sinhala and Tamil.Our DCL framework-
based model outperformed existing state-of-the-art
traditional deep learning models, with the TwHIN-
BERT-based DCL model consistently achieving su-
perior performance across both Sinhala datasets.In
addition, our findings reveal the critical impor-
tance of domain-specific pretraining on social me-
dia data, as demonstrated by TwHIN-BERT, in ad-
dressing the challenges of informal and context-
dependent expressions prevalent on social media
platforms, particularly for hate speech detection in
low-resource languages. These results lay a strong
foundation for future research in hate speech detec-
tion for low-resource languages using Multilingual
Large Language Models.
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Abstract

Nepali, one of the prominent languages of
South Asia, remains underrepresented in natu-
ral language processing (NLP) research, partic-
ularly in the domain of abstractive summariza-
tion. While significant progress has been made
in extractive summarization, the complexity
of generating coherent, human-like summaries
from low-resource languages like Nepali is still
largely unexplored. This paper introduces the
first comprehensive study on applying multi-
lingual transformer-based models, specifically
mBART and mT5, to the task of generating
headlines for Nepali news articles through ab-
stractive summarization. To address the ab-
sence of large-scale datasets for this task, we
developed a Nepali news headline summariza-
tion corpus by aggregating data from multiple
online news portals. Leveraging this dataset,
we fine-tuned multilingual transformer mod-
els, mBART and mT5, using Low-Rank Adap-
tation (LoRA) and quantization techniques to
optimize computational efficiency without sac-
rificing performance. Comprehensive evalu-
ations were conducted using ROUGE scores
to measure the models’ output quality, com-
plemented by a detailed human evaluation to
select the best summary overall based on rel-
evance, fluency, conciseness, informativeness,
factual accuracy, and coverage. Notably, the
4-bit quantized mBART model demonstrated
superior performance, significantly reducing
computational costs while maintaining high-
quality results. This work not only underscores
the feasibility of applying transformer-based
approaches to Nepali abstractive summariza-
tion but also provides a scalable solution to ad-
vancing NLP capabilities for underrepresented
South Asian languages.

Keywords: Nepali Abstractive text summa-
rization, Transformers, Natural language process-
ing, Low-Rank Qdaptation (LoRA), Quantization,
ROUGE, Human evaluation

1 Introduction

The exponential growth of digital content, such as
news articles, blogs, and social media, has made au-
tomatic text summarization a critical task in Natural
Language Processing (NLP). This involves generat-
ing concise summaries that capture the main ideas
of the original text while maintaining its meaning.
Summarization is generally performed in two ways:
extractive summarization and abstractive summa-
rization. Abstractive summarization generates new
sentences to convey the original text’s meaning, re-
quiring sophisticated language generation, while
extractive summarization involves the extraction of
key sentences or phrases from the original text.

Summarization in Nepali language plays a cru-
cial social and practical role, particularly in areas
such as education, news aggregation, and informa-
tion access. In rural communities and underserved
populations, where internet infrastructure is limited,
concise and relevant summaries can help bridge the
information gap. Additionally, in the context of
education, this technology can generate brief and
informative content summaries to aid students and
educators. This research not only contributes to en-
hancing the digital content accessibility for Nepali
speakers but also highlights the potential for large-
scale deployment in sectors that rely heavily on
information dissemination, making it highly rele-
vant to the region’s linguistic needs.

Transformer models such as mBART (Liu et al.,
2020) and mT5 (Xue et al., 2021) have proven to
be highly effective for a variety of NLP tasks in
low-resource languages, offering state-of-the-art
performance in text generation and summarization
tasks. These models utilize the transformer archi-
tecture, which is adept at capturing long-range
dependencies in text, making them particularly
suitable for abstractive summarization where the
model must generate coherent, novel sentences
rather than merely extracting phrases from the
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source text. Compared to earlier approaches that
relied on recurrent neural networks (RNNs) like
GRU (Gated Recurrent Units) or LSTMs (Long
Short-Term Memory networks), transformers are
able to process input sequences in parallel, making
them more efficient and scalable for large datasets.

This study represents the first known application
of transformer models, specifically mBART(Liu
et al., 2020) and mT5(Xue et al., 2021), for abstrac-
tive summarization in the Nepali language. It intro-
duces a novel dataset, and by leveraging LoRA with
quantization techniques to optimize performance
for low-resource settings. This research marks a
crucial step forward for underrepresented Nepali
languages in NLP. A novel Nepali news summariza-
tion dataset had to be created by scraping data from
various news portals due to lack of dataset for this
particular task. The multilingual models were then
fine-tuned with this dataset using Low-Rank Adap-
tation (Hu et al., 2021) and quantization techniques
as suggested in (Dettmers et al., 2023), making
the training process more computationally efficient
and faster. The performance of these models were
then evaluated using ROUGE scores (Lin, 2004)
and human evaluation following winner-take-all ap-
proach based on criteria such as relevance, fluency,
conciseness, informativeness, factual accuracy, and
coverage to ensure the generated summaries were
coherent and conveyed the original meaning.

2 Related Work

With the rise of transformer-based models
(Vaswani et al., 2023), various research works have
been carried out using them for text summarization.
Many studies focus on English, while research on
the Nepali language is limited and primarily based
on extractive summarization approaches.

(Ranabhat et al., 2019) introduced extractive
summarization to produce summaries from mul-
tiple Nepali sentences by selecting a subset from
the original text using TextRank (Mihalcea and Ta-
rau, 2004). These summaries contained the most
important sentences of the input. They utilized Tex-
tRank for sentence scoring and topic modeling for
summary evaluation.

(Mishra et al., 2020) generated Nepali news
headlines using GRU (Chung et al., 2014) in an
encoder-decoder fashion, taking the news content
as input and generating a headline as output. The
news was converted into word tokens and vec-

torized using FastText (Bojanowski et al., 2017),
trained on a corpus of Nepali news articles and
headlines collected from several web portals.

(Khanal et al., 2022) employed an extractive
method for Nepali text summarization using Tex-
tRanking (Mihalcea and Tarau, 2004) and LSTM
(Hochreiter and Schmidhuber, 1997). They trained
a Nepali news corpus with GloVe embeddings us-
ing different window sizes (10, 12, 15) and vector
sizes (100, 200, 300). For extractive text summa-
rization, they used Text Ranking and an attention-
based LSTM model (Wang et al., 2016).

(Timalsina et al., 2022) introduced an attention-
based RNN for abstractive Nepali text summariza-
tion. They first created a Nepali text dataset by
scraping Nepali news from online portals, then de-
signed a deep learning-based summarization model
using an encoder-decoder recurrent neural net-
work with attention. Specifically, Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) cells were used in both the encoder and de-
coder layers. They built nine models by varying
hyperparameters and reported Recall-Oriented Un-
derstudy for Gisting Evaluation (ROUGE) scores
(Lin, 2004) to evaluate performance.

3 Methodology

3.1 Data Collection

A comprehensive dataset of Nepali news articles,
was created with web scraping from various on-
line news portals like BBC Nepali (Hasan et al.,
2021) and others. A sample of the dataset obtained
through this process is illustrated in Figure 1, and
a link to the full dataset generated in this study is
provided in the annexes.

3.2 Data Preprocessing

In this step, we have removed HTML tags, special
characters, and irrelevant sections of the text (such
as advertisements and navigation links). As the
data was collected in two steps, the headlines and
their corresponding article bodies had to be joined
to create the complete dataset.
The collected dataset still had numerous characters
that were not part of the Nepali Devanagari Char-
acter Set. These extraneous characters would have
degraded the overall text quality and negatively
impacted model performance. Specifically, the
unwanted characters including Latin letters (a-z,
A-Z), Arabic numerals (0-9), etc. To mitigate these
issues, these characters have been removed from
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the dataset. A prefix was also added to the start
of each input text to indicate the summarization
task to the model and it helped the model to better
understand the context and the task it needs to
perform.

Figure 1: Data Sample

The input texts (articles) and the target texts
(headlines) were then, tokenized to a maximum
length of 1024 and 20 tokens respectively, ensuring
that longer texts were truncated. The tokenized
headlines from the previous step were then, set as
labels in the model inputs. This helped the model to

learn the mapping from the input text to the target
headlines during training. A data collator was also
used after the tokenization, in order to dynamically
pad the inputs and labels to the maximum length
during the batching process, ensuring the efficient
utilization of the model’s capabilities.

3.3 Exploratory Data Analysis

The dataset, meticulously compiled from various
news portals, encapsulated a total of 70,769 arti-
cles, categorized into ten distinct thematic areas:
News, Sports, Opinion, Entertainment, Feature, Di-
aspora, World, Education, Blog and Others(Mix).
The dataset had more data related to News cate-
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gory, while blog category had the least amount of
data. The average length of title and the text of the
articles were found to be approximately 6 and 390
respectively. The dataset were, then splitted into
training, validation, and test sets in an 70-20-10
ratio to ensure robust model evaluation.

Dataset type Count
Training Set 49,538

Validation Set 14,154
Test Set 7,076

Table 1: Data distribution in training, validation and
testing dataset

S.N Category Count
1 News 36798
2 Sports 18767
3 Others(Mix) 7258
4 Opinion 2358
5 Entertainment 2144
6 Feature 2014
7 Diaspora 750
8 World 462
9 Education 188

10 Blog 30
Total 70,769

Table 2: Data Statistics

3.4 Model Selection and Fine-Tuning

3.4.1 Model Selection
In this study, we chose to use transformer-based
models, specifically mBART (Liu et al., 2020) and
mT5 (Xue et al., 2021), for abstractive summa-
rization in Nepali. These models were selected
over alternatives, due to their demonstrated effec-
tiveness in multilingual settings and their ability
to handle long-range dependencies in text as pre-
sented in (Taunk and Varma, 2023)(Baykara and
Gungor, 2022)(Kahla et al., 2022). Both models
have been pre-trained on large-scale multilingual
datasets, making them particularly suitable for low-
resource languages like Nepali, where language-
specific data is limited.

• mBART: This model is a denoising autoen-
coder designed for multilingual machine trans-
lation and text generation. Its architecture is
based on BART(Lewis et al., 2019), which re-
constructs corrupted text sequences, allowing

it to learn complex text representations across
languages. We opted for mBART-large-50,
which has around 600 million parameters, as
it strikes a balance between performance and
computational feasibility. Its ability to handle
diverse languages makes it ideal for abstrac-
tive summarization in Nepali, where linguistic
resources are scarce.

• mT5: As a text-to-text transformer model,
mT5 is capable of handling a wide variety
of NLP tasks, including summarization, trans-
lation, and classification. With 598 million
parameters, mT5-base was selected due to
its ability to perform multilingual tasks ef-
ficiently without requiring massive datasets
for each language. The text-to-text approach
allows for consistent handling of inputs and
outputs, making it adaptable for low-resource
languages like Nepali.

Both mBART and mT5 are well-suited for abstrac-
tive summarization because they generate new text
rather than merely extracting parts of the source
document, making them superior to earlier extrac-
tive methods. Given the size and complexity of
these models, fine-tuning them with limited compu-
tational resources poses significant challenges. To
address this, we incorporated two key techniques:

• Quantization (Dettmers et al., 2023): This
technique reduces the precision of the weights
in the model from 32-bit floating points
to lower precisions, such as 4-bit or 8-bit.
Quantization significantly reduces memory us-
age and accelerates computation by enabling
faster arithmetic operations. In our study, 4-bit
and 8-bit quantization was used for mBART,
which allowed for a substantial reduction in
computational cost without significantly com-
promising performance. This was crucial for
making the model feasible to train in a low-
resource setting.

• Low-Rank Adaptation (LoRA) (Hu et al.,
2021): This method drastically reduces the
number of trainable parameters by introduc-
ing low-rank updates to the model weights,
rather than fully updating the entire model dur-
ing fine-tuning. By applying LoRA, we were
able to fine-tune large models like mBART
and mT5 on Nepali text while using signif-
icantly fewer resources. This approach not
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only made the fine-tuning process more effi-
cient but also enabled faster convergence with
fewer training steps.

Together, these techniques allowed us to fine-tune
transformer models on relatively modest hardware,
such as NVIDIA Tesla P100 GPUs provided by
Kaggle, and enabled us to process our dataset effi-
ciently for continuous 12hours.

3.4.2 Fine-Tuning

To enhance efficiency, we stored the dataset on
Hugging Face. During the fine-tuning process, the
model weights and configurations obtained after
each training session were also pushed to Hugging
Face for every model.

The following training arguments were set in
the trainer and in the LoRA for the training in each
models:

Parameters Value
evaluation_strategy epoch

learning_rate 5e-4
per_device_train_batch_size 5
per_device_eval_batch_size 5

weight_decay 0.01
num_train_epochs 3

per_device_train_batch_size 5

Table 3: Training arguments for trainer

Parameters Value
r 32

lora-alpha 32
lora-dropout 0.1

bias lora_only

Table 4: Training arguments for LoRA

The pre-trained models were then, adapted using
the LoRA configuration. This involved updating
the model’s weights based on the low-rank adap-
tations, making it more efficient for the specific
task of Nepali news headline generation. Finally,
the adapted model were fine-tuned using the same
training process as described earlier. The low-rank
update enabled faster and more efficient training, re-
sulting in a model that could generate high-quality
headlines.

3.5 Evaluation
The evaluation strategy was set to run at the end
of each epoch, allowing for periodic assessment
of the model’s performance during training. A
custom function to compute evaluation metrics was
provided to the trainer. This function calculated
ROUGE scores to evaluate the quality of the
generated headlines. The model’s performance
was finally assessed on the testing set using
the custom evaluation function and helped in
understanding the model’s ability to generate
accurate and coherent headlines from Nepali news
articles.

To assess the models’ performance, a survey was
conducted with 62 participants, all of whom had at
least 12 years of formal education in Nepali. They
were asked to evaluate summaries of 10 different
sentences from various categories for the evalua-
tion. Each sentence had summaries generated by
six different models. Participants were tasked with
selecting the best summary overall based on criteria
such as relevance, fluency, conciseness, informa-
tiveness, factual accuracy, and coverage.

4 Experimental Setup

For the execution of this experiment, the following
setup was created:

4.1 Environment Configuration:
4.1.1 Hardware and Software Setup:
Given the substantial computational demands of
fine-tuning our language models, we found Kaggle
to be the most suitable platform. It offered free
access to the NVIDIA TESLA P100 GPU (16GB),
allowing us to conduct uninterrupted training ses-
sions for up to 12 hours. For storing the data, the
model weights and the configurations obtained af-
ter each training session, Hugging Face was used.

The experiments were ran using Python 3.12.3
along with key libraries such as PyTorch, Beauti-
fulSoup, Selenium, Pandas, Numpy, Matplotlib,
Plotly etc.

4.2 Experimental Workflow:
4.2.1 Dataset Handling:
The dataset was processed in batches of approx-
imately 10,000 samples during training. For
this experiment, 50,000 news articles along with
their corresponding summaries were utilized for
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training, while 14,000 were reserved for validation.
At the start of each training session, the entire
dataset was loaded into memory to facilitate
efficient access for the models.

4.2.2 Batch processing and training time:
Batch processing was implemented to streamline
training and evaluation. Training was performed
with a batch size of 5 and ran for 3 epochs and
validation was carried out at regular intervals to
track performance improvements.

The total time taken to train each model was
approximately 12 hours.

4.2.3 Optimization and Hyperparameters:
Hyperparameter tuning plays a vital role in optimiz-
ing the model’s performance. While we set certain
key hyperparameters such as learning rate (5e-4),
weight decay (0.01), and batch size (5), additional
tuning was performed to ensure optimal training
efficiency.

• Learning Rate: The learning rate was selected
based on experimentation. We observed that
higher learning rates led to instability during
fine-tuning, while lower learning rates slowed
convergence. The value of 5e-4 was found to
provide a good balance between fast conver-
gence and model stability.

• Batch Size: A batch size of 5 was chosen due
to memory constraints on the available GPUs.
Larger batch sizes led to out-of-memory er-
rors, while smaller batch sizes resulted in
slower training. Using a batch size of 5
allowed for efficient utilization of GPU re-
sources while maintaining training speed.

• Number of Epochs: We fine-tuned the model
over three epochs, which was determined
based on validation set performance. During
early experimentation, we noticed that perfor-
mance improvements plateaued after the third
epoch, making additional epochs unnecessary.

4.3 Evaluation Setup:

4.3.1 Automated Evaluation:
In this study, we chose to use ROUGE (Recall-
Oriented Understudy for Gisting Evaluation)(Lin,

2004) as the primary metric for evaluating the per-
formance of the abstractive summarization mod-
els. Given the nature of our task—summarizing
Nepali news articles—ROUGE is particularly well-
suited for evaluating how well the models capture
the key content of the source text. While addi-
tional metrics such as BLEU(Papineni et al., 2002)
and METEOR(Lavie and Agarwal, 2007) could
offer complementary insights, we determined that
ROUGE alone provides sufficient coverage for the
following reasons:

• Focus on Content Overlap: The goal of sum-
marization is to ensure that the key ideas from
the original text are preserved in the summary.
ROUGE is highly effective in measuring this
by quantifying the overlap of n-grams be-
tween the generated and reference summaries.
This makes ROUGE particularly useful when
the emphasis is on recall, as it ensures that the
model does not miss critical information from
the original text.

• Simplicity and Interpretability: ROUGE
scores are widely accepted in the NLP commu-
nity and offer a simple, interpretable way to
measure performance. Introducing additional
metrics may complicate the evaluation with-
out necessarily providing new insights for the
particular task of summarizing low-resource
language texts like Nepali. The ROUGE met-
ric’s emphasis on recall and precision has
proven reliable in many summarization tasks,
and it correlates well with human judgment
when the goal is content preservation.

• Alignment with Task Goals: The objective
of this work is to generate coherent and con-
cise summaries that faithfully represent the
original content. Given that ROUGE scores
provide a strong indicator of how much con-
tent overlap exists between the generated and
reference summaries, they align well with
our goals for content retention and accuracy.
While BLEU and METEOR focus on fluency
and sentence-level correctness, these aspects
are already partially captured in human evalu-
ation.

4.3.2 Human Evaluation:
For human evaluation, winner-takes-it-all approach
was considered, where the human evaluators were
asked to select the best summary overall based
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on factors such as relevance, fluency, conciseness,
informativeness, factual accuracy, and coverage
among different summaries generated from dif-
ferent models for different sentences. A simple
Google form was created and used to streamline
the collection of feedback, ensuring that responses
were gathered efficiently.

5 Results

The ROUGE scores for precision, recall, and F1-
scores across all models are summarized in Table 6.
These metrics provide a comprehensive evaluation
of the summarization performance. Based on the
results in the table, the 4-bit quantized mBART
model with LoRA emerged as the best-performing
model, consistently achieving the highest ROUGE
scores in all categories. This indicates that the
model was able to retain a higher degree of the
original text’s meaning while generating concise
and fluent summaries.

Model Number of votes received Percentage of votes (%)
4bit quantized mBART + LoRA 235 34.06
8bit quantized mBART + LoRA 191 27.68

mBART + LoRA 164 23.77
mT5 + LoRA 100 14.49

4bit quantized mT5 + LoRA 000 00.00
8bit quantized mT5 + LoRA 000 00.00

Table 5: Results from the Human Evaluation

Figure 2: Results from the Human Evaluation

In addition to the automatic evaluation, the hu-
man evaluation results are presented in Table 5.
These results further validate the performance of
the 4-bit quantized mBART with LoRA, as it was
selected the most (34.06%) by human evaluators.
The model’s summaries were consistently rated
higher overall based on relevance, fluency, and fac-
tual accuracy compared to the other models. This
strong alignment between the ROUGE scores and
human preferences reinforces the model’s ability

to generate high-quality summaries that resonate
with both automatic metrics and human judgment.
The mT5 model, particularly in its quantized form,
struggled with articles containing complex sen-
tence structures or domain-specific terminology,
such as those in the ’Politics’ categories. This un-
derperformance may be attributed to the model’s
sensitivity to quantization and its limited adaptation
to the intricacies of the Nepali language. An exam-
ple of a successful summary generated by mBART
involved summarizing a political article where the
model effectively captured the key points while
maintaining fluency. In contrast, the mT5 model
produced an incoherent summary with incomplete
sentences, highlighting the model’s challenges in
handling complex topics.

Figure 3: Summaries generated by different models (1-
5)

Note: The highlighted entries in the above and
below table received the maximum number of

votes in the survey.

Figure 4: Summaries generated by different models (6-
10)
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Model ROUGE-1 ROUGE-2 ROUGE-L
P R F1 P R F1 P R F1

mBART+LoRA 0.3797 0.3517 0.355 0.211 0.196 0.1964 0.3684 0.3411 0.3443
4-bit quantized mBART+LoRA 0.3865 0.354 0.359 0.2163 0.1984 0.1999 0.3754 0.344 0.3488
8-bit quantized mBART+LoRA 0.3871 0.35 0.3574 0.2141 0.1941 0.1969 0.3754 0.3395 0.3466
mT5+LoRA 0.335 0.3248 0.3218 0.1746 0.1701 0.1675 0.3252 0.3154 0.3123

Table 6: ROUGE scores of different models on the test dataset
Note: The scores of the 4-bit quantized mT5+LoRA and 8-bit quantized mT5+LoRA models are not presented in the table as they
produced zero scores across all calculated metrics, indicating that these configurations were not effective for the task at hand.

6 Conclusion

This study represents a significant step forward in
addressing the challenges of abstractive summa-
rization for low-resource languages like Nepali. By
leveraging state-of-the-art multilingual transformer
models, mBART and mT5, alongside innovative
techniques such as Low-Rank Adaptation (LoRA)
and quantization, the research successfully gen-
erated high-quality Nepali news headlines. The
creation of a novel Nepali news dataset further
supports the advancement of NLP resources for
underrepresented languages.

The results demonstrated the superior perfor-
mance of the 4-bit quantized mBART model with
LoRA, which achieved high ROUGE scores and
received the most favorable responses in human
evaluations. This highlights its potential to de-
liver efficient and coherent summarization while
addressing computational constraints. However,
the mT5 model underperformed, indicating oppor-
tunities for further optimization tailored to Nepali’s
linguistic characteristics.

This work not only provides a practical frame-
work for summarization in low-resource settings
but also opens avenues for future exploration. En-
hancements in quantization strategies, integration
of diverse datasets, and the adoption of alternative
evaluation metrics can further refine summariza-
tion models. Moreover, expanding this research
to other South Asian languages can contribute to
creating inclusive NLP tools that cater to diverse
linguistic needs.

7 Limitations:

While this study provides significant insights into
the potential of multilingual transformer models
for abstractive summarization of low-resource lan-
guages like Nepali, it is not without its limitations.
These constraints highlight areas where further im-
provements and investigations are necessary to en-
hance the effectiveness and applicability of the pro-
posed methods. Below, we discuss the key limita-

tions and outline directions for future research:

1. While LoRA and quantization techniques ef-
fectively reduce computational costs, their
specific impact on linguistic characteris-
tics, such as Nepali syntax and orthogra-
phy, remains underexplored. Future studies
could analyze how these techniques influence
language-specific features and propose im-
provements for better adaptability.

2. The reliance on specific portals during dataset
creation may have introduced domain bias,
potentially limiting linguistic diversity. Ex-
panding the dataset to include a wider range
of sources across different domains could im-
prove model generalization and adaptability
in real-world applications.

3. The performance of mT5 models in this study
underscores the need for customized fine-
tuning and quantization approaches. Future
research could experiment with advanced
quantization levels, parameter-efficient tuning
methods, or hybrid models tailored to Nepali’s
linguistic complexities.

4. While ROUGE scores were utilized effec-
tively, additional metrics such as semantic co-
herence and logical consistency could enrich
the evaluation. Future studies should employ
more comprehensive metrics to better capture
the quality and depth of model-generated sum-
maries.
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A Appendix

A.1 Dataset Details

The dataset created as part of this study is
available at the following link.
https://www.kaggle.com/datasets/
dhakal2444/nepali-news-dataset

A.2 Models

• Pre-trained models:
The pre-trained models used as part of this
study is available at the following link.
mBART: https://huggingface.co/facebook/mbart-
large-50
mT5:https://huggingface.co/google/mt5-
base
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• Fine-tuned models:
The fine-tuned models created as part of this
study is available at the following link.
https://huggingface.co/collections/caspro/
summarization-models-for-nepali-language-
66c209bfac74db25dee47759
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Abstract

Despite growing global interest in informa-
tion extraction from scanned documents, there
is still a significant research gap concerning
Nepali documents. This study seeks to address
this gap by focusing on methods for extracting
information from texts with Nepali typeface or
Devanagari characters. The primary focus is
on the performance of the Language Indepen-
dent Layout Transformer (LiLT), which was
employed as a token classifier to extract infor-
mation from Nepali texts. LiLT achieved F1
score of approximately 0.87. Complementing
this approach, large language models (LLMs),
including OpenAI’s proprietary GPT-4o and
the open-source Llama 3.1 8B, were also eval-
uated. The GPT-4o model exhibited promising
performance, with an accuracy of around 55-
80% accuracy for a complete match, accuracy
varying among different fields. Llama 3.1 8B
model achieved only 20-40% accuracy. For
90% match both GPT-4o and Llama 3.1 8B had
higher accuracy by varying amounts for differ-
ent fields. Llama 3.1 8B performed particularly
poorly compared to the LiLT model. These
results aim to provide a foundation for future
work in the domain of digitization of Nepali
documents.

1 Introduction

As the development on complex NLP techniques
has progressed, Information Extraction from the
documents has also seen lots of development. Both
private as well as public companies are using dif-
ferent types of information extraction algorithms to
streamline their business processes. Development
of word representation techniques like Word2vec
(Mikolov et al., 2013). and self attention mecha-
nism (Vaswani et al., 2017) has highly impacted
information extraction.These advancements allow
for a more nuanced understanding of language by
capturing semantic relationships and contextual in-
formation. However, there are few challenges in

extracting information accurately from the docu-
ments. The challenges include first, information
present in the complex document can be present
in various places, there are many possible ways in
which information can be organized in 2d plane,
important information can be also represented in
document in visual way like by underlining the
words, italics word and bold word may represent
different meaning, even the size of the different text
can vary within single documents. Thereby mak-
ing information extraction from so called Visually
Rich Document (VRD) more challenging. While
a good model for information extraction uses vi-
sual and layout information, along with a deeper
understanding of the language, to extract informa-
tion effectively, large language models like GPT
(Radford, 2018) and LLaMA (Touvron et al., 2023)
excel as well. Their vast scale and deep linguistic
understanding allow them to perform exceptionally,
even when faced with minor OCR errors, as they
can often correct these mistakes seamlessly (Zhang
et al., 2024).

Most of the document information extraction
(IE) systems today use either sequence-tagging or
sequence-generation methods. In sequence-tagging
(Wang et al., 2023; Rasmus Berg Palm and Winther,
2017), each word is labeled with Inside-Outside-
Begin (IOB) tags (Ramshaw and Marcus, 1995).
This method helps to find and locate simple en-
tities in the text. But, it is not easy to use these
methods for extracting complex, nested entities.
Pre-training of transformer based models with text
and layout information (Xu et al., 2020) has been
proven to be effective in a variety of visually-rich
document understanding tasks due to its effective
model architecture and the advantage of large-scale
unlabeled scanned/digital-born documents.Models
like LayoutLMv2 (Xu et al., 2022) are trained on
the interaction among text, layout, and image in a
single multi-modal framework. Specifically, with a
two-stream multi-modal Transformer encoder.
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On the other hand, sequence-generation meth-
ods (Kim et al., 2022; Powalski et al., 2021) treat
extraction like generating text using autoregressive
decoders (Sutskever et al., 2014). These methods
can handle complex entities but cannot tell where
exactly the entities are located in the document.
Also, both methods need a lot of human effort to
label the data correctly, which makes the process
expensive.

The purpose of this study is to examine and eval-
uate few approaches for extracting key information
from these documents. To achieve this, we exper-
imented with LiLT (Wang et al., 2022) , which is
a transformer-based model that uses layout infor-
mation as well visual clues in addition to textual
content. Large language models like GPT4-o (Ope-
nAI, 2023) and Llama3.1 8b (LLaMA Team, AI
@ Meta, 2024) were also evaluated, comparing the
results and assessing the extraction quality.

The Language-Independent Layout Transformer
(LiLT) is a model designed for structured docu-
ment understanding, independent of language con-
straints. LiLT decouples text and layout informa-
tion, optimizing them jointly during pre-training
and re-coupling them during fine-tuning. This ap-
proach allows the model to learn and integrate
both textual and layout features effectively. LiLT’s
Bi-directional Attention Complementation Mecha-
nism (BiACM) enhances the interaction between
text and layout modalities, ensuring efficient cross-
modality cooperation.

We chose LiLT due to its robust pre-training on
tasks like key point location, cross-modal align-
ment, and masked visual-language modeling. This
enables it to effectively understand document lay-
outs and content. LiLT’s modular design allows
for seamless integration with various pre-trained
textual models, making it versatile for multilingual
structured document tasks.

This work aims to improve accessibility and
preservation of Nepali documents by facilitating
their digitization. We hope this work lays the
groundwork for future research and the develop-
ment of more accurate and efficient extraction
methods for Nepali texts.

2 Related Works

The field of information extraction has seen signifi-
cant advancements from early rule-based systems
to sophisticated machine learning and deep learn-
ing models. Initial approaches relied on rule-based

methods, utilizing extensive lexicons and rules for
tasks such as Named Entity Recognition (NER) and
Part-Of-Speech (POS) tagging (Sarawagi, 2008;
Falk Brauer and Barczynski, 2011; Deckert et al.,
2011; Bertin Klein, 2019). The evolution to ma-
chine learning techniques, and subsequently deep
learning models, introduced more nuanced ap-
proaches by leveraging learned token representa-
tions and reducing the need for manual feature
engineering.

Information extraction from VRD is a difficult
task, and there are many ways to approach it. A lot
of methods break the problem into two steps. First,
they use an Optical Character Recognition (OCR)
service to recognize the text in the document. Then,
they parse the text to find the important entities.
(Xu et al., 2022) and (Appalaraju et al., 2021) han-
dle this parsing step by using Named Entity Recog-
nition (NER). They use a transformer encoder to
label each token in the text with IOB tags, which
helps to extract and locate simple entities in the
document.

Other methods treat extraction as a sequence
generation problem. For example, (Powalski et al.,
2021) adds an auto-regressive decoder on top of a
text-layout-image encoder, which is based on T5
(Raffel et al., 2023). This method helps to predict
complex, hierarchical entities but does not tell us
exactly where the entities are located in the docu-
ment.

Self-supervised learning methods have seen a
lot of development in the last several years, it is
especially true in the area of natural language pro-
cessing (NLP) pre-trained language models. Build-
ing on these achievements, a substantial amount of
recent research has been done on structured doc-
ument pre-training. For example, by adding 2D
spatial coordinate embeddings to the BERT model,
LayoutLM (Xu et al., 2020) improved document
understanding. LayoutLMv2 (Xu et al., 2022) in-
vestigated additional pre-training tasks to better use
unlabeled document data and treated visual features
as unique tokens, thus improving upon the original
LayoutLM model. Furthermore, LiLT introduced
a more flexible and reliable way to comprehend
multilingual documents that contains information
in a structured format. Another notable model,
LayoutXLM, extends these capabilities to multiple
languages by incorporating cross-lingual embed-
dings to handle diverse document layouts (Xu et al.,
2021). Despite these advancements, all these mod-
els have predominantly focused on English and
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other major languages, with limited research ad-
dressing their performance on Nepali documents.

In addition to specialized models like LiLT,
Large Language Models (LLMs) are also being
used for information extraction task (Perot et al.,
2024) LLMs such as GPT-4o and Llama 3.1 8B of-
fer valuable alternatives. These models provide
flexibility and ease of implementation, making
them useful for initial extraction tasks. One of
the great advantages of using LLMs is that they
are trained on large corpus of data and they un-
derstand multiple languages making them highly
suitable for document understanding task. While
LLMs may not achieve the same level of accuracy
as specialized models in token classification, they
offer scalable solutions and can adapt to various
languages with minimal retraining (Naveed et al.,
2023; Brown et al., 2020).

Despite significant advancements in information
extraction techniques, research focusing on Nepali
documents remains sparse. Most existing studies
and models, including LayoutLM (Xu et al., 2020),
LayoutLMv2 (Xu et al., 2022), and LayoutXLM
(Xu et al., 2021), have predominantly addressed
languages with extensive resources and research
focus, such as English. To address this gap, we de-
veloped a custom dataset comprising 600 scanned
Nepali notices, sourced from various governmental
and non-governmental institutions. This dataset
includes images and manually annotated text files,
providing a unique resource for evaluating infor-
mation extraction techniques on Nepali documents.
The creation of this dataset is crucial for assessing
the performance of existing models on Nepali texts
and for exploring new approaches tailored to this
linguistic context.

3 Methodology

In this section, we present a systematic method-
ology for extracting structured data from scanned
Nepali notices. We explore two distinct approaches:
the first leverages the Language-Independent Lay-
out Transformer (LiLT) model fine-tuned for token
classification, and the second utilizes Large Lan-
guage Models (LLMs) for information extraction.
Each approach employs different techniques and
tools to convert unstructured text data into a struc-
tured JSON format, which is useful for various
applications such as digital archiving and data anal-
ysis.

3.1 Dataset

For evaluating the processes, we prepared a dataset
of 600 notices using images and PDF downloaded
from various governmental and non-governmental
institutions like the Institute of Engineering, In-
stitute of Medicine, Department of Transportation,
Department of Land Management and Affairs, Min-
istry of Home Affairs, National Examination Board,
National Disaster Risk Reduction and Management
Authority, Department of Transportation Manage-
ment, Ministry of Finance, and Nepal Police Per-
sonnel Record. These images were publicly avail-
able on the internet. Only the first page of the PDF
was taken and converted to an image.

These documents are typically formatted in a
visually structured yet information-rich manner.
Most of these documents contain headers that
prominently feature the issuing authority name/l-
ogo at the top, often alongside a date and authority
who signed a document at the bottom. The content
is predominantly textual, written in formal Nepali
language, and includes specific sections such as
the subject line and detailed body text. Their vi-
sual richness lies in the consistent use of logos,
stamps, and proper alignment, while the textual
content is dense and context-specific. These char-
acteristics make them suitable for evaluating and
comparing different information extraction tech-
niques, especially when dealing with Nepali text,
semi-structured layouts, and a mix of numeric and
textual information.

We chose Subject, Date, and Signed By because
they cover key information in the document. The
Subject explains the purpose, the Date shows when
it was issued, and Signed By identifies the authority
behind it. These fields represent both structured
and semi-structured data, making them useful for
testing how well models extract important details.

Google OCR was used to get the text and the
bounding boxes from the images. All images were
manually annotated. The dataset consists of images
of scanned receipts and the following text files.

• dataset_bbox.txt contains the normalized
bounding boxes for the text detected by OCR.

• dataset_labels.txt contains the labels for the
"signed_by", "date" and "subject" field in the
IOBES format.

• dataset.txt contains the mapping between the
text detected by OCR and the labels.
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Figure 1: LiLT as a token classifier

• dataset_image.txt contains the mapping be-
tween the text detected by OCR, the bounding
boxes and the original image names.

Each text file has empty newlines that separate the
details of each individual image.

3.2 LiLT-based Token Classification

The LiLT-based approach is our primary method-
ology and focuses on leveraging the Language In-
dependent Layout Transformer model. This model
is fine-tuned specifically for the token classifica-
tion task using a custom dataset of Nepali notice
documents. The process involves several critical
steps:

3.2.1 Model Fine-tuning
The fine-tuning of the Language Independent Lay-
out Transformer (LiLT) model is performed with
key parameters to optimize performance. Data
exported after annotation were pre-processed be-
fore using it for finetuning. This pre-processing
involved normalizing bounding box coordinates
on a scale of 0 to 1000. The normalization of X
and Y values was performed using the following
equations:

Xnorm = X
imagewidth × 1000,

Ynorm = Y
imageheight × 1000

For tokenization, the tokenizer from nielsr/lilt-
xlm-roberta-base was utilized due to its support
for multiple languages. This tokenizer specifi-
cally handles multilingual text, making it partic-
ularly suitable for scenarios that involve process-
ing text in various languages such as low-resource
Nepali language text. This tokenizer combines the
Language-Independent Layout Transformer (LiLT)
with XLM-RoBERTa (Conneau et al., 2019), which
is a RoBERTa model trained on 100 languages. Af-
ter pre-processing the data and choosing the tok-
enizer that supports texts in the Nepali language,
model weights from the pre-trained LiLT model
were loaded and the model was trained for 15
epochs with a learning rate of 5× 10−5. A batch
size of 4 was used for both training and evaluation,
considering memory constraints. The final model
selected is the one with the highest F1 score on
the validation set, ensuring optimal performance in
token classification tasks.
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3.2.2 Token Classification
After fine-tuning, the LiLT model is employed for
token classification on new Nepali notice docu-
ments. In this phase, the model processes text that
has been digitized through OCR. Each token in
the OCR-processed text is classified into specific
categories that were learned during the fine-tuning
phase. This classification involves identifying to-
kens relevant to different information fields such as
dates, subjects, and signatories. The output of this
process is a set of labeled tokens, which are then
used to extract and organize structured information
from the raw text. We noticed that an error intro-
duced while performing OCR is also propagated
to the token classification step, as the token that
has an error can sometimes be wrongly classified
as a different label. This structured data is cru-
cial for transforming unstructured documents into
a format that supports efficient data organization,
retrieval, and subsequent analysis. By leveraging
the model’s ability to classify tokens accurately, we
can effectively automate the extraction of meaning-
ful information from Nepali documents.

3.3 Large Language Model (LLM) Based
Approach

The LLM-based approach represents an alternative
method for information extraction, utilizing large
pre-trained language models. Use of LLM falls
under the sequence generator approach for infor-
mation extraction. LLMs work like autoregressive
decoders but modern LLMs are trained to follow in-
structions provided in the form of text which is also
called prompt. An autoregressive decoder refers to
a type of model in machine learning, particularly
in sequence generation tasks, where each output to-
ken is predicted sequentially based on the previous
tokens. This approach is characterized by its ease
of implementation and reliance on the natural lan-
guage understanding capabilities of models such as
OpenAI’s ChatGPT 4o and the Llama 3.1 8 billion
parameter model. The methodology consists of the
following stages:

3.3.1 Optical Character Recognition (OCR)
The process begins with OCR technology to extract
the textual as well as layout information of scanned
Nepali notices. This step converts images of text
into machine-encoded text, which is necessary for
further processing. Google OCR is used to ensure
accurate text recognition of the Devanagari script.
Google OCR works very well with documents hav-

ing both English and Devnagari characters. OCR
that supports both types of text in a single docu-
ment is required as we have such documents in
our dataset. In addition to these Google OCR also
detects text that is at some angle instead of a com-
pletely horizontal text segment. Furthermore, We
observed that Tesseract OCR struggled with pro-
cessing documents featuring white text on a black
background, while Google OCR performed effec-
tively under these conditions. This is the reason we
ended up using Google OCR for our research and
it has positively impacted the performance of our
extraction system.

3.3.2 Prompt Generation
Following OCR, a structured prompt is created to
guide the extraction process. The prompt is de-
signed to instruct the LLM to identify and extract
key pieces of information, including the date of
publication, subject matter, and signatory details.
This prompt ensures that the LLM can focus on
extracting relevant data accurately. Listing 1 shows
the exact prompt that we used for extracting in-
formation from the document. Note that ‘OCR‘
is a placeholder that will contain the OCR of the
document that we want to extract. Moreover, it is
to be noted that there is no specific reason for us-
ing this exact prompt, we tried and tested different
prompts and this was a relatively good result, hence
was used for our task. For instance, specifying a
datatype as a comment in the SCHEMA section
yielded better results.

Listing 1: Extraction Instructions

Please extract the following
information from the provided
notice: the date , subject , and
signed_by fields. The final

result should be in JSON
format. The date refers to the
publication date of the

notice , the subject represents
the main topic or title of

the notice , and signed_by
refers to the person who
signed the notice. The keys
should be in English , and the
values should be in Devanagari
script. Your output should

strictly follow this format:

SCHEMA:
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{
"date": "", // string
"subject ":"", // string
"signed_by ": "" // string

}

IMPORTANT NOTES:
If any of the fields are not

present in the notice , you
must leave the corresponding
value empty.

OCR text:
{OCR}

Extraction Results:

3.3.3 Language Model Inference (LLM
Inference)

In this stage, the LLM processes the OCR text
and infers the required information based on the
structured prompt. The LLM’s advanced language
understanding capabilities enable it to parse the text
and extract relevant data points with high precision.
Models like ChatGPT 4o and Llama 3.1 are em-
ployed for this inference task. To ensure consistent
and accurate results, the temperature parameter for
both ChatGPT 4o and Llama 3.1 was set to zero.
This setting minimizes the model’s randomness,
leading to more deterministic and predictable out-
puts.

3.3.4 Decoding

The final stage involves decoding the information
inferred by the LLM into a structured JSON for-
mat. JSON is chosen for its ease of use in data
interchange and integration with various applica-
tions. As we can see in Figure 2, the output of
LLM may contain irrelevant text in addition to the
extracted information. We use a simple algorithm
to detect the start and end of the JSON and ex-
tract the relevant part from this text. The structured
JSON output provides a clear representation of the
extracted data, facilitating its use in digital systems
and databases.

4 Results

Two approaches were used for evaluating the per-
formance of our system. For the fine-tuned LiLT
model, we used classification metrics as we mod-

eled the information extraction task as a token clas-
sification problem.

The final results, as summarized in Table 1 and
Table 2, demonstrate the effectiveness of the LiLT
model in accurately extracting information from
Nepali scanned documents. The model achieved a
precision of 89.69%, a recall of 88.20%, and an F1
score of 87.65%.

Table 1: Final Performance Metrics of the Fine-Tuned
LiLT Model

Metric Value
Precision (%) 89.69
Recall (%) 88.20
F1 Score (%) 87.65

Moreover, to effectively evaluate the informa-
tion extraction system using LLMs, for each output
generated by the model, a score of 0 is assigned for
no match and 1 for a complete match. The Leven-
shtein distance is used to calculate the similarity
score. Levenshtein distance is the minimum num-
ber of edits, deletions, and substitutions needed to
transform one string into another.

similarity = 1− L(a, b)

max(|a|, |b|) (1)

where a and b are strings and L is the Leven-
shtein function.

The matching algorithm is especially useful for
evaluating text extraction systems, as it allows for
a nuanced assessment of the system’s output by
quantifying the degree of similarity to the expected
result. We evaluated our model by taking 0.9 as
a threshold and again taking a complete match.
These metrics are mentioned in Table 3

These metrics reflect the overall accuracy and re-
liability of our information extraction system when
applied to the dataset of 600 documents collected
from institute notice boards.

To compare the result of LiLT model with the
LLMs, we transformed the output of token classi-
fication to match the JSON output extracted using
LLMs. Table 3 shows that LiLT outperforms LLMs
on our dataset.

We observe that the Llama model, with its 8
billion parameters, doesn’t perform as good as the
GPT-4o model, which boasts a massive 200 billion
parameters. This performance gap might be due
to the large disparity in the size of the models,
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Figure 2: Filtering out JSON from LLM Output

Figure 3: LLM System Process Flow Diagr In our framework, the text and layout information is first decoupled and
jointly optimized during pre-training, and then re-coupled for fine-tuning

Table 2: Entity-Wise Performance Metrics of the Fine-Tuned LiLT Model

Entity Precision (%) Recall (%) F1 Score (%)
Date 91.80 94.12 92.95
Signed By 90.12 89.02 89.57
Subject 87.18 84.30 85.71

the volume of training data, and the computational
resources used.
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Table 3: Match Accuracy on Notices Dataset

Label 90% Match 100% Match
LiLT GPT-4o Llama-8B LiLT GPT-4o Llama-8B

Date 0.81 0.56 0.44 0.78 0.55 0.42
Subject 0.93 0.81 0.62 0.27 0.25 0.20
Signed By 0.87 0.85 0.37 0.71 0.66 0.30

5 Limitation

In this study, our method heavily relies on the input
of text lines and bounding boxes, often generated
through Optical Character Recognition (OCR) sys-
tems. This presents certain limitations, particularly
in its inability to handle non-textual entities, such
as images embedded within documents, which our
approach does not account for. Additionally, the
system is sensitive to common OCR challenges, in-
cluding misinterpretations of reading order, incor-
rect grouping of text lines, and recognition errors.
These OCR-related inaccuracies can adversely af-
fect the performance of our model, especially in
data-rich environments where precision in text ex-
traction is critical. In addition to the Layout trans-
former, our approach leverages a Large Language
Model (LLM) as an autoregressive decoder to ex-
tract information from the document. The LLM
predicts tokens sequentially, generating outputs
based on the given context. While this generative
capability enables effective information extraction,
it introduces a significant challenge: difficulty in
localizing the extracted tokens back to their exact
positions in the original document. Since LLMs
are designed for token generation rather than pre-
cise token localization, mapping the output directly
to specific document sections becomes complex,
potentially affecting the interpretability and trace-
ability of the extracted information.

With the LiLT transformer model, we have a
limit of 512 tokens, which forces us to leave out
tokens from the middle part of documents. This
decision was made because, in most cases, the key
information we need is found at the top or bottom
of the document, while the middle part tends to be
less useful for our task. By focusing on these sec-
tions, we ensure the model concentrates on what’s
important, though there is a chance that we might
miss some relevant information in the middle. On
the other hand, using LLM-based methods requires
much larger models that can handle thousands of to-
kens to cover the whole document. While this leads

to better extraction results, it also increases compu-
tational costs significantly, making these methods
more difficult to scale or apply in high-volume situ-
ations. Finding a balance between token limitations
and computational resources remains a challenge
for our approach.

6 Conclusion and Future Works

In conclusion, our research demonstrates the ef-
fectiveness of two distinct approaches for extract-
ing structured information from Nepali scanned
documents. The fine-tuned Language Independent
Layout Transformer (LiLT) model achieved high
performance with a precision of 89.69%, recall
of 88.20%, and an F1 score of 87.65%, indicat-
ing its robust capability in token classification and
information extraction. In comparison, the large
language models (LLMs) GPT-4o and Llama 3.1
8B showed variable accuracy, with GPT-4o per-
forming generally better than Llama 3.1 8B and
both GPT-4o and Llama 3.1 8B performing not
as good as LiLT model. Despite their lower accu-
racy, LLM-based methods offer advantages such as
ease of implementation and flexibility, which can
be valuable for initial information extraction tasks.
Integrating human feedback could further enhance
the performance of LLMs and improve the overall
accuracy of the system.
Thus, while the LiLT model provides higher pre-
cision, LLMs present a practical alternative with
the potential for refinement and adaptation. To
improve the overall accuracy of the LLM system,
we can try several other methods. For instance, in
the decoding phase of the LLM-based approach,
we can use other approaches for example, instead
of guiding the model to get the data that matches
the schema provided in the prompt, we can ask
the model to get all possible key-value pairs, and
then pick the value corresponding to the key we are
interested in.
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Abstract

Continual learning has emerged as an impor-
tant research direction due to the infeasibility
of retraining large language models (LLMs)
from scratch in the event of new data availabil-
ity. Of great interest is the domain-adaptive
pre-training (DAPT) paradigm, which focuses
on continually training a pre-trained language
model to adapt it to a domain it wasn’t origi-
nally trained on. In this work, we evaluate the
feasibility of DAPT in a low-resource setting,
namely the Nepali language. We use synthetic
data to continue training Llama 3 8B to adapt
it to the Nepali language in a 4-bit QLoRA
setting. We evaluate the adapted model on its
performance, forgetting, and knowledge acqui-
sition. We compare the base model and the
final model on their Nepali generation abili-
ties, their performance on popular benchmarks,
and run case-studies to probe their linguistic
knowledge in Nepali. We see some unsurpris-
ing forgetting in the final model, but also sur-
prisingly find that increasing the number of
shots during evaluation yields better percent
increases in the final model (as high as 19.29%
increase) compared to the base model (4.98%),
suggesting latent retention. We also explore
layer–head self-attention heatmaps to estab-
lish dependency resolution abilities of the final
model in Nepali. All code will be available at
github.com/sharad461/DAPT-Nepali.

1 Introduction

Advancements in natural language processing
(NLP) have enabled large language models (LLMs)
to generate human-like text, follow instructions and
perform well on a wide range of complex under-
standing tasks (Brown et al., 2020; OpenAI, 2024;
Dubey et al., 2024). A big driver behind the contin-
ued success of LLMs is the fact that scaling LLMs
(increase in parameter count and dataset size) con-
tinues to provide decent returns on all performance
benchmarks (Kaplan et al., 2020). This scaling-up,

however, affects the accessibility and availability
of these models and comes with its myriad issues
(Bender et al., 2021). Very large language models
require huge amounts of resources, have a large
carbon footprint (Strubell et al., 2019; Patterson
et al., 2021), and training them is feasible only for
languages with large quantities of high-quality data
and reasonable access to compute. It is costly also
to perform inference on them.

Besides scaling, the other direction is generaliz-
ability of models with focus on optimal use of data.
Given how human text data is projected to run out
soon (Villalobos et al., 2024), methods like repeat-
ing data, using synthetic data, and using code data
are being explored with good returns (Muennighoff
et al., 2023; Shimabucoro et al., 2024; Aryabumi
et al., 2024). Many of these tools have been ex-
plored for research in low-resource languages.

Nepali is a low-resource language. (Arora et al.,
2022) classify Nepali among the "Scraping-By"
languages in South Asia. While the frontier LLMs
today can understand and generate Nepali (Ope-
nAI, 2024), they do not officially support it. One
major issue is tokenization: Nepali tokenization is
costly in models like GPT4. While NLP research
in South Asian languages has picked up recently,
many languages are still behind and, as a result,
low-resourced.

One possible way to ease the data-compute bind
for these low-resource languages (Nepali included)
is the use of continual learning (CL) for domain
adaptation on high-resource LLMs (SarvamAI,
2023; Gururangan et al., 2020). The idea behind
continual learning is to incrementally update an
LLM with availability of new data so that the old
knowledge isn’t forgotten and the new knowledge
can be properly assimilated into the model.

Domain adaptation with CL involves continued
training of an LLM so that the knowledge of the
base LLM can be repurposed to another domain.
Since the knowledge of the base model can be
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reused, we do not need large amounts of world
knowledge data in the new domain (or language).
Also, because adaptation requires training only
a fraction of the total parameters in the original
model, the compute requirements are significantly
reduced.

In this work, we focus on domain adaptation
of the Llama 3 8B (Meta, 2024) model to the
Nepali language using synthetically generated data.
We continually train the Llama model, run experi-
ments to determine performance, catastrophic for-
getting, and linguistic knowledge acquisition of the
model after the domain adaptation. We compare
the adapted model against the original model on
several benchmarks. Additionally, we analyze the
attention heatmaps to gauge the knowledge of the
adapted model. The emphasis of this work is on
evaluating DAPT methods to adapt an LLM to a
low-resource scenario with only synthetic data.

The main contributions of this work are:
1. We develop and test out methodologies to per-

form domain-adaptive continual pretraining
on an open-weights model using only synthet-
ically generated data.

2. We evaluate and compare the performance of
the adapted model against the base model.

3. We interpret the linguistic knowledge of the
final model on the new task.

2 Related Work

Continual Learning. Continual learning is an im-
portant research direction because its goal is to
make it possible to train large models on new data
efficiently, often allowing lifelong learning LLMs.
This could take place in the form of adding new
information to it, teaching it a new subject, or adapt-
ing it to a different domain.

Domain-adaptive pretraining (DAPT) has been
known to provide performance gains in low-
resource settings (Gururangan et al., 2020; Çağatay
Yıldız et al., 2024). This has been extended to
multilingual domain-adaptive pretraining where a
single multilingual model is trained for a specific
domain, which outperforms general models on said
domain (Kær Jørgensen et al., 2021).

Synthetic data has also been applied for good per-
formance gains in a continual pretraining domain-
adaptation strategy (Zhang et al., 2020).

However, a problem in continual learning is
catastrophic forgetting, which happens during full
finetuning probably due to retraining of weights or

because a model has reached knowledge saturation
and to learn any more information it forgets old
information (Çağatay Yıldız et al., 2024).

Continual learning has great potential in
unlocking areas in low-resource language research.

Synthetic data. Data augmentation using
synthetic methods is central to research in
low-resource languages. In NLP, some methods
for synthetic data generation are backtranslation
(Sennrich et al., 2016), paraphrasing, synonym
replacement, sentence-level replacement, random
insertion, etc. (Feng et al., 2021) and (Chen
et al., 2023) provide detailed studies on methods
available for data augmentation for NLP tasks.

Compared to real data, synthetic data has its
own set of advantages and disadvantages. While
synthetic data makes low-resource tasks accessible,
scalable, and overall cost-effective, it might not
always reflect realistic scenarios. There could often
be challenges with validating synthetic data and it
can magnify biases of the original model.

Organic data available for training purposes is
finite and (Villalobos et al., 2024) predict we will
run out of all publicly available text data as soon
as 2026. Guided synthetic data generation, which
will be an important part of future data acquisition
technique, is a research direction where data is
generated toward non-differentiable objectives
(Shimabucoro et al., 2024).

Low-rank adaptation. LoRA (Hu et al.,
2021) and QLoRA (Dettmers et al., 2023) are
fine-tuning techniques that reduce the number
of trainable parameters in a model, making
training faster and memory-efficient. Instead of
updating all weights in a model, these methods
train low-rank matrices that capture task-specific
information, freezing the model itself. In addition
to the lower rank adaptation in LoRA, QLoRA
quantizes the model so that it requires even lesser
memory to train. The tradeoff in performance
between full finetuning and low-rank techniques
has been well-established (Biderman et al., 2024;
Xia et al., 2024), and more work is being done in
this space (Zhao et al., 2024; Lialin et al., 2023),
but in a resource-constrained scenario, QLoRA
makes training large models feasible.

Knowledge in attention heads. Many in-
terpretative studies have been applied to the
attention mechanism used in Transformer ar-
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chitectures. (Voita et al., 2019) investigate the
function of attention heads in the multi-head
self-attention in encoders and try to interpret how
they contribute to the performance of the entire
network. They also prune attention heads in an
ablation study. Similarly, to analyze how well the
attention mechanism models a language and its
syntax, (Vig and Belinkov, 2019) evaluate attention
heads to find that different layers in a model
specialize in different parts-of-speech tags. They
use BertViz (Vig, 2019) for their experiments. (Liu
et al., 2019) study the contextual representations
generated by several popular models to understand
why they are so effective in solving NLP tasks.
They use seventeen probing tasks to establish the
transferability of the representations and what
linguistic knowledge is stored and in which part of
the model.

3 Method

We use parallel data in Nepali–English (instead
of Nepali-only text) to perform continual pretrain-
ing. Our aim here is to align the model and its
knowledge to Nepali since it already has an under-
standing of English. We generate the parallel data
using synthetic methods, perform pretraining on
this data, and then finetune.

3.1 Data Generation

We use Nepali text available online (news reports,
essays, etc.) collected in datasets like OSCAR
(Abadji et al., 2022) and preprocess it for trans-
lation. For the translation system, there were a
few alternatives to choose from: NLLB (Costa-
jussà et al., 2022), IndicTrans2 (Gala et al., 2023),
Google Cloud Translate. We use the Flores test-set
for Nepali–English (Guzmán et al., 2019) to eval-
uate the open-source systems. We also compare
scores across the different model sizes available
and the various quantized versions of the models.
We decided to go with 8-bit NLLB for the trans-
lation. IndicTrans2 performed marginally better
in terms of BLEU scores, but NLLB had very lit-
tle computational overhead and supported larger
batches out-of-the-box.

Since we also plan to later finetune the model
on Nepali instructions and since there aren’t in-
struction sets for Nepali, we also translate English
instruction sets to Nepali. We use IndicTrans2 for
this. For the instruction set, we translate Alpaca
(Taori et al., 2023), Databricks Dolly (Conover

et al., 2023) and WebGLM-QA (Liu et al., 2023)
to Nepali. To ensure the quality of the synthetic
instruction sets, we backtranslate the instructions
to English (again using IndicTrans2) and calculate
the chrF++ score between the original and the back-
translated sets. We apply a chrF++ cut-off of 50
and all samples with lower scores were discarded.

At the end of this step, we have 5M pairs
of Nepali–English parallel paragraphs and 114K
triplets of (input, instruction, output) instructions.

3.2 Training
We perform 4-bit QLoRA continual pretraining of
a Llama 3 8B model on the synthetic parallel data
we generated in 3.1. We use Unsloth (Han, 2023).
We pretrain the model with the task to translate
from English to Nepali. We do this because the
English part of the parallel data is synthetic and the
Nepali part is organic.

We loosely follow the steps suggested by (Sarva-
mAI, 2023) and divide the pretraining process into
two steps:

3.2.1 Pretraining using translation
The aim of this step is to familiarize the model with
Nepali using the translation data and the model’s
own knowledge in English. We train the model to
translate from English to Nepali. We use this trans-
lation direction because for our parallel data, En-
glish is synthetic and Nepali is organic. By training
the model to generate the (non-synthetic) Nepali
given the (synthetic) English, we teach it to gen-
erate Nepali as originally written. The alternative
would be to teach the model to generate system-
generated English.

For this step, we set the rank to 128, which se-
lected 335M parameters to train. We pretrain the
model on 1.5M paragraph pairs for this first task.

3.2.2 Bilingual next token prediction
Second, we train the model on a bilingual next to-
ken prediction task. This is the standard next token
prediction task with sentences ordered in alternate
language. We choose the next 1.5M paragraph
pairs and consolidate each of the pairs such that
every sample paragraph switches language every
sentence. If the first sentence in a paragraph is
Nepali, the second picks up in English, then back
to Nepali. An example paragraph would be:

Before the unification of Nepal, the
Kathmandu Valley was known as Nepal.
n�pAl fNdko sVFk u(pEtt aEnEct
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C। But it can be dated back to the fourth
century AD.

The training settings are much the same for this
step as the first step. The presumption here is that
instead of training with a Nepali next token pre-
diction task, if we leverage the English knowledge
already present into the model, the training should
be more effective. (SarvamAI, 2023) found that a
model trained with this objective performed better
than a model trained on the standard token predic-
tion objective on 5X more data.

3.3 Finetuning

After these steps aligning the model (3.2.1 and
3.2.2) to the Nepali language, we perform a su-
pervised finetuning step. We perform a QLoRA
finetuning lower-rank than both these pretraining
steps. We set the rank to 16. This updates around
41M parameters in the model. The instruction data
we generated in 3.1 is used to finetune the model
here. We choose to perform finetuning on a mixed
instruction set because we want the model to learn
both Nepali and English instructions.

4 Performance Study

After the pretraining followed by finetuning, we
perform experiments on both the base model
(Llama 3 8B 4-bit) and the continual trained model
with the view to answer the following research
questions:
Q1. Has the model learned Nepali?
Q2. Has the model retained its knowledge of En-

glish? What does catastrophic forgetting look
like?

Q3. From a linguistic perspective, how well does
the new model model the Nepali language?

5 Experimental Setup

5.1 LM Evaluation Harness

LM Evaluation Harness (Gao et al., 2024) is a
framework for evaluating language models. It sup-
ports generative LLMs trained on transformers,
GPT-NeoX, and Megatron-DeepSpeed and as of
writing it supports more than 60 academic bench-
marks to run evaluations on. For our task, we focus
on English benchmarks and evaluate first the base
model, then the adapted model in order to quantify
the change in model knowledge and performance.

5.2 BertViz
BertViz (Vig, 2019) is a tool designed to help
visualize attention in language models. Origi-
nally designed to support only BERT-type models,
decoder-only and encoder-decoder model support
was added later. It provides a user-friendly inter-
face to explore and interpret the attention patterns
within the model, offering valuable insights into
how LLMs process and relate different parts of the
input with itself or with the output, facilitating in
interpretative study of LLMs.

5.2.1 Attention pooling for word tokens
Since Nepali is not officially supported by the
Llama 3 tokenizer, the token fertility of Nepali
is high. This should be true for many other South
Asian languages as well. The study of the atten-
tion maps is complicated by this because higher the
tokens per word the more difficult it is to map atten-
tion between the tokens. Higher fertility not only
complicates evaluation, but also makes inference
and training costly.

To address this issue, we experimented with
methods to pool the token attentions in order to
construct word attentions. We applied max-pooling
and mean-pooling. For max-pooling, for every
Nepali word we take the element-wise max be-
tween the vectors corresponding to each constituent
token to get the word attention. For mean-pooling,
we take the element-wise mean.

Our experiments show max-pooling to be more
suitable. We found mean-pooling normalizes atten-
tion weights to a great degree, decreasing variance.
Thus, for our studies, we max-pool the token atten-
tions to get word attention.

5.3 Questions
For Q1, we prompt the base and final models with
a set of Nepali questions to generate answers. We
then use GPT-4o to score these responses. Auto-
matic evaluation of LM generations has been used
with good results due to the multilinguality of fron-
tier language models. GPT4 and GPT-4o perform
well even in languages they do not officially sup-
port, Nepali included (OpenAI, 2024; Romanou
et al., 2024; Hada et al., 2024). We let GPT-4o
score the answers on different qualities on scales of
0-10. We analyze the score distributions to answer
Q1.

For Q2, we use LM Evaluation Harness to eval-
uate the performance of both the models on sev-
eral English benchmarks and study how the scores
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(a) Scores for base model (b) Scores for our model

(c) Base model (d) Our model

Figure 1: GPT4o scores for Nepali answers generated by the base model (Llama 3 8B 4-bit) and our model on five
attributes: correctness, grammar, usability, hallucination and overall quality. Empty generations from the models are
scored 0 on all attributes. c) and d) are the distribution of scores among the attributes with medians and outliers.

change, or do not. This gives us insight into the for-
getting in the final model. Though the base model
was trained on eight languages, we only focus on
its retention of English-language knowledge. We
evaluate the model on MMLU (Hendrycks et al.,
2021), ARC (Clark et al., 2018), Winogrande (Sak-
aguchi et al., 2019), and TruthfulQA (Lin et al.,
2022) benchmarks.

Q3. Dependency relations are an important fea-
ture of languages. The ability of a language model
to resolve a language can be studied by analyzing
the layer-head attentions of the model. We use
BertViz to analyze the models at the layer- and
attention head–level to accomplish this.

We curate Nepali sentences focusing on adjec-
tives and pronouns to study how the layers in the
final model encode the information about depen-
dency relation in the sentences. We visualize self-
attention in the model.

6 Results

To answer Q1, we evaluate text generated by the
base model and our model based on five attributes:

correctness, grammatical correctness, usability, hal-
lucination tendency, and overall quality.

First, we prompt both the models to answers 78
Nepali questions extracted from a traffic license
exam in Nepali. Once we have the generated out-
puts, we let GPT-4o grade each generation on a
scale of 0–10, for all five attributes.

The score distributions in the charts show the dis-
tinction between the two models. The base model
(Figure 1a) shows a heavy concentration of scores
at 0-1 across all metrics. This suggests that the base
model’s Nepali generation abilities are limited.

Our model has a more balanced score distribu-
tion (Figure 1b). While some generations still re-
ceive low scores, we observe higher scores overall
compared to the base model. This is specifically
evident in the scores for grammatical correctness.
Our model shows strong performance here, with
many generations scoring 8 or above, suggesting
the model has learned how Nepali sentence are
structured.

Hallucination scores demonstrate that our model
has a higher median compared to the base model.

148



Our model Base (Llama 3 8B 4-bit)
0-shot 5-shot 0-shot 5-shot

MMLU 0.3506 0.3462 (−1.25%) 0.6056 0.6340 (+4.69%)
ARC-Easy 0.6271 0.7020 (+11.94%) 0.7950 0.8346 (+4.98%)

ARC-Challenge 0.3183 0.3797 (+19.29%) 0.5017 0.5179 (+3.23%)
Winogrande 0.5801 0.6275 (+8.17%) 0.7340 0.7561 (+3.01%)

TruthfulQA MC1 0.2827 - 0.2656 -
TruthfulQA MC2 0.4351 - 0.4305 -

Table 1: Our model v/s the base model on English Benchmarks. As expected, the domain adaptation has caused
forgetting. The % change in the scores in 5-shot runs compared to 0-shot runs are also provided. The greater
improvements in the 5-shot runs show possible latent retention.

This seems counterintuitive given higher halluci-
nation is a bad quality for a language model to
have. But it also suggests that our model’s gener-
ations contain content that is more verifiable and
can be assessed for hallucination, whereas the base
model’s outputs may be too limited or generic to
evaluate factual accuracy.

Both box-plots (Figure 1c and 1d) confirm these
observations, evidenced by broader distributions
and higher medians for the final model across all
metrics.

These results show that our model achieves im-
provements over the base model across all evalu-
ated dimensions. The broader distribution suggests
that our model is capable of generating more so-
phisticated and varied responses, even though this
comes with some increased variability in perfor-
mance.

For Q2, we evaluate the final model on popular
English benchmarks in order to identify whether
it was able to retain its knowledge in English post-
pretraining. The scores of our model versus the
base model in the selected benchmarks are reported
in Table 1. On MMLU, our model scores 0.3506
and 0.3462 for 0-shot and 5-shot settings respec-
tively. The base model scores 0.6056 and 0.6340
respectively, which suggests some forgetting has
taken place.

On ARC-Easy, our model achieves scores of
0.6271 (0-shot) and 0.7020 (5-shot), while showing
lower performance on the more challenging ARC-
Challenge subset with scores of 0.3183 and 0.3797
for 0-shot and 5-shot settings respectively. The
base model unsurprisingly scores higher on both
benchmarks.

On the Winogrande benchmark, our model
scores 0.5691 (0-shot) and 0.6022 (5-shot). For the
TruthfulQA evaluation, our model achieves scores

of 0.2607 and 0.4243 on MC1 and MC2 variants
respectively, showing comparable performance to
the baseline’s 0.2656 and 0.4305.

With these numbers, it is easy to establish that
forgetting has happened. However, it is notewor-
thy that 5-shot prompting over 0-shot generally
yields higher percent increase for our model than
the base model, suggesting that our model lever-
ages few-shot examples more effectively than the
final model. The highest increase in performance
is for the ARC-Challenge dataset where we see
a 19.29% performance increase in the 5-shot set-
ting compared to 0-shot. This might suggest that if
properly pretrained, forgetting can be curtailed by
increasing shots while prompting.

Finally, to answer Q3, we annotate a set of
Nepali sentences by mapping adjectives to cor-
responding nouns. We explore the dependency
resolution ability of the model by analyzing the
attentions from the adjectives to their respective
nouns across all attention heads in all layers. For
each (adjective, noun) pair we extract attentions
across all attention heads and find the mean of
such attention heatmaps for multiple samples to
get an adjective concept. For English we average
the heatmaps from 17 adjective-noun pairs and for
Nepali 26 pairs. We compare the heatmaps for
the base model and the final model to establish
whether the final model actually captures some un-
derstanding of the language that was not present in
the base model. In Figure 2 the heatmaps visualize
self-attention patterns across the 32 layers (y-axis)
and the 32 attention heads (x-axis) of the models.
The darker blue colors indicate stronger attention
weights.

Comparing our model’s attention heatmaps (a,b)
with the base model’s heatmaps (c,d), we observe
that our model has learned to process Nepali ad-
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(a) Our model on Nepali adjectives. (b) Our model on English adjectives.

(c) Base model on Nepali adjectives. (d) Base model on English adjectives.

Figure 2: Layer-head heatmaps visualizing attention from adjectives to their respective nouns in Nepali (a,c) and
English (b,d) for our model (a,b) and the base model (c,d). Rows are layers and columns are attention heads. From
a) and c), we can see our model has learned to attend to Nepali adjectives the way the base model attends to English
ones in d).

jectives in a manner very similar to how the base
model processes English adjectives. This is ev-
idenced by the sparser and focused attention pat-
terns in (a) as compared to the more diffuse patterns
in (c). This alignment suggests improved cross-
lingual transfer during pretraining. As suggested
in other studies (Liu et al., 2019; Vig and Belinkov,
2019), we found that some of the most prominent
attention heads are located in the middle layers.

The models have very different attention patterns
in the lower layers (1-8), indicating that language-
specific processing is perhaps performed in the
earlier layers of the network. The attention patterns
for English adjectives (b,d) are similar between the
two models, which suggests that the DAPT only
impacted the processing of Nepali in the model

without disturbing its understanding of English
structures.

7 Conclusion

We explored the utility of the continual learning
paradigm in low-resource tasks, with a focus on
the Nepali language. We experimented with the
Llama 3 8B model to establish a simple and in-
tuitive pretraining procedure, followed by mixed-
language fine-tuning. We used automatic evalua-
tion to grade model responses and established that
the model after DAPT can generate semantically
correct Nepali. We performed evaluations with
several benchmarks to gauge the forgetting in the
model. We finally investigated attention heatmaps
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to evaluate the model’s grammatical knowledge
in Nepali. By adapting a pretrained model to the
Nepali language using only synthetic data and very
limited resources and establishing generation abil-
ities and linguistic knowledge in the new model,
we make a case for domain-adaptive pretraining
as a meaningful direction to explore for data- and
resource-constrained languages.

8 Limitations

This work focuses on resource-constrained domain
adaptation. Experiments are performed in a quan-
tized 4-bit setting and the data used is synthetically
generated. Pretraining sessions were run only for
a single epoch and the data is mostly from online
news sources, which we conjecture lead to more
hallucination. Resource constraints are therefore
the biggest limitation of this work. Second, we use
GPT-4o for evaluation of model output. While auto-
evaluation is becoming widely-adopted in multilin-
gual research, use of human evaluators (especially
domain experts for Nepali) could lead to a more
definitive assessment. Similarly, there are no LM
benchmarks in Nepali, which could have helped
with the evaluation.

A possible extension of this work could be to
study how other low-resourced languages in South
Asia respond to these methods. It would also be
interesting to investigate if transfer from another
Indic language (opposed to English) would yield
different results.
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Abstract
This research explores word alignment in low-
resource languages, specifically focusing on
Telugu and Tamil, two languages within the
Dravidian language family. Traditional sta-
tistical models such as FastAlign, GIZA++,
and Eflomal serve as baselines but are of-
ten limited in low-resource settings. Neural
methods, including SimAlign and AWESOME-
align, which leverage multilingual BERT, show
promising results by achieving alignment with-
out extensive parallel data. Applying these neu-
ral models to Telugu-Tamil and Tamil-Telugu
alignments, we found that fine-tuning with
POS-tagged data significantly improves align-
ment accuracy compared to untagged data,
achieving an improvement of 6–7%. However,
our combined embeddings approach, which
merges word embeddings with POS tags, did
not yield additional gains. Expanding the study,
we included Tamil, Telugu, and English align-
ments to explore linguistic mappings between
Dravidian and an Indo-European languages.
Results demonstrate the comparative perfor-
mance across models and language pairs, em-
phasizing both the benefits of POS-tag fine-
tuning and the complexities of cross-linguistic
alignment.

1 Introduction

Word alignment is an essential task in natural lan-
guage processing (NLP), for machine translation
(MT) and cross-lingual information transfer. In
this research, we focus on the Dravidian languages
i.e. Tamil and Telugu, alongside an Indo-European
language i.e. English, to analyze the agglutinative
nature of Dravidian languages in contrast with En-
glish. The Dravidian language family comprises
26 languages, linguistically classified into three
groups: South, Central, and North (Krishnamurti,
2003). Dravidian languages exhibit an agglutina-
tive structure, where words are formed by com-
bining morphemes, with each morpheme retaining
its meaning and function. Based on this structure,

we hypothesize that intra-family word alignment
(e.g., Telugu & Tamil) may be more accurate than
alignment across language families (e.g., English
& Dravidian). In this study, we conduct word align-
ment on four language pairs: Telugu-Tamil, Tamil-
Telugu, English-Telugu, and English-Tamil.

Traditional word alignment models, particularly
statistical ones like IBM Models (Brown et al.,
1993), GIZA++ (Och and Ney, 2003), FastAl-
ign (Dyer et al., 2013) and Efloma(Östling and
Tiedemann, 2016), face limitations in low-resource
languages like Telugu and Tamil, where parallel
data is scarce. While these models perform well
in high-resource settings due to their reliance on
abundant parallel data, they are less effective for
low-resource languages. Recently, neural network-
based models utilizing multilingual embeddings
from BERT (Devlin, 2018) and XLM-RoBERTa
(Conneau, 2019) have shown promise in overcom-
ing these data limitations, generating word align-
ments even with minimal parallel corpora.

SimAlign (Sabet et al., 2020) and AWESOME-
align (Dou and Neubig, 2021) are two neural mod-
els that utilize multilingual contextual embeddings
to align words across languages. SimAlign com-
putes alignments based on embedding similarity,
using alignment strategies like Argmax, Itermax,
and Match. In contrast, AWESOME-align ap-
plies a softmax-based alignment extraction pro-
cess that predicts word alignments by calculating
alignment probabilities between source and tar-
get embeddings. To improve alignment accuracy,
AWESOME-align fine-tunes BERT-based models
on parallel corpora using techniques like Masked
Language Modeling (MLM) and Translation Lan-
guage Modeling (TLM). These techniques help
the model learn cross-lingual representations by
predicting masked tokens within and across sen-
tences, further enhancing alignment quality. To-
gether, these neural approaches have demonstrated
substantial improvements in alignment accuracy
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for low-resource languages, outperforming tradi-
tional statistical models (Sabet et al., 2020).

In addition to leverage multilingual BERT, we
fine-tuned a mBERT model on POS-tagged En-
glish, Telugu, and Tamil paired data and applied
it within both AWESOME-align and SimAlign to
assess alignment accuracy improvements. We con-
ducted alignment tasks before and after fine-tuning,
comparing POS-tagged and untagged data to eval-
uate the impact of POS information. We also ex-
plored a novel approach by combining word and
POS tag embeddings into enriched vectors, using
two strategies: addition (summing embeddings)
and concatenation (merging into an extended vec-
tor). Word alignments were extracted from these
combined embeddings via cosine similarity to mea-
sure source-target word similarity. Although this
combination approach aimed to leverage both se-
mantic and syntactic information, results showed it
did not significantly outperform alignments based
solely on word embeddings.

Additionally, we expanded our study to include
English alongside Telugu and Tamil, adding a cross-
linguistic perspective. By aligning English-Telugu
and English-Tamil pairs, we aimed to uncover po-
tential linguistic patterns between the Dravidian
and European language families. Using our fine-
tuned mBERT approach on both POS-tagged and
untagged data, we evaluated alignment accuracy
across these language pairs. This helped us explore
how well our methods work in mapping relation-
ships between languages from different families,
offering initial insights into the linguistic connec-
tions between Dravidian and European languages.

2 Data Preparation

For this research, we used parallel datasets cover-
ing Telugu & Tamil, English-Telugu, and English-
Tamil pairs to conduct word alignment experiments.
The Telugu and Tamil dataset was sourced from
in-house resources, while the English-Telugu and
English-Tamil data were obtained from the publicly
available Samanantar (Ramesh et al., 2022) corpus.

In-House Telugu and Tamil Dataset: The in-
house Telugu and Tamil dataset contains 13,000
manually translated sentences.1 Prepared over a
year, it reflects careful effort by annotators to en-
sure accuracy and linguistic quality, making it a
reliable source for studying alignment within the

1https://github.com/parameshkrishnaa/
Alignment-Parallel-Data/

Dravidian language family.

2.1 Data Preprocessing

To prepare the data for word alignment tasks, each
sentence in the parallel corpora was tokenized us-
ing NLTK’s tokenizer, ensuring a consistent tok-
enization scheme across all languages.

2.2 Part-of-Speech (POS) Tagging

All sentences in English, Telugu, and Tamil were
POS-tagged using the Trankit library (Van Nguyen
et al., 2021). This step added syntactic information
to each token, which was used in later stages of
the experiment to assess the impact of POS-tagged
data on word alignment accuracy.

2.3 Dataset Splitting and Annotation

The dataset is divided into two subsets: training
and testing. For each language pair, we allocated
12,000 sentence pairs for training and 1,000 sen-
tence pairs for testing. To ensure an accurate evalu-
ation, the test dataset was manually annotated with
gold-standard word alignments by expert annota-
tors, establishing a reliable reference for alignment
quality assessment.

2.4 Data Organization for Alignment Tools

The source and target corpora were organized based
on the input requirements of the alignment tools
used in this study. Each dataset was structured to
match the specific formats expected by SimAlign
and AWESOME-align, ensuring compatibility and
streamlined processing for word alignment tasks.

3 Methodology

3.1 Word Alignment with SimAlign and
AWESOME-align

We conducted word alignment tasks using SimA-
lign and AWESOME-align across four language
pairs: Telugu-Tamil, Tamil-Telugu, English-Tamil,
and English-Telugu. Both models used multi-
lingual BERT (mBERT) embeddings to generate
cross-lingual word alignments. Data preprocessing
steps, such as tokenization and POS tagging, are
detailed in the Data Preparation section.

Embedding Extraction: For AWESOME-align,
embeddings were extracted from the 8th layer of
mBERT, which captures a balance of syntax and se-
mantics (Dou and Neubig, 2021). SimAlign, which
operates at the subword level, averaged subword
embeddings to obtain word-level representations.
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It considers all 12 layers of mBERT and can use
a concatenation of these layers (mBERT[conc]),
providing flexible options without additional fine-
tuning (Sabet et al., 2020).

Alignment Computation: The alignments were
computed based on similarity matrices generated
from the contextualized embeddings of each word
in the parallel sentences. For SimAlign, the align-
ments were calculated using three strategies:

Argmax: Aligning words based on their maxi-
mum similarity score. Itermax: Focusing on mu-
tual consistency between source and target align-
ments. Match: Using a bipartite matching algo-
rithm to optimize total similarity between words.

In AWESOME-align, alignments were generated
by leveraging probability thresholding to produce
the final alignment pairs. This stage provided a
baseline comparison between pre-trained neural
alignment models.

3.1.1 Fine-tuning the Multilingual BERT
Model

To improve alignment accuracy, mBERT was fine-
tuned on 12,000 parallel sentence pairs for each
language pair, following the AWESOME-align ap-
proach (Dou and Neubig, 2021), with two main
objectives:

Masked Language Modeling (MLM): Enhances
understanding by training the model to predict
masked tokens. Translation Language Modeling
(TLM): Reinforces cross-lingual representations by
processing source and target sentences together.

This fine-tuned model was then utilized in both
SimAlign and AWESOME-align. This phase al-
lowed us to directly compare the performance
of the pre-trained mBERT model against its fine-
tuned version, thereby assessing the improvement
in alignment accuracy when fine-tuning is applied
to low-resource parallel data.

3.2 Word Alignment on POS-Tagged Data

To examine the effect of Part-of-Speech (POS)
information, we conducted additional alignment
tasks using POS-tagged data across all language
pairs.

Alignments were performed with both SimAlign
and AWESOME-align, following the same proce-
dures as in the initial experiments. This allowed us
to compare alignment accuracy between untagged
and POS-tagged data.

3.2.1 Fine-tuning on POS-Tagged Data
We further evaluated alignment accuracy by fine-
tuning mBERT on POS-tagged parallel data. This
fine-tuning process followed the same MLM and
TLM objectives as previously described, using
POS-tagged sentence pairs for each language pair.

After fine-tuning, alignments were computed
with both SimAlign and AWESOME-align to as-
sess the impact of POS-tagged data on alignment
accuracy in low-resource settings.

3.3 Embedding Combination and Cosine
Similarity for Word Alignment

The methodology for combining word and part-of-
speech (POS) tag embeddings in our research is in-
spired from (Siekmeier et al., 2021). In their study,
the authors demonstrated the effectiveness of inte-
grating linguistic annotations, such as POS tags and
named entity recognition (NER) tags, into neural
machine translation models to improve translation
accuracy. Specifically, they proposed a method for
combining token and tag embeddings within the
encoder of the neural translation system. Their ap-
proach yielded significant improvements in transla-
tion quality, particularly when working with named
entity tags, indicating that embedding linguistic fea-
tures at the token level can enhance performance
in specific NLP tasks.

Building upon this concept, we applied a simi-
lar embedding combination technique to the word
alignment task in our study. The goal was to lever-
age both semantic and syntactic information by
combining word embeddings with their correspond-
ing POS tag embeddings. This was accomplished
in two distinct ways:

Addition: In this approach, the word embed-
dings and their respective POS tag embeddings
were summed element-wise to create a single, com-
bined vector. This method preserves the dimen-
sionality of the original word embeddings while
integrating syntactic features at each token level.

Concatenation: For this method, the word em-
beddings and POS tag embeddings were concate-
nated, resulting in a more comprehensive feature
vector. This concatenation allows for the represen-
tation of both semantic and syntactic information
simultaneously, capturing a richer linguistic con-
text for each token.

After generating the combined embeddings, a
cosine similarity matrix was applied to compute
the alignment between words in the source and
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target languages across multiple language pairs:
Telugu-Tamil, Tamil-Telugu, English-Telugu, and
English-Tamil. The cosine similarity matrix mea-
sures the angular similarity between vectors in the
embedding space, allowing for the identification of
corresponding word pairs based on their similarity
in both the semantic and syntactic dimensions.

4 Baseline

We compare our results against three widely used
statistical word alignment models that rely on par-
allel training data:

• FastAlign (Dyer et al., 2013) is based on IBM
Model 2 (Brown et al.), valued for its speed
and simplicity while maintaining reasonable
alignment quality.

• Eflomal (Östling and Tiedemann, 2016) is a
Bayesian alignment model that uses Markov
Chain Monte Carlo inference and is known
to outperform FastAlign in both speed and
accuracy.

• GIZA++ (Och and Ney, 2003) is a well-
established tool implementing IBM Models 1
to 4 (Brown et al., 1993). It is widely used in
machine translation, and we used standard set-
tings, including five iterations of the Hidden
Markov Model (HMM) (Eddy, 1996) phase.

These statistical models serve as the baseline for
evaluating the performance of neural approaches,
particularly in low-resource language pairs like Tel-
ugu and Tamil.

5 Evaluation Measures

To evaluate alignment accuracy, we used the fol-
lowing measures:

• Precision: Measures the proportion of correct
alignments out of all alignments made by the
model.

Precision =
|A ∩G|
|A|

• Recall: Measures the proportion of correct
alignments out of all alignments in the gold-
standard set.

Recall =
|A ∩G|
|G|

• Alignment Error Rate (AER): Provides an
overall error rate by combining precision and
recall. Lower AER indicates better alignment
accuracy.

AER = 1− 2× |A ∩G|
|A|+ |G|

• F1 Score: Balances precision and recall, pro-
viding a single accuracy score.

F1 = 2× Precision×Recall

Precision+Recall

In these formulas, A represents the alignments
predicted by the model, G represents the gold-
standard alignments, and |A ∩ G| is the count of
correct alignments.

6 Results

Neural vs. Statistical Models: Neural models
(SimAlign and AWESOME-align) outperformed
statistical models (GIZA++, FastAlign, and Eflo-
mal) across all language pairs. The biggest im-
provements were seen in the Telugu-Tamil and
Tamil-Telugu pair as shown in table [1] suggesting
that neural models with multilingual embeddings
work especially well for low-resource languages.
SimAlign (Sabet et al., 2020), in particular, demon-
strated the best performance among the neural mod-
els, especially for Telugu-Tamil and Tamil-Telugu
pairs, due to shared linguistic features. In contrast,
the improvements were smaller for English-Telugu
and English-Tamil as shown in [1], likely because
these language pairs lack similar structural features.

Effect of Fine-Tuning: Fine-tuning the mul-
tilingual BERT model improved alignment accu-
racy for all pairs, with the largest gains again in
the Telugu-Tamil and Tamil-Telugu pair. Using
Masked Language Modeling (MLM) and Transla-
tion Language Modeling (TLM) helped the model
better understand cross-lingual connections, espe-
cially in Dravidian languages with shared grammat-
ical structures.

Impact of POS-Tagged Data (Before and Af-
ter Fine-Tuning): POS tagging was most benefi-
cial for the Telugu-Tamil and Tamil-Telugu pairs
after fine-tuning as shown in table [1], compared to
untagged alignments. While the improvement was
notable, the results were very low for the English-
Telugu and English-Tamil pairs as shown in ta-
ble[1]. This suggests that morphologically complex
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Model Type
Language pair

Telugu - Tamil Tamil - Telugu English - Telugu English - Tamil
F1 ↑ AER ↓ F1 ↑ AER ↓ F1 ↑ AER ↓ F1 ↑ AER ↓

Fast-align untagged 56.6 43.4 58.3 41.7 25.7 74.3 20.4 79.6
Giza++ untagged 54.7 45.3 56.8 43.7 23.3 76.7 17.8 82.2
Eflomal untagged 65.5 34.5 67.7 32.3 27.8 72.2 12.4 87.6
SimAlign_inter untagged 80.1 19.9 82.7 17.3 47 53 53.1 46.9
SimAlign_itermax untagged 78.2 21.8 80.5 19.5 52.6 47.4 54.8 45.2
SimAlign_mwmf untagged 73.2 26.8 75.5 24.5 52.9 47.1 52.4 47.6
Awesome_Align untagged 64.2 35.8 66 34 23.2 76.8 31.8 68.2
SimAlign_inter_f untagged 84.1 16 86.4 13.6 59.9 40.1 36.2 63.8
SimAlign_itermax_f untagged 82.4 17.6 84.2 15.8 65.6 34.4 38.2 61.8
SimAlign_mwmf_f untagged 74.3 25.7 76.4 23.6 65.3 34.7 37.6 62.4
Awesome_Align_f untagged 65.9 34.1 67.8 32.2 37 63 27.1 72.9
SimAlign_inter tagged 79.3 20.7 79.3 20.7 51.1 48.9 30.9 69.1
SimAlign_itermax tagged 73.8 26.2 73.8 26.2 51.7 48.3 28.1 71.9
SimAlign_mwmf tagged 70.8 29.2 70.8 29.2 49.1 50.9 26.6 73.4
Awesome_Align tagged 71.7 28.3 68.1 31.9 30 70 19.2 80.8
Embed_add tagged 41.2 58.8 34.4 65.6 20.5 79.5 12.6 87.4
Embed_concat tagged 43.8 56.2 35.4 64.6 22.2 77.8 14.9 85.1
SimAlign_inter_f tagged 91.7 8.3 92.5 7.5 64.6 35.4 37.3 62.7
SimAlign_itermax_f tagged 84.4 15.6 84.6 15.4 60.1 39.9 31 69
SimAlign_mwmf_f tagged 77.2 22.8 77.6 22.4 56.8 43.2 28.3 71.7
Awesome_Align_f tagged 76.5 23.5 76.2 23.8 36.7 63.3 26.2 73.8
Embed_add_f tagged 35.2 64.8 40.2 59.8 29.4 70.6 12.8 87.2
Embed_concat_f tagged 37.9 62.1 58.9 41.1 34.4 65.6 15.3 84.7

Table 1: Comparison of Word Alignments Across Language Pairs Using POS-Tagged and Untagged Datasets. The
’Type’ column indicates whether the dataset used was POS-tagged or untagged. Models with ’f’ denote fine-tuned
versions, and the best results for each metric are highlighted in bold (’F1 ↑’: highest value value is the better &

’AER ↓’: lowest value is the better).

languages like Telugu and Tamil gain more align-
ment accuracy from added POS information, while
POS tagging is less useful for English-inclusive
pairs where structural differences are more pro-
nounced.

Combined Embeddings: Combining word and
POS embeddings (through addition or concatena-
tion) didn’t significantly improve alignment accu-
racy over using word embeddings alone, even for
Telugu and Tamil pairs, results shown in the ta-
bles[1] by the model names ’Embed_add & Em-
bed_concat’. Although it could capture both mean-
ing and structure, it didn’t provide practical gains
for these language pairs.

7 Limitations

While neural models showed strengths in low-
resource alignment, this study faced several limi-
tations that affected the quality of results. Dataset

Quality, The Samanantar dataset for English-
Telugu and English-Tamil contained translation in-
consistencies, with many sentences poorly matched.
This made it harder for alignment models to learn
accurate mappings. High-quality, carefully cu-
rated parallel data is needed for better alignment
and cross-linguistic analysis. Computational Con-
straints, Limited computational resources restricted
the level of fine-tuning and testing of larger models.
This limitation reduced the ability to optimize hy-
perparameters and experiment with deeper models
that might improve accuracy. More computational
resources would allow for broader testing and po-
tentially better alignment results.

8 Conclusion

This study shows that neural models work bet-
ter than traditional statistical models for word
alignment, especially among low-resource Dravid-
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ian language pairs like Telugu and Tamil. Neu-
ral models consistently achieved higher accuracy,
with SimAlign (Sabet et al., 2020) performing par-
ticularly well in Telugu-Tamil and Tamil-Telugu
alignments, likely due to shared structural features
within the Dravidian language family. However,
this advantage was smaller when aligning Dravid-
ian languages with English, which has a different
structure.

Fine-tuning with POS-tagged data improved
alignment accuracy the most in Telugu-Tamil and
Tamil-Telugu pairs, as the POS information helped
the model understand sentence structure better. In
English-inclusive pairs (English-Telugu, English-
Tamil), POS tagging had less impact, likely due
to structural differences and some limitations in
dataset quality.

Combining word and POS embeddings did not
lead to additional accuracy gains. Although it
aimed to capture both meaning and structure, this
approach did not perform better than using word
embeddings alone.

In summary, our findings shows the adaptabil-
ity of neural models to the linguistic structures of
Dravidian languages, showing promise for improv-
ing alignment in low-resource Dravidian language
pairs. Future research could build on these results
by experimenting with enhanced fine-tuning tech-
niques, exploring additional syntactic or morpho-
logical features, and addressing the dataset quality
issues in English-Dravidian pairs to improve align-
ment accuracy further.
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Abstract

Idioms, integral to any language, convey nu-

anced meanings and cultural references. How-

ever, beyond English, few resources exist to

support any meaningful exploration of this

unique linguistic phenomenon. To facilitate

such an inquiry in a low resource language,

we introduce a novel dataset of Nepali idioms

and the sentences in which these naturally ap-

pear. We describe the methodology of cre-

ating this resource as well as discuss some of

the challenges we encountered. The results of

our empirical analysis under various settings

using four distinct multilingual models con-

sistently highlight the difficulties these models

face in processing Nepali figurative language.

Even fine-tuning the models yields limited ben-

efits. Interestingly, the larger models from the

BLOOM family of models failed to consistently

outperform the smaller models. Overall, we

hope that this new resource will facilitate fur-

ther development of models that can support

processing of idiomatic expressions in low re-

source languages such as Nepali.

1 Introduction

Idioms are inherent linguistic phenomena in all

languages, comprising a collection of words that,

when combined, convey a unique and distinct mean-

ing not achievable by the individual words within

the phrase. Neglecting idioms would lead to a sig-

nificant loss of meaning and context, given their

tendencies to carry nuances and cultural references.

Properly identifying and processing idioms is es-

sential for machine translation, sentiment anal-

ysis, information retrieval, and several other tasks.

Large language models (LLMs), such as GPT and

LLaMa are designed to mimic human language un-

derstanding and generation. Acomprehensive grasp

of idioms is crucial to ensure that these models gen-

erate text that is not only linguistically accurate but

also contextually meaningful.

There are plenty of idiom resources for high re-

source languages such as English (Korkontzelos

et al., 2013; Tayyar Madabushi et al., 2021), Chi-

nese (Tan and Jiang, 2021b), Japanese (Tedeschi

et al., 2022), Italian (Tedeschi et al., 2022; Mous-

sallem et al., 2018), and German (Tedeschi et al.,

2022; Moussallem et al., 2018; Fadaee et al., 2018)

to name a few. However, idioms in low resource

languages have received less attention.

When resources are available, several interesting

tasks involving idioms have been studied. Mea-

suring semantic similarity between idioms (Ko-

rkontzelos et al., 2013), classification between id-

iomatic and literal usages of idioms (Tayyar Mad-

abushi et al., 2021), translation (Moussallem et al.,

2018) and language generation (Chakrabarty et al.,

2022b; Pokharel and Agrawal, 2023) are some of

the main focuses. However, we still do not know

how LLMs process idioms in a low resource lan-

guage like Nepali.

There might be a perception that plenty of

methodologies and resources are readily available

for the compilation of analogous linguistic phe-

nomena, i.e., Multiword Expressions (MWEs). It

is important to clarify that, MWEs constitute a

broader linguistic category including not only id-

iomatic expressions but also other linguistic phe-

nomena like noun compounds and sentence frag-

ments, and the customary collection processes for

MWEs, such as part-of-speech tagging (Farahmand

et al., 2015) and statistical co-occurrence analysis

(Kunchukuttan and Damani, 2008), prove to be in-

sufficient in effectively distinguishing idiomatic

expressions.

In this work, we introduce a novel dataset –

neDIOM – of almost 200 Nepali idioms and more

than 500 sentences of their contextual usage, mak-

ing this, to our knowledge, the first such dataset in

Nepali1. By contributing this resource, we hope to

1The dataset will be made available for further research.
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facilitate exploration of LLMs’ performance in han-

dling idiomatic expressions and documenting lin-

guistic phenomena in this low-resource language.

Depending on the language and the scenario, the

idiom dataset creation job can be more or less chal-

lenging. For instance, in English, the idiom “under

the weather” can be directly used in a sentence

without alteration. However, “pull someone’s leg”

undergoes inflection, posing a significant challenge

for automated idiom identification (Pasquer et al.,

2020), especially in non-Latin languages. We enu-

merate further challenges related to dataset creation

in the subsequent sections.

Our experiments with LLMs reveal that their

performance with respect to idioms in low-resource

languages leaves a big room for improvement.

The main contributions of our work are:

• The introduction of a new dataset in Nepali,

which includes idioms, their contextual usage,

and the marking of idiom positions.

• An extensive benchmarking of this dataset us-

ing several state-of-the-art LLMs.

2 Related Work

In this section, we review existing work in creating

idiom resources and related tasks.

2.1 Idiom Datasets

The development of datasets focusing on idioms

has seen some diversity across multiple languages,

with English being the predominant language (Peng

et al., 2015; Haagsma et al., 2020; Chakrabarty

et al., 2022b). Attention has also extended to well-

resourced languages like French, Dutch, Italian,

Portuguese, Chinese, Polish, and Japanese (Ko-

rkontzelos et al., 2013; Moussallem et al., 2018;

Tan and Jiang, 2021b; Tedeschi et al., 2022; Qiang

et al., 2023). In contrast, languages with fewer

resources, including Gujarati, Telugu, and Malay-

alam, have received less investigation (Agrawal

et al., 2018). Notably, for Nepali, there is only one

small dataset with 42 samples and without context

sentences (Neupane, 2018).

Some datasets were created by translating idioms

from English to other languages (Moussallem et al.,

2018; Neupane, 2018; Fadaee et al., 2018; Tang,

2022), but the translated idioms are not always an

idiom in the target language (Agrawal et al., 2018).

In the cases when datasets have been created from

scratch, the idioms are typically collected from one

source and the sentences containing the idioms

from another source (Korkontzelos et al., 2013;

Peng et al., 2015; Fadaee et al., 2018; Zheng et al.,

2019; Haagsma et al., 2020; Tan and Jiang, 2021b;

Tedeschi et al., 2022). For the former step, most

idioms are collected from sources where the idioms

are already listed as such, precluding the need to

identify the idiom from a sentence/paragraph (Ko-

rkontzelos et al., 2013; Fadaee et al., 2018; Zheng

et al., 2019; Haagsma et al., 2020; Tedeschi et al.,

2022). For the latter step (i.e., collecting the con-

text where the idioms have been used), Haagsma

et al. (2020) used automatic method which was later

checked by manual reviewers, while Tayyar Mad-

abushi et al. (2021) manually collected both the

idioms and the contexts manually from the internet.

Annotations for idiom-related tasks are also often

obtained manually (Agrawal et al., 2018; Neupane,

2018; Haagsma et al., 2020).

2.2 Idiom Tasks

Korkontzelos et al. (2013) presented work on se-

mantic similarity, encompassing idioms across

English, French, German, and Italian. (Salehi et al.,

2018) investigate the compositionality of idiomatic

expressions by leveraging multilingual lexical re-

sources, focusing on English and Germanic lan-

guages. Tan and Jiang (2021b) focused on gauging

the similarity between idioms, concentrating specif-

ically on the Chinese language. Chakrabarty et al.

(2022b) studied natural language inference with a

focus on idiomatic expressions in English.

Numerous studies have tackled the challenge

of distinguishing between idiomatic and literal

language usage, classifying expressions into id-

iomatic and literal categories (Peng et al., 2015;

Tayyar Madabushi et al., 2021; Tan and Jiang,

2021a). Haagsma et al. (2020) classified idiomatic

versus literal usages while also annotating their

genre. Tedeschi et al. (2022) explored idiom iden-

tification across multiple languages, including Chi-

nese, Dutch, French, Japanese, Polish, Portuguese,

Spanish, and more. Other studies have also con-

tributed to idiom classification, cloze tasks, and

usage recognition across various languages (Zheng

et al., 2019; Tian et al., 2023; Fenta and Gebeyehu,

2023; Zhou et al., 2023).

Translation of idiomatic expressions is another

key area of investigation (Moussallem et al., 2018;

Fadaee et al., 2018; Neupane, 2018; Agrawal et al.,

2018; Tang, 2022). However, in several cases the

translated idioms were not necessarily idioms in
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Idiom S1 S2 S3 Label Idiom’s Po-

sition

डाँडो

काट्नु

जे छ त्यसमा नै �चत्त बुझाएर

दसैं कटाउने जोहो �मलाउनु-

होस्।

पाहुना आफन्त बोलाउँदा

खच�ले डाँडो काट्न सक्छ।

फे�र सानो रकम टीका

लाएर �दँदा �चत्त नबुझ्न

सक्छ।

I पाहुना आफन्त

बोलाउँदा खच�ले

###डाँडो का-

ट्न### सक्छ।

daando
kaatnu

j cha tesmaa nai, chitta
bujhayera dashain
kataune joho mi-
laaunuhos

paahunaa aafanta
boolaaundaa kharchale
daando kaatna sakcha

feri saano rakam tikaa
liyera dinda chitta
nabujhna sakcha

paahunaa
aafanta
boolaaun-
daa kharchale
###daando
kaatna###
sakcha

‘to cover
a con-
siderable
distance’

‘Find contentment in
whatever you have to
celebrate Dashain.’

‘Inviting guests and rel-
atives could exceed the
budget.’

‘Given the cir-
cumstance, providing
a small offering with
Tika may not suffice.’

इन्तु न �च-

न्तु हुनु

तर, यी युवाको उपचार नहुँदा

शरीर कु�हन थालेको छ।

उनका बुवा बलबहादुर छो-

राको यो अवस्था देखेर इन्तु

न �चन्तु छन्।

अस्पतालले भनेको तीन

लाख रुपैयाँ जुटाउन

नसकेप�छ बस्नेतले सबैसँग

हारगुहार गरे।

L उनका बुवा ब-

लबहादुर छोराको

यो अवस्था देखेर

###इन्तु न

�चन्तु### छन्।

intu na
chintu
hunu

tara, yi yuwale upachaar
nahundaa shareer kuhina
thaaleko cha

unkaa buwaa bal-
bahaadur choraako yo
abasthaa dekhera intu
na chintu chan

aspataalle vaneko
teen laakh rupainyaa
jutaauna nasakepachhi
basnetle sabaisanga
haarguhaar garey

unkaa buwaa
balbahaadur
choraako yo
abasthaa
dekhera
###intu na
chintu chan###

‘to get
overly
anxious’

‘However, due to the lack
of treatment of this young
man, the body has started
to rot.’

‘His father, Bal Ba-
hadur, is deeply dis-
traught upon witnessing
his son’s condition.’

‘After failing to arrange
the three lakh rupees as
demanded by the hos-
pital, Basnet has now
turned to everyone.’

आकाशको

फल

तर, त्यसै बस्नुभन्दा म्य�ुजक

�भ�डओमा काम गदा� प�न न-

याँ नयाँ कुरा जान्न र अनुभव

गन� �मल्ने उनले बताए।

आज आकाशको फ्यान फ-

लोस� हजारौं छन्।

फुस�दमा सामा�जक सञ्जा-

लमा आफ्नो कामबारे स-

व�साधारणले गरेका कमेन्ट

प�न पढ्ने गरेको उनले ब-

ताए।

NA आज आकाशको

फ्यान फलोस� ह-

जारौं छन्।

aakhaa-
shko fal

tara, tyasai bas-
nubhandaa music
videoma kaam gardaa
pani nayaan nayaan ku-
raa jaanna ra anubhaab
garna milne unle bataaye

aaja aakaahko fyan
fallowers hajaaroun
chhan

fursadmaa saamaajik
sanjaalmaa aafno
kaambaare sar-
wasaadharanle gareko
kament pani padhne
gareko unle bataaye

aaja aakaahko
fyan fallowers
hajaaroun
chhan

‘a pie in
the sky’

‘However, he said that in-
stead of sitting there, you
can learn and experience
new things while working
on a music video.’

‘Today Akash has thou-
sands of fan followers.’

‘He said that in his spare
time, he also reads the
comments made by pub-
lic about his work on so-
cial media.’

Table 1: Samples from the dataset, each associated with a distinct label.

the target language.

The generation of idiomatic expressions and

their paraphrases has also attracted much attention.

Chakrabarty et al. (2022a) investigated generating

plausible continuations for idiomatic sentences in

English, meanwhile Zhou et al. (2022); Qiang

et al. (2023) focused on generating literal para-

phrases. (Pokharel and Agrawal, 2023) evaluated

language models’ ability to generate contextually

relevant continuations for narratives with idiomatic

expressions in English and Portuguese.

Needless to say, yet important to highlight, is the

fact that the exploration of idiomatic expressions

in low-resource languages has received much less

attention.

3 neDIOM: Nepali Idiom Dataset

We introduce neDIOM, a dataset of Nepali idioms

along with their naturally-occurring contexts. The

dataset comprises 526 carefully selected samples
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Figure 1: Distribution of sentence lengths for (a) S2 (b) S1 + S2 (c) S2 + S3, and (d) S1 + S2 + S3. On the x-axis is

the number of words in a sentence, and on the y-axis is the frequency.

containing 191 unique idioms. Each sample in-

cludes the idiom, the sentence in which it appears,

and the preceding and following sentences in the

context. A selection of samples from the curated

dataset is presented in Table 1. This dataset contains

six attributes:

• Idiom is a multiword expression, whose over-

all meaning cannot be derived directly from

the meanings of its individual words;

• S2 is the sentence in which the idiom appears;

• S1 is the sentence that precedes S2 in the con-

textual sequence;

• S3 is the sentence that follows S2 in the con-

text;

• Label indicates the annotation, whether the

idiom is being used in an idiomatic sense or a

literal sense; and

• Idiom’s position specifies the exact location of

the idiom within S2.

3.1 Data Collection

Next, we outline the methodology used for creating

this dataset.

Collecting idioms A total of 296 idioms were

manually collected from across the internet and

from the reference (आचाय�, ऋ�षकेश, 2020). These

idiomswere subsequently used to extract contextual

usage. One might wonder why the context was

not collected simultaneously along with these ex-

pressions. The reason is that the sources fromwhich

we obtained the idioms mostly provided definitions

or descriptions without the associated contexts.

Collecting contexts with idioms The next step

focuses on collecting naturally-occurring sentences

and contexts in which these idioms appear. We

use the OSCAR corpus2, an expansive multilingual

collection with over 152 languages, which is a re-

sult of the language-wise classification of content

from the Common Crawl corpus3. We chose this

corpus because of the abundance of Nepali text it

offered, approximately 392K documents, which is

particularly significant for Nepali, a language with

considerable resource constraints.

The idioms originally appear in gerund form

which changes its grammatical structure when used

in a sentence. To identify relevant sentences con-

taining these idioms, we adopted a strategy of using

partial segments of the idioms. For instance, for the

idiom नाक खुम्च्याउनु (naak khumchyaaunu, ‘to turn

up one’s nose’), we employed the truncated version

नाक ख (naak kha) to expand our search scope. In

this context, खु (khu) represents the initial syllable

of the wordखुम्च्याउनु (khumchyaaunu) andख (kha)

stands as the first grapheme, which maintains con-

sistency regardless of the word’s usage. We utilized

a similar technique for idioms containing more than

two words.

After extracting documents from the OSCAR

corpus, we tokenized them at sentence-level to ob-

tain S1, S2, S3 for each idiom instance using the

indic_tokenize module4. This process resulted

in a total of 1,216 samples (idioms and their sur-

rounding contexts). It is worth noting that of the

296 idioms we had used in our search, we were able

to collect contexts for 271 idioms. These were fur-

ther reduced to 191 idioms after manual annotation.

Figure 1 plots the context sentence lengths of

S2, S1+S2, S2+S3, and S1+S2+S3. We observe

that most sentences with idioms (S2) consist of 50

2https://huggingface.co/datasets/
oscar-corpus/OSCAR-2201

3https://commoncrawl.org/
4https://indic-nlp-library.readthedocs.io/

en/latest/indicnlp.tokenize.html
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Idiom Lemma S2 Lemmatized S2

आलु खानु ['आलु', 'खान'] छोराले परीक्षामा दुईओटा �वषयमाआलु खाएछ

।

'छोरा', 'परीक्षामा', 'दुई', 'ओटा', '�वषय',

'आलु', 'खा'

aalu khaanu aalu khaana chhoraale pareekchyaamaa dui otaa
bishayamaa aalu khaayechha

‘chhoraa’, ‘parikchyaamaa’, ‘dui’,
‘otaa’, ‘bishaya’, ‘aalu’, ‘khaa’

‘come up empty-
handed’

‘My son got a zero in two subjects in the
exam.’

Table 2: An example showing the challenges with lemmatization: खानु and खाएछ have different lemmatized forms.

Figure 2: Word cloud showing the most common to the

least common idioms in the dataset.

tokens or less. Adding the preceding or following

sentences usually doubles the length. These de-

tails enable us to estimate the average input length

when passing the data to the LLMs for efficient

processing. . The three most frequent idioms are

ठीक पानु� (theek paarnu, ‘to make right’), डाँडो काट्नु

(daando kaatnu, ‘to go far away’), and हात लाग्नु

(haat laagnu, ‘to get hold of something’) as shown

in the word cloud in Figure 2.

3.2 Challenges

To build our dataset, we needed a list of idioms

along with the contexts in which they were used.

This presented a bit of a “chicken-and-egg”

problem. If we can obtain idioms from a source,

why not also gather their contextual sentences

from the same source? In many cases, such as

ours, this is simply not available. Alternatively,

if we have sentences with idioms, could we not

simply extract the idioms automatically? Idioms

appear infrequently in text, and identifying them

within a specific context is challenging. This

made the dataset creation process more complex

than it might initially seem. Some of the issues

encountered during the development of neDIOM
are discussed below.

Lack of language resources: The availability of

comprehensive idiom repositories, especially in

low-resource languages, is scarce. While some

sources offer lists of idioms5, these compilations

are often quite small. Furthermore, even after

a list of idioms has been collected, identifying

pertinent contexts that include these idioms is

quite a challenge. For instance, within a corpus of

392K Nepali documents, we were able to extract

contexts for only 271 (91%) of the idioms in

our list. Of those, many were filtered out during

manual annotation (described in the next section),

leaving only about 191 (64%) of the idioms in the

final neDIOM dataset.

Idiom Detection and Context Creation Chal-

lenges: Even with a list of idioms, the variation

in how idiomatic expressions appear in text adds

to the challenge. For instance, consider the idiom

नाक खुम्च्याउनु (naak khumchyaunu, ‘to turn up your

nose’) and the sentence कोठा सफा नगरेको देखेर आ-

माले नाक खुम्च्याउनु भयो । (kothaa safaa nagareko

dekhera aamaale naak khumchyaunu bhayo, ‘Mom

turned up her nose upon seeing the room was not

cleaned.’). The idiom’s form has been altered in

the sentence, making it difficult to identify its us-

age by a simple pattern-based search. On the other

hand, using the complete expression for searching

mostly resulted in null matches. Our attempts at

employing similarity-based methodologies to iden-

tify sentences containing idioms also proved to be

unsatisfactory.

Prior work used lemmatization to deconstruct

idioms and locate them within sentences (Tedeschi

et al., 2022; Fadaee et al., 2018). Nevertheless, this

approach proved to be insufficient for Nepali where

an existing Nepali lemmatizer6 failed to identify the

idioms within contexts, primarily because the lem-

matized idioms within the contexts differed from

the lemmatized version of the idiom, leading to no

match. For example, in Table 2, खानु (khaanu) is

lemmatized to खान khaana and खाएछ (khaayecha)

5Idioms fall under the category of multiword ex-
pressions https://aclweb.org/aclwiki/Multiword_
Expressions

6https://github.com/dpakpdl/
NepaliLemmatizer
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to खा (khaa) although both of those words have

the same uninflected form. There is a need for

developing better lemmatization tool for Nepali’s

typology.

3.3 Data Annotation

In the data annotation phase, given an idiom along

with sentences S1, S2, and S3, we asked the an-

notators to assess the coherence and relevance of

the provided contextual sentences. This step was

crucial to address any potential noise in the data

collection step. The annotation process can be sum-

marized as follows:

1. If the annotators considered the sentences

to be coherent, the sample was labeled as

(I)diomatic if the idiom was used in its id-

iomatic sense or labeled as (L)iteral if the

idiom was used in a literal sense. Then the

position of the idiom within S2 was marked

using tokens “###”.

2. If the sentences were not deemed coherent,

the sample was labeled as NA.

To ensure high-quality annotations, we engaged

three annotators, all native Nepali speakers with a

minimum of higher secondary education. Initially,

each annotator annotated 10 sample sentences and

their methodology and results were discussed in or-

der to establish a consistent baseline for annotation.

Then, the entire set of 1,216 samples was annotated

separately by two annotators. Next, the annotations

underwent a final review by the third expert an-

notator. It was discovered that there were dis-

crepancies in 26 annotations between the two an-

notators. Overall, Annotator #1 had 2 incorrect

annotations, while Annotator #2 had 24 incorrect

annotations. These discrepancies were rectified in

the final version of the dataset. Discarding the ‘NA’

samples (about 56% of the data) helped to filter out

noisy or irrelevant samples, and collectively, the

process yielded 408 ‘I’ samples and 118 ‘L’ sam-

ples, a total of 526 samples with 191 unique idioms.

The higher ratio of ‘I’ labels in the dataset suggests

that most of these idioms are typically used in id-

iomatic senses rather than a literal sense.

4 Experiments

4.1 Task Formulation

The new neDIOM dataset can facilitate several

idioms-related tasks such as idiom identification,

idiomaticity detection, generating continuations in

idiomatic contexts, or with some additional an-

notations, idiom translation, and sentiment analysis.

We explore the dataset further in the classic yet chal-

lenging task of idiomaticity detection. Given the

context and/or the associated idiom, the task is to

identify whether the idiom has been used in a literal

or idiomatic sense in the context. This task can pro-

vide insights into a model’s ability to distinguish

between non-compositional figurative and literal

meanings.

4.2 Experimental Setup

We used four different multilingual language

models: XLM-R-279m7 (Conneau et al., 2020),

BLOOM-560m8 (Scao et al., 2023), BLOOM-1b18,

BLOOM-3b8, BLOOM-7b8, LlaMa2-7b9 (Touvron

et al., 2023), and GPT-3.510.

Out of the 526 samples in our dataset, 506 were

used for testing and the remaining 20 for fine-tuning

the models under two settings: 5-shot setting where

the training data consisted of a total of 10 samples

(5 from each label); and 10-shot setting where the

training data consisted of 20 samples (10 from each

label). We also report results of experiments under

the zero-shot setting where no training data is used.

The inputs were prepared in 8 ways: S2 only, S1+S2

only, S2+S3 only, S1+S2+S3 only, with each of

these four variants used with or without idioms.

In zero-shot setting, since the models were not

originally fine-tuned for our classification task, we

applied a log-likelihood method, calculating the

likelihood for each label based on the model’s next-

word predictions, and selected the label with the

highest likelihood. For the classification task, the

results are reported in terms of macro-averaged

F1 scores across all the models. Additional im-

plementation details are included in Appendix A.

5 Results and Discussion

Idiomatic vs. Literal Classification: Table 3

presents the results of our classification experiment.

A mediocre F1 score indicates that the model’s per-

formance in distinguishing between literal and id-

iomatic labels was subpar, implying that it struggled

7https://huggingface.co/xlm-roberta-base
8https://huggingface.co/docs/transformers/

model_doc/bloom
9https://huggingface.co/docs/transformers/

v4.34.1/model_doc/llama2
10https://platform.openai.com/docs/models/

gpt-3-5
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Zero Shot 5-shot 10-shot

Models (w/ idioms) (w/o idioms) (w/ idioms) (w/o idioms) (w/ idioms) (w/o idioms)

S2

XLM-R 0.44 0.18 0.50 0.44 0.44 0.19
BLOOM-560m 0.50 0.52 0.44 0.52 0.47 0.18
BLOOM-1b1 0.50 0.50 0.44 0.19 0.47 0.19
BLOOM-3b 0.46 0.37 0.19 0.44 0.44 0.20
BLOOM-7b 0.44 0.44 - - - -
Llama2-7b 0.44 0.19 - - - -
GPT-3.5 0.50 0.47 0.47 0.51 0.52 0.50

S1+S2

XLM-R 0.44 0.44 0.23 0.47 0.44 0.46
BLOOM-560m 0.29 0.35 0.18 0.47 0.33 0.44
BLOOM-1b1 0.48 0.51 0.46 0.44 0.18 0.19
BLOOM-3b 0.38 0.34 0.46 0.45 0.20 0.20
BLOOM-7b 0.19 0.32 - - - -
Llama2-7b 0.44 0.18 - - - -
GPT-3.5 0.53 0.48 0.44 0.4 0.56 0.47

S2+S3

XLM-R 0.44 0.44 0.18 0.51 0.44 0.46
BLOOM-560m 0.28 0.33 0.42 0.44 0.2 0.44
BLOOM-1b1 0.47 0.47 0.46 0.18 0.44 0.22
BLOOM-3b 0.34 0.33 0.43 0.43 0.18 0.18
BLOOM-7b 0.44 0.44 - - - -
Llama2-7b 0.17 0.44 - - - -
GPT-3.5 0.46 0.47 0.44 0.51 0.44 0.50

S1+S2+S3

XLM-R 0.44 0.44 0.18 0.53 0.44 0.50
BLOOM-560m 0.25 0.31 0.20 0.18 0.31 0.54
BLOOM-1b1 0.47 0.48 0.44 0.18 0.45 0.32
BLOOM-3b 0.31 0.30 0.18 0.18 - -
BLOOM-7b 0.19 0.44 - - - -
Llama2-7b - - - - - -
GPT-3.5 0.51 0.49 0.55 0.53 0.55 0.54

Table 3: F1 score results of the experiments run on various models under zero shot, 5-shot, and 10-shot settings. (w/

idioms) refers to the settings where idioms are present in the input, while (w/o idioms) indicates inputs without

idioms. The models in bold represent the best performance for the corresponding setting.

to accurately classify both types of expressions.

This suboptimal performance stresses the need

for further refinement and investigation into en-

hancing the model’s capabilities in this particular

classification task.

Effect of With Idioms vs. Without Idioms: To

assess the potential impact of explicitly informing

the models about the presence of idiomatic ex-

pressions, we conducted each experiment in two

distinct setups. In the “with idioms” setup, the in-

put consisted of the context sentence(s) along with

the associated idiom phrase, while in the “without

idioms” setup, we presented the context without

specifying the idiom.

As illustrated in Figure 3, the results revealed that

the presence or absence of idiomatic expressions

obtained mixed results. In certain instances, it led

to performance enhancements, while in others, it

did not yield significant improvements. This fluc-

tuation in outcomes can likely be attributed to the

models’ limited familiarity with Nepali idiomatic

expressions, which consequently constrained them

to limited classification decisions.

Zero-shot vs Few-shot: The results of our ex-

periments investigating whether fine-tuning led to

improved predictions are plotted in Figure 4. We

observe that the benefits of fine-tuning are rather

limited, with only a few notable exceptions. Our

initial assumption was that the LLMs, having been

trained on extensive corpora, would adapt well to

low-resource languages after some fine-tuning. Ad-

ditionally, LLMs trained on substantial datasets

from the same language family, even if they lack

significant data from the low-resource language,

would bring about cross-lingual benefits. However,

our results show that few-shot fine-tuning did not
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Figure 3: The line charts showing the averaged F1 scores

under zero-shot setting (above) and both few-shot set-

tings (below). Each data point on the x-axis represents

a specific combination of model and context size.

bring any additional gains, leaving significant room

for enhancing LLM performance in low-resource

language scenarios.

Impact of Model Size: In our experiments, we

included several models of different sizes from the

BLOOM family of models which allows us to draw

insights regarding the comparable performance of

smaller vs. larger models. The results are plotted in

Figure 5. Curiously, contrary to the expectation

that larger models within the same architecture

would yield improved performance, the results do

not consistently support this hypothesis. While

there are minor enhancements in the 10-shot setting

when idioms are not explicitly provided, the per-

formance across other cases exhibits inconsistency.

This phenomenon may be attributed to the shared

training data for all three model variations (Scao

et al., 2023). With an increase in model parameters,

it appears that the available training data for low-

resource languages may not be sufficient to ad-

equately inform the expanded model capacity.

Effect of Surrounding Context: To evaluate

the impact of the surrounding context on the com-

prehension of both idiomatic and literal scenarios,

we conducted experiments in four distinct con-

texts: S2, S1+S2, S2+S3, and S1+S2+S3. Table 3

indicates that the sole instance of improved per-

formance, associated with an increase in context,

Figure 4: Plot showing the performance of the models

under zero-shot (ZS), 5-shot (5S), and 10-shot (10S)

settings with idiom (left) and without idiom (right).

Figure 5: F1 scores of various sizes of BLOOM models

when S2 is used as input for idiom classification in zero-

shot (ZS), 5-shot (5S), and 10-shot (10S) settings.

was observed with GPT-3.5. Performance saw a

boost when all three context components – S1, S2,

and S3 – were provided, in comparison to scenarios

where only S1, S1+S2, or S2+S3 were presented.

For all other models, it appears that using just S2

is satisfactory and strikes a good balance between

performance and efficiency.

6 Conclusion

In this study, we introduced a novel dataset,

neDIOM, designed to facilitate research on id-

ioms in low-resource languages, with a focus

on Nepali. The dataset boasts high-quality con-

tent, as it was meticulously evaluated through

manual assessment. Despite LLMs being ex-

tensively trained on data from high-resource lan-

guages within the same language family, their per-

formance in low-resource language contexts fell

short of expectations, even after fine-tuning. This

highlights the urgency of making LLMs more in-

clusive to ensure their benefits are accessible to a

broader population.
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Limitations

We conducted only zero-shot experiments for some

models due to resource limitations. Moreover, the

data used was sourced from the internet, which may

not fully represent all domains. As a low-resource

language, we face challenges in finding abundant

and high-quality online resources, such as literature

books.

Our research identified several avenues for fur-

ther exploration.

• First, there is a need for additional resources

to create a more extensive and representative

collection of Nepali idioms, with more fine-

grained annotations.

• Second, it is important to refine the lemma-

tization methods to ensure consistency across

various contexts when processing Nepali text,

that will eventually help in automatic col-

lection of idioms.

• Moving forward, our future plans also involve

leveraging the positional information of id-

ioms within the dataset to investigate howwell

LLMs can detect idiom positions.

• Additionally, we aim to develop techniques

to enhance the models’ performance when

dealing with input containing idiomatic ex-

pressions in Nepali.

Ethical Considerations

Given that the dataset is sourced from a corpus

comprising internet articles, it is possible that the

texts may include content that could be potentially

offensive to certain groups of people. Language

models may inadvertently interpret idioms in ways

that were not intended, as these idioms often ex-

press multiple meanings. Additionally, there are

instances where specific idioms are closely tied to a

particular culture’s worldview, and this perspective

may not necessarily align with the beliefs of other

groups. The annotators received fair compensation

for their work.
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A Implementation Details

Fine-tuning experiments were run on an A100 Ten-

sor Core GPU, employing the AdamW optimizer

for three epochs in each case. Due to resource lim-

itations, fine-tuning was carried out for all models

except for BLOOM-7b and LlaMa2-7b, for which

only zero-shot experiments were conducted. We

determined the maximum token length for each

context based on the tokens generated by the mod-

els, ensuring that all context was encompassed in

the model experiment. This length ranged from

200 subword tokens for S2 in the BLOOM-560m

model to 1300 tokens for the combined context of

S1, S2, and S3 in the LlaMa2 model. This approach

ensured an efficient use of computational resources.
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Figure 6: Histogram of idioms present in neDIOM.

B Exploratory Analysis

There are 191 unique idioms in the neDIOMdataset,

with the minimum idiom length of 2 words and a

maximum length of 4 words. Figure 6 presents the

histogram of the idioms. While one idiom appears

in 8 contexts, most idioms appear only once or

twice in the dataset.
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Abstract

The accuracy of Automatic Speech Recog-
nition (ASR) systems is influenced by the
quality and context of speech signals, partic-
ularly in telephonic environments prone to er-
rors like channel drops and noise, leading to
higher Word Error Rates (WER). This paper
presents the development of a large vocabu-
lary Urdu ASR system for telephonic speech,
based on a corpus of 445 speakers from di-
verse domains. The corpus, annotated at the
sentence level, is used to train and evaluate
GMM-HMM and chain Time-Delay Neural
Network (TDNN) models on a 10-hour test
set. Results show that the TDNN model outper-
forms GMM-HMM. Mixing narrowband and
wideband speech further reduces WER. The
test sets are also evaluated for the pre-trained
model Whisper for performance comparison.
Additionally, system adaptation for the banking
domain with a specialized lexicon and language
model demonstrates the system’s potential for
domain-specific applications.

1 Introduction

Human speech is a primary mode of communi-
cation, making speech recognition a vital area of
research. While Automatic Speech Recognition
(ASR) systems have made significant strides, ap-
proaching human-level performance in controlled
environments, telephonic speech (narrowband, NB)
remains a persistent challenge compared to studio-
quality (wideband, WB) speech. The limitations
in bandwidth, coupled with noise and distortion in
telephony, degrade ASR performance. This issue
is especially pronounced for resource-limited lan-
guages like Urdu, where training separate models
for NB and WB speech can be difficult due to the
scarcity of large-scale corpora.
This study aims to improve NB speech recognition
by developing a Mixed-Band (MB) acoustic model
using Deep Neural Networks (DNNs), which com-
bines both NB and WB data. Two primary strate-

gies for building MB acoustic models are Band-
width Extension (BWE) and direct data mixing.
While BWE has been widely explored to enhance
speech quality and intelligibility (Prasad and Ku-
mar, 2016; Nagel and Disch, 2009; Pulakka and
Alku, 2011; Liu et al., 2009), its impact on improv-
ing recognition accuracy for mixed-band speech
remains limited. In this work, directly mixing WB
data with NB data to improve ASR performance
for Urdu NB telephonic speech is proposed.
Developing robust ASR systems requires large cor-
pora for both acoustic and language model train-
ing. Extensive corpora exist for languages such
as English (Godfrey and Holliman, 1997; Post
et al., 2013), Mandarin (Liu et al., 2006; Deng
et al., 2019), Korean (Bang et al., 2020), and Polish
(Ziółko et al., 2018). For instance, the Switchboard
corpus (Godfrey and Holliman, 1997) provides 260
hours of conversational English, while the HKUST
Mandarin Telephone Speech Corpus (Liu et al.,
2006) offers 200 hours of telephonic data covering
diverse dialects. A 969-hour corpus was developed
for spontaneous Korean speech (Bang et al., 2020),
and a 64-hour corpus for Polish telephony (Ziółko
et al., 2018) spans domains like street and com-
mands.
However, Urdu, spoken by 70 million people as a
first language, remains under-resourced in terms
of speech corpora for natural language process-
ing. Notable efforts include the development of a
44.5-hour Urdu ASR system (Sarfraz et al., 2010),
which combines microphone and telephone speech
from 80 speakers, and domain-specific ASR sys-
tems for recognizing district names (Qasim et al.,
2016; Rauf et al., 2015), achieving lab and field
accuracies of 95.6% and 87.21%, respectively. Ad-
ditionally, a Punjabi-accented banking-domain tele-
phonic corpus (Mumtaz et al., 2018) with 400
speakers was recorded at 8 kHz and manually an-
notated.
Farooq et al. (Farooq et al., 2019) developed a
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large vocabulary continuous speech recognition
(LVCSR) system for Urdu, collecting 300 hours of
training data from 1,648 speakers and achieving a
word error rate (WER) of 13.50% on 9.5 hours of
testing data. Despite these efforts, Urdu still lacks
a large-scale telephonic speech corpus, particularly
for domain-specific applications like banking.
In this study, this gap is addressed by develop-
ing a telephonic Urdu speech corpus tailored to
the banking domain, specifically for debit card
activation. To accelerate corpus development,
semi-automatic methods were used, combining
microphone-recorded WB speech with telephonic
NB data to build acoustic models. These models
were then tested on telephonic speech to evaluate
performance improvements in real-world applica-
tions.

2 Related Work

Automatic Speech Recognition (ASR) for tele-
phonic data in specialized domains, such as bank-
ing, presents unique challenges due to varied acous-
tic environments and domain-specific vocabulary.
Key strategies to enhance ASR performance in
these scenarios include bandwith mismatch and
acoustic modelling and domain adaptation.

2.1 Bandwidth Mismatch and Acoustic
Modeling

A significant challenge in telephonic ASR is
the mismatch between narrowband (NB) and
wideband (WB) speech. Early work by Seltzer
and Acero (Seltzer and Acero, 2006) introduced a
GMM-HMM-based EM algorithm for mixed-band
(MB) acoustic modeling, though improvements
in recognition accuracy were limited. Later ap-
proaches, such as You and Xu (You and Xu, 2014),
leveraged deep neural networks (DNNs) to reduce
bandwidth mismatches, showing more promise.
Mac et al. (Mac et al., 2019) demonstrated that
upsampling NB data yields better results than
downsampling WB data in DNN-based acoustic
models. Recent advancements using generative
adversarial networks (GANs) (Shi, 2023) have
shown a 3.65% improvement in accuracy when
recognizing mixed-band audio, highlighting
the potential of GANs in addressing bandwidth
mismatches.

2.2 Domain Adaptation for Telephonic Speech

Domain adaptation plays a crucial role in improv-
ing telephonic ASR, especially in specialized do-
mains like banking. The Density Ratio Approach
(DRA) (Takagi et al., 2023) adapts language mod-
els using large-scale text corpora to enhance recog-
nition in live ASR. Additionally, External Off-
Policy Acoustic Catalogs (Chan et al., 2023) have
been used to reduce WER by leveraging external
audio embeddings, speeding up domain adaptation.
Data Distribution Matching (Shinohara and Watan-
abe, 2023) optimizes training by selecting subsets
of training data that closely match the target do-
main, ensuring minimal WER increases without
enlarging the model.
Building on these advancements, Ahmad et al. (Ah-
mad et al., 2024) proposed a progressive approach
that adapts to out-of-domain telephonic speech by
sequentially training student models, each using
the previous student model as a teacher. This multi-
stage training significantly reduced WER in unsu-
pervised adaptation scenarios. In their experiments
on Switchboard data, they achieved a 9.8%, 7.7%,
and 3.3% absolute WER reduction after each stage
of training, underscoring UDA’s value in telephonic
ASR with limited labeled data.
While significant progress has been made in adapt-
ing ASR systems to telephonic speech, challenges
remain, particularly in maintaining high perfor-
mance across diverse telephonic applications and
scenarios, such as in the banking domain. Continu-
ing advancements in domain adaptation techniques
will be key to overcoming these hurdles.

3 Corpus Design

To develop a robust ASR system for a specific
domain and language, a comprehensive text
corpus covering essential vocabulary is required.
This corpus records speech data for training and
testing the ASR system, with the training corpus
building the acoustic model and the testing corpus
evaluating performance. Linguists systematically
developed the text corpus by crawling data from
websites using HTTrack1 and sentences were
extracted from HTML files using a Python script,
manually rephrasing and supplementing sentences
that averaged 14 words, with no repetitions. A
linguist verified 10% of the text for syntactic and
grammatical accuracy. The following subsections

1https://www.httrack.com/
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Domain Name No. of Sentences
Banking 1900
Business 10900
E-commerce 3000
Telecommunication 2000
News 18062
Miscellaneous 417
Total 36279

Table 1: Composition of Training Corpus

explain domain coverage in the corpora.

3.1 Training Corpus Design
A rich text corpus was carefully designed to col-
lect Urdu speech data across various domains.
The training corpus consists of 36,279 unique
sentences, encompassing banking, business, e-
commerce, telecommunications, online news, and
general categories. Initially, 6,000 sentences were
sourced from the phonetically balanced Urdu text-
to-speech corpus.
For the banking domain, 1,000 sentences were
crafted from brochures on loans, insurance, and
banking services, supplemented by translations
from English where necessary. An additional 900
sentences were rephrased from online bank web-
sites, covering banking cards, Islamic banking, and
payment partners.
In the business domain, 10,900 sentences focused
on vocabulary related to cryptocurrency, taxation,
and Pakistan’s economy. For e-commerce, 3,000
sentences were collected from websites, primar-
ily from pictorial information and menu cards.As
shown in Appendix Table 13, the categories cov-
ered include a wide variety of products, from elec-
tronic devices to groceries.
For telecommunications, 2,000 sentences were gen-
erated from service provider websites, addressing
apps, bundles, and services, with translations from
English rules and regulations into Urdu. Addition-
ally, 18,062 sentences were crawled and manually
rephrased from news websites, alongside 417 sen-
tences covering miscellaneous categories. The in-
formation on these categories is shown in Appendix
Table 14. Table 1 outlines the corpus composition
by domain.

3.2 Testing Corpus Design
To evaluate ASR system performance, a phoneti-
cally rich and balanced test corpus was developed

Domain Name No. of Sentences
Newspaper 1300
Telecommunication 2000
E-commerce 2000
Addresses 1000
Dates 500
Telephone Numbers 250
CNIC Numbers 250
Urdu Digest(Mumtaz et al., 2018) 500
Total 7800

Table 2: Composition of Testing Corpus

by expert linguists, covering domains such as busi-
ness, telecommunications, e-commerce, addresses,
dates, and CNIC numbers. The test corpus was
designed to be entirely distinct from the training
data.
For the business domain, 1,300 unique sentences
were rephrased from online newspapers. The
telecommunications and e-commerce domains
each contributed 2,000 sentences from various web-
sites. In the addresses domain, 1,000 unique postal
addresses were manually rephrased, modifying el-
ements like street and house numbers, along with
different address formats used in Pakistan.
To cover dates, 500 sentences were created using
carrier sentences, incorporating dates in various for-
mats. These formats are shown in Appendix Table
15 and the carrier sentences are shown in Appendix
Table 2.
For telephone number coverage, 250 original num-
bers were collected, and to ensure privacy, the 11
digits were shuffled multiple times to generate new
numbers. These were then incorporated into carrier
sentences for data recording.
Similarly, for CNIC numbers, 250 original CNICs
were collected, and their 13 digits were shuffled to
create new numbers. These were used in carrier
sentences, and speakers recorded them for testing .
Additionally, 500 sentences from Urdu Digest 1M
corpus(Mumtaz et al., 2018) were included in the
testing corpus.
Table 2 presents the composition of the testing cor-
pus and the proportion of each domain contributing
to it. In order to cover corpus related to dates carrier
sentences were used.

4 Speech Corpus Collection

To collect the speech data, designed text sentences
were recorded from multiple speakers. Details of
speaker selection, recording process and data align-
ment are given in subsequent sections.
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4.1 Speaker Selection

To record the above-mentioned designed text cor-
pus, the first step was the speakers scrutiny. Both
genders (males and females) ranging between 18-
50 years of age were selected. The speakers
minimum education must be intermediate (Grade
12). Gender balance was maintained and speakers
whose mother tongue was Urdu or Punjabi were
selected. For a speaker to qualify for the actual
recording, he/she had to read 20 sentences correctly.
The speakers who can speak Urdu fluently and
have no speech disfluency or pronunciation issues
were selected for the recording session. Speaker
uniqueness was ensured by maintaining a list of
CNIC numbers of all speakers who participated in
the recordings. Moreover, speakers date of birth,
mother tongue, district, telephone number, mobile
phone network, and mobile phone brand was also
documented.

4.2 Recording Process

The speech corpus was recorded in an indoor en-
vironment using a variety of devices, including
laptop microphones, USB headsets, and mobile
phones (both default microphones and hands-free).
Each speaker was asked to use their mobile phone
to ensure diverse coverage across brands like Sam-
sung, Nokia, HTC, and Huawei. The recording was
conducted in a continuous read speech manner.

4.2.1 Training Corpus Recording

Simultaneous recordings were made on a laptop
and a mobile phone, guided by a resource per-
son who assigned each speaker a unique ID and
list number. The text corpus was segmented into
lists of 20 sentences. For wideband recordings,
speakers utilized laptop microphones, USB head-
sets, or hands-free devices, with speaker details
documented in advance. The recording process
employed an automated utility that displayed sen-
tences one at a time, allowing speakers to rehearse
before recording. The completed recordings were
saved as WAV files at a 16 kHz frequency, accom-
panied by a text file containing sentence IDs and
timestamps. Post-recording, the data was sent to
the Urdu ASR system for decoding, generating a
status file detailing word errors. The goal for each
speaker was to achieve at least 150 correctly de-
coded sentences, with an average of 350 sentences
read in 2.5 to 3 hours.

4.2.2 Testing Corpus Recording
The testing procedure mirrored that of the train-
ing corpus. Speakers recorded lists of 20 unique
sentences using the same microphone utility. Each
recorded list was automatically saved in WAV for-
mat at 16 kHz, along with a text file documenting
the start and end timestamps for each sentence.
No ASR was used during testing, so the status file
contained only timing information. Each speaker
aimed to record 120 unique sentences and was re-
quired to re-record any sentences not captured cor-
rectly, typically completing the task in about 1 hour.
Figure 1 depicts the recording process.

Figure 1: Recording Process

4.3 Data Alignment and Verification
This section discusses the alignment and verifica-
tion of training and testing data.

4.3.1 Data Alignment and Segmentation
To segment telephonic audio into sentences, laptop
recordings were used as references due to distor-
tions from signal drops or weather issues. Man-
ual alignment was necessary despite simultaneous
recording, using Audacity2, an open-source edi-
tor. The aligned telephonic audio file is then ex-
ported to the system. A Python script segmented
the training audios into individual sentences, or-
ganizing them into folders for each speaker, with
subfolders for laptop and telephonic data, further
categorized by ASR-decoded results (0WE, 1WE,
2WE, and residual). Corresponding transcriptions
were stored in text files. For testing, a similar script
created speaker-specific folders for both channels,
containing segmented audio files.

2https://www.audacityteam.org/download/
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4.3.2 Data Verification
Data verification is crucial for preparing audio data
for ASR development. While laptop-recorded data,
decoded by the backend ASR, required no manual
verification, telephonic recordings were carefully
reviewed due to potential issues like signal drop
or attenuation. Expert linguists manually verified
10% of the telephonic audios that matched the 0WE
category from the laptop channels decoding results,
excluding significantly distorted files from ASR
training. All audio files from both channels in the
testing data were fully verified since no backend
ASR decoding was applied. Deliberate modifica-
tions (such as inserting or removing Urdu preposi-
tions and conjunctions) were introduced in the text
transcriptions for accuracy checks, with any errors
leading to repeat verifications by the linguist team.

4.3.3 Corpus Statistics
The presented corpus comprises Urdu read-speech
collected through two recording channels: laptop
and telephone. Details on the number of speakers
and duration are in Table 3, while mother tongue
information is in Table 4.
Speakers from various districts of Pakistan, includ-
ing Lahore, Faisalabad, Gujranwala, and others,
are represented, with age coverage ranging from
18 to 50 years. Age distribution in the training and
testing data is detailed in Table 5.
Recording on telephone channels utilized mobile
phones from brands such as Samsung, Huawei,
Nokia, and iPhone, covering networks like Ufone,
Jazz, Warid, Zong, and Telenor. The percentage
coverage for each mobile network is in Table 6. Ad-
ditional statistics on the cleaned and verified corpus
are presented in Table 7. In addition, Appendix Ta-
ble 16 clearly compares this paper’s corpus and the
other existing telephonic Urdu corpora.

5 Experimental Setup

The speech recognition system for the Urdu lan-
guage is developed using Kaldi3 , which is an open-
source speech recognition toolkit written in C++
and licensed under the Apache License V2.0. It pro-
vides adaptable code which can be modified and ex-
tended as per requirement. The important features
of Kaldi include code-level integration with Finite
State Transducers (FSTs) which compiles against
the OpenFst toolkit (using it as a library). It also
provides extensive linear algebra support through a

3https://kaldi-asr.org/

matrix library that wraps standard BLAS and LA-
PACK routines (Praveen Kumar et al., 2020) . The
toolkit was set up on Ubuntu 18.04 LTS operat-
ing system. The machine specifications include an
octa-core 2.8 GHz processor of Intel(R) Core (TM)
i7 with 32 GB RAM and hosting two NVIDIA
graphic cards GeForce GTX 10804 having 8 GB
memory each. This setup supports the successful
implementation of state-of-the-art recipes provided
by the Kaldi toolkit for the development of a speech
recognition system.

5.1 Feature Extraction

The raw speech signal is complex and unsuitable
for direct input into a speech recognition system.
To facilitate training, feature extraction is employed
to represent the speech signal parametrically. Kaldi
offers various scripts for feature extraction, includ-
ing Mel Frequency Cepstral Coefficients (MFCC),
Perceptron Linear Predictive (PLP), and Vocal
Tract Length Normalization (VTLN).
For speech recognition system, MFCC extraction
was used via the Kaldi recipe, processing 25ms
frames with a 10ms shift. After removing the DC
offset, the signal is multiplied by a Hamming win-
dow, followed by energy calculation in mel-bins,
Fast Fourier Transform (FFT), and power spectrum
computation. Finally, a cosine transform is applied
to the logarithm of the energies. Although the de-
fault number of cepstral coefficients is 13, it was
configured to 40 to enhance deep neural networks.
After calculating MFCC features, Cepstral Mean
and Variance Normalization (CMVN) was applied
for improved robustness in speech recognition.

5.2 Phonetic Lexicon

The lexicon is essential for speech recognition,
defining word pronunciations. For Urdu ASR,
a 34K-word phonetic lexicon was created, cover-
ing all unique words from the text corpus. Tran-
scriptions follow the Case Insensitive Speech As-
sessment Method Phonetic Alphabet (CISAMPA)5

symbols. Linguists mapped each word to standard
orthography using dictionaries like Oxford Urdu
Dictionary6 and Urdu Lughat7. Alternate pronunci-

4https://www.nvidia.com/en-sg/geforce/
products/10series/geforce-gtx-1080/

5https://www.cle.org.pk/Downloads/
ling_resources/phoneticinventory/
UrduPhoneticInventory.pdf

6https://languages.oup.com/
oxford-global-languages/

7http://udb.gov.pk
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Data Type Telephone Data Duration (hours) No. of Male Speakers No. of Female Speakers
Training Data 111.5 h 240 205
Testing Data 10.93 h 30 30

Table 3: Number of Speakers and Duration of Speech Data

Mother Tongue Number of Speakers (Training) Percentage (Training) Number of Speakers (Testing) Percentage (Testing)
Urdu 213 47.86% 28 46.67%
Punjabi 232 52.14% 32 53.33%

Table 4: Speaker Coverage Based on Mother Tongue

Range of Speaker Ages No. of Speakers (Training) Percentage (Training) No. of Speakers (Testing) Percentage (Testing)
< 20 178 40.00% 6 10.00%
20 24 240 53.93% 27 45.00%
25 29 25 5.62% 10 16.67%
> 30 2 0.45% 17 28.33%

Table 5: Age Distribution of Speakers

Mobile Network Training Data Testing Data
Ufone 26.69% 24.24%
Jazz 45.76% 40.91%
Warid 10.80% 16.67%
Zong 10.80% 6.06%
Telenor 5.95% 12.12%

Table 6: Percentage Coverage of Mobile Networks

ations exist for some words, as shown in Appendix
Table 17.

5.3 Language Model
SRI Language Modeling (SRILM) toolkit
(Praveen Kumar et al., 2020) is used to build a
trigram language model. A very large amount of
data has been crawled from various Urdu websites
including books, magazines, news, and blogs. The
corpus is then tokenized on the basis of sentences.
Moreover, the designed text corpus for training
is also appended after replicating it hundreds
of times. The final corpus contains 120 million
words which were used for the development of the
language model for Urdu ASR.

5.4 Acoustic Modeling
The baseline ASR system was built using a
Gaussian Mixture Model-Hidden Markov Model
(GMM-HMM) approach. Monophone training and
alignment were followed by speaker-independent
Linear Discriminant Analysis (LDA) for tri-phone
training (tri1) with 2000 decision tree leaves and
11,000 Gaussians. In tri2, Maximum Likelihood
Linear Transform (MLLT) increased these to 2500
leaves and 15,000 Gaussians. Speaker Adapted

Training (SAT) retained this configuration.
Using SAT alignments, Deep Neural Networks
(DNN), specifically Chain TDNN models, were
trained with Lattice-Free Maximum Mutual Infor-
mation (LFMMI) to improve efficiency and tran-
scription quality. High-resolution MFCCs and 100-
dimensional i-vectors were computed with 1024
Gaussians. The TDNN had one convolutional layer,
seven hidden layers with 625 neurons, ReLU-batch
norm activation, and a learning rate that decreased
from 0.001 to 0.0001.

5.5 Mixing of WB Speech Data in NB Data

Increasing training data enhances speech recog-
nition performance, as shown in the literature
(Seltzer and Acero, 2006; Mac et al., 2019). Mixed-
bandwidth training improves telephonic speech
recognition. Along with the developed corpus, 174
hours of WB data from (Farooq et al., 2019) (hands-
free recorded, 16 kHz) were added. The 111.5
hours of telephonic data were upsampled from 8
kHz to 16 kHz, yielding 285.5 hours of audio at 16
kHz. Results, before and after adding WB data, are
detailed in Section 6.

5.6 Testing Setup and Performance Measure

For evaluation of the system, 10.9 hours of tele-
phonic speech data is used to test the primary sys-
tem which covers multiple domains. Percentage
word error rate (WER) is used as the performance
measure. It is equal to the number of errors made
by ASR divided by the total words in the test data
multiplied by 100.
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Training Data Testing Data
Number of Utterances 65,227 6,358
Average Duration per Utterance (in seconds) 6.2 6.2
Average Number of Words per Utterance 13 15
Average Number of Utterances per Speaker 164 106
Total Frequency of Words in Transcription Files 823,819 92,659

Table 7: Corpus Details

6 Performance Evaluation Experiments
and their Results

Two models, a GMM-HMM model, and a chain
TDNN, are evaluated using the test data. The
GMM-HMM model is trained on telephonic
training data while Chain TDNN is trained on
two datasets, telephonic training data and tele-
phonic+hands-free data from (Farooq et al., 2019).
The experiments showed that Chain TDNN out-
performed the GMM-HMM model with 24% less
WER. The third experiment i.e., the training of
Chain TDNN using telephonic (NB) and hands-free
(WB), further reduced WER by 3%. However, pre-
trained Whispers Large variant performed similar
to GMM-HMM with only 4% reduction in WER.
Table 8 presents the experimental results carried
out.

7 Adaptation of ASR for Banking Domain

In order to tailor the system for the banking do-
main, language data and lexicon was adapted for a
speech-based debit card activation dialog system.
This included a language model for debit card num-
bers (DCN), last four digits (DCLFD), date of birth
(DoB), and debit card expiry dates (DCED). The
system records client responses via telephone, and
ASR decodes them; if the information is correct,
the card activates; otherwise, after one retry, the
call is transferred to a human operator.
Banking domain corpora from (Mumtaz et al.,
2018) was utilized for adaptation, which comprised
10 million entries for DCN, 300K for DCLFD,
815K for DCED, and 2.6 million for DoB. A com-
bined lexicon and corpus were created by merging
these categories, with added confirmation words
like "sahi" (Correct), "ghalat" (Incorrect), "han"
(Yes), and "nahi" (No). Table 9 outlines the corpus
and lexicon. The system was tested on individual
and combined datasets, comparing System-3 with
the Whisper pre-trained model. Although Whisper
underperformed due to limited vocabulary, domain-
specific models mentioned in this paper achieved

better results.
Experiments with the combined language model
and lexicon were performed in four configura-
tions: (1) general corpus and lexicon, (2) bank-
ing lexicon only, (3) banking corpus only, and (4)
both banking lexicon and corpus. Table 10 shows
that domain-specific lexicons and corpora signif-
icantly improved results, while Table 11 presents
the %WER from System 2 and System-3 for each
experiment.
Table 12 analyzes phone recognition errors in the
banking dataset while Appendix Table 18 shows
percentage of Urdu Phonemes in testing and train-
ing data. Consonants like /m, l, j/ were frequently
misrecognized, while medial vowels such as /[æ]/
and /[e]/, the diphthong /[e5:]/, and the nasal
vowel /[æ]/ faced significant misrecognition chal-
lenges due to limited test data coverage. Notably,
the dental plosive /[t

˜
]/ was particularly challeng-

ing to identify despite good dataset coverage, while
the vowel /[@]/ was often misrecognized as /[A:]/.
In conclusion, domain-specific models outperform
general pre-trained models like Whisper, emphasiz-
ing the need for targeted improvements in phonetic
recognition for banking applications.

8 Conclusion

In this paper, a narrowband speech recognition sys-
tem for Urdu is developed using a mix of wide-
band speech data. A multi-domain narrowband and
wideband speech corpus is recorded from multi-
ple speakers. Based on this data, a large vocabu-
lary continuous speech recognition system for tele-
phonic channels is developed. Various acoustic
modeling techniques are investigated, with Chain
TDNN outperforming other models. The Chain
TDNN, trained on a mixture of narrowband and
wideband corpora, outperforms other models and
the pre-trained Whisper model. The developed
ASR is adapted for the banking domain using
a domain-specific lexicon and language model,
achieving promising results.
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System Model Training Data Channel Duration (hrs) %WER
System-1 GMM Telephonic 111.5 54.92
System-2 Chain TDNN Telephonic 111.5 30.36
System-3 Chain TDNN Telephonic+Hands-free 285.5 27.56
Whisper (Radford et al., 2023) Variant-Large Pre-trained Model 680,000 50

Table 8: Word Error Rate on Different Models Trained on Different Training Data

Category Corpus Lexicon
DCN 10,000,000 entries [16- digit numbers] 29 entries [0-9 digits]
DCLFD 300,000 entries 157 entries [0-100 digits]
DCED 815,000 entries (13 different patterns) 201 entries [0-100 digits + Month Names]
DoB 2,679,107 entries (13 different patterns) 201 entries [0-100 digits + Month Names]
Combined 17,679,107 209 entries [digits + month names + confirmation words]

Table 9: Banking Text Corpus and Lexicon Details

Category No. of Utterances Duration (Minutes) WER on Combined LM and Lexicon WER on Respective LM and Lexicon WER using Whisper-Large Phone Error Rate
DCN 83 17 1.72 1.65 19.0 1.83
DCLFD 298 21 5.30 5.43 80.0 4.37
DCED 792 54 3.44 3.40 51.0 4.16
DoB 340 29 3.42 3.32 49.0 3.32
Combined 1513 121 3.87 3.45 (Avg) 49.75 3.42 (Avg)

Table 10: Detailed Test Results

Lexicon and LM used % WER on System-2 % WER on System-3
General lexicon + general corpus 86.08 91.39
Banking lexicon + general corpus 8.08 7.56
General lexicon + banking corpus 3.14 2.84
Banking lexicon + banking corpus 2.47 1.65

Table 11: Performance of System-2 and System-3 on Banking Domain Data

Sr. no Urdu Consonants (IPA) % Phone Error Rate Sr. no Urdu Vowels (IPA) % Phone Error Rate
1 م (m) 10.0 1 ےَا (æ) 21.9
2 ل (l) 14.1 2 آ،ا (ea:) 8.2
3 ی (j) 11.9 3 ہ (e) 7.7
4 ط،ت (t

˜
) 8.2 4 ںَی (Aẽ:) 7.1

5 ھٹ (th) 4.6 5 ی (i:) 5.9
6 ث،ص،س (s) 4.4 6 ںی (ẽ:) 4.8
7 ک (k) 3.5 7 ء (@) 4.5
8 ھک (kh) 3.0 8 آ (A:) 2.7
9 پ (p) 2.7 9 و (o:) 2.2

10 ب (b) 2.3 10 ُ(U) 2.0
11 ہ،ح (h) 2.3 11 یئآ (a:i:) 1.6
12 ن (n) 2.2 12 ِ (I) 1.4
13 چ (tS) 2.0 13 ںا،ںآ (Ã:) 1.4
14 ر (r) 1.8 14 ے (e:) 0.8
15 د (d) 1.8
16 ھچ (tSh) 1.7
17 و (v) 1.1
18 ز،ظ،ض،ذ (z) 0.7

Table 12: Phone Error Rate on Banking Domain Data
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9 Limitations
The development of the mixed-band (MB) acous-
tic model and Urdu speech recognition system ac-
knowledges several limitations. Although Urdu
telephonic speech corpus presented in this paper
represents an improvement over prior datasets, it
may not fully capture the variety of Urdu accents
and dialects, and its domain specificity to the bank-
ing sector constrains generalizability to other appli-
cations. The speaker demographic, while balanced
in gender and comprising native Urdu and Punjabi
speakers, is restricted to individuals aged 18-50
with at least an intermediate education level, ex-
cluding younger and older populations as well as
those with lower educational backgrounds, thereby
limiting the model’s applicability across a broader
audience. Additionally, the recordings were con-
ducted in controlled indoor environments, which
may not accurately represent real-world acoustic
variability. Lastly, the ASR system is specifically
designed for debit card activation, and its effective-
ness in other domains remains to be evaluated.

Ethical Considerations

All researchers involved in this study have adhered
to the ACM Code of Ethics and conducted their
work responsibly. Our aim is to advance speech
recognition for Urdu, enhancing technology access
in underserved communities. Data collection was
conducted with informed consent, primarily uti-
lizing publicly available or simulated telephonic
interactions, with all personally identifiable infor-
mation (PII) anonymized during transcription and
annotation. Telephone numbers and 13-digit CNIC
numbers were anonymized by shuffling digits to
ensure privacy. Our initiative seeks to enhance tech-
nological resources for the broader Urdu-speaking
community without exploiting individuals based on
language, geography, or social standing. We recog-
nize the potential risks associated with the misuse
of ASR technology, including surveillance or unau-
thorized data collection. However, our research
strictly focuses on developing models for the bene-
fit of users, not for intrusive purposes. The ethical
implications of using such systems in various appli-
cations must be carefully considered, and we urge
continued dialogue on the responsible deployment
of speech recognition technologies to ensure they
serve the needs of diverse Urdu-speaking popula-
tions without exploitation or marginalization.
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A Supplementary Material

This appendix contains additional tables and
figures that support the findings in the main
document.
Table 13 provides an overview of the categories
prevalent in the e-commerce domain. This table
captures various sectors, including electronics,
home appliances, fashion, and groceries, reflecting
the diversity of products and services available
online. The categories are organized to facilitate
understanding of the marketplace’s structure and
the various offerings within each segment.

E-Commerce Domain Categories

Electronic devices, gadgets, home appliances, Features of different appliances,
home (bedding, blankets), Automobiles (bikes, spare parts, loaders), Electronic
accessories, health and beauty, Babies and toys, groceries, pets, Home and
lifestyle, food items, food deals, Ingredients, cities, cuisines, Food outlets,
transport, organizations, Medical equipment, books/magazines, Miscellaneous
products, jobs, Electric appliances, electronic gadgets, Features of products,
features of OLX, Pets/livestock, fashion, transport, Musical instruments, med-
ical instruments, Popular cities, less popular cities, Locations, property type,
purpose, Cars (Japanese, Chinese etc.), car brands, Bikes and parts

Table 13: Categories Covered in E-Commerce

In Table 14, a comprehensive list of general
domain categories is presented. This table encom-
passes a wide range of topics, from agriculture to
technology, showcasing the breadth of subjects
that can be explored. Each category represents
significant fields of study or interest, underlining
the multifaceted nature of the domains covered.

Table 15 presents the various date formats

General Domain Categories

Plants, agriculture, sports, titles, education fields, country names, political
parties, services and utilities, professions, election process, judiciary, admin-
istrative domains, trade, medical terms, diseases, entertainment films, cities,
religions, army, nationalities, places, vegetables, flowers, crimes, relations,
rivers, castes, weapons, grocery items, colors, festivals, events, body parts,
birds, animals, metals, utensils, clothes, fruits, jewelry, Islam, dishes, furniture,
literature-text types, musical instruments, journalism, weather, emotions, nuts,
drugs, insects, time of day, direction, shapes, technology, banking, time mea-
surement units, area measurement units, distance measurement units, weight
measurement units, parts of house, transport, vehicles, situation/calamities/dis-
asters

Table 14: Categories Covered in General Domain

incorporated into the testing corpus design for
the ASR system. These formats were carefully
selected to reflect the diverse ways dates can be
expressed in natural speech, which is crucial for
evaluating the model’s performance in real-world
scenarios.

Carrier sentences in Figure 2 help to evaluate
the system’s performance in handling both general

Date Format Example

DD/MM/YYYY 16/10/2018
DD-MM-YYYY 16-10-2018
Month (English) DD, Year October 16, 2018
DD Month (Urdu) Year 15 2018
DD.MM.YYYY 17.07.1988
DD Month YYYY 19 SEP 2016
DDth Month, YYYY 16th February 2014

Table 15: Different Formats for Dates

language and numerical information in everyday
conversations.

Figure 2: Sample Carrier Sentences for Dates,Phone
Numbers and CNIC

Table 17 presents a selection of Urdu words
that have multiple pronunciations, alongside their
English translations and phonetic transcriptions.
This table aims to illustrate the linguistic diversity
and variability present within the Urdu language,
particularly in terms of pronunciation.
Table 16 clearly presents that the corpus presented

in this paper stands out for its extensive domain
coverage, large number of speakers, and large
amount of speech data emphasizing its uniqueness
in breadth and scale.
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Sr.
no

Telephonic Urdu Cor-
pora

Total No. of
Speakers

Duration
(hours)

Domains Covered Speech Type

1 Speech Corpus Devel-
opment for a Speaker
Independent Spontaneous
Urdu Speech Recognition
System(Sarfraz et al.,
2010)

82 44.5 Phonemically rich
sentences, everyday
text (date, numbers,
proper names, hob-
bies, interests, past
experiences, televi-
sion, cricket)

Read and spon-
taneous speech

2 District Names Speech
Corpus for Pakistani Lan-
guages(Rauf et al., 2015)

300 12 District names Read speech

3 Urdu Speech Corpus for
Travel Domain(Qasim
et al., 2016)

60 – City names, days,
time, and numbers

Read speech

4 Urdu Automatic Speech
Recognition for Tele-
phonic Data: A Mixed
Band Corpus Develop-
ment Approach with
Domain Adaptation for
Banking Applications

445 111.5 Banking, e-
commerce, in-
vestments, trading,
telecommunication

Read speech

Table 16: Corpus Comparison with existing Urdu Corpora

A.1 Phonetic Coverage of Training and
Testing Data

A detailed phonetic analysis of the training dataset
has been conducted to ensure adequate coverage
of all Urdu phonemes. Table 18 elaborates on the
Urdu phonemes coverage in the training and bank-
ing domain test dataset. The training corpus com-
prises 56% consonants and 44% vowels, and the
test dataset comprises 62% consonants and 38%
vowels. /r/ consonant is the most frequent conso-
nant in both training and testing datasets, and /A:/
vowel is the most frequent in both training and test
data. Aspirated consonants /th/, /kh/, etc., and
nasalized vowels /̃i:/, /æ̃:/, etc., are less frequent
in both datasets. /th/ is exceptional as it has more
frequency of occurrence in test data of the banking
domain.
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Words having alternate pronunciations English Translation Transcriptions

فنصم Author M U S A N N A F
M U S A N N I F

یئاچنوا Height U U N T S AA II
UUN TS AA II

حلاص Pious S AA L AY
S AA L AY H
S AA L AYH H
S AA L AYH H AY

Table 17: Examples of Words Having Alternate Pronunciations

Frequency of occurrence of Urdu phonemes in training data Frequency of occurrence of Urdu phonemes in testing data
Urdu Consonants (IPA) % Urdu Vowels (IPA) % Urdu Consonants (IPA) % Urdu Vowels (IPA) %

ر (r) 6.0 آ،ا (A:) 9.4 ر (r) 8.1 آ،ا (A:) 8.9
ک (k) 5.6 ء،َ ( @) 7.6 ن (n) 8.1 ء،َ ( @) 8.5
ہ،ح (h) 4.6 ے (e:) 5.8 ث،ص،س (s) 7.3 ے (e:) 5.4

ن (n) 4.5 ی (i:) 5.0 ط،ت (t
˜
) 6.8 ی (i:) 5.0

ث،ص،س (s) 4.3 ِ (I) 4.2 چ (tS) 4.8 و (o:) 3.5

م (m) 3.9 ُ (U) 3.2 ک (k) 3.5 ِ (I) 3.2

ط،ت (t
˜
) 3.4 ُو (u:) 2.1 پ (p) 2.9 ںآ،ں (Ã:) 2.3

ل (l) 3.3 و (o:) 1.2 د (d) 2.8 َو (O:) 2.2

ب (b) 2.2 ںی (ẽ:) 1.0 ھٹ (th) 2.4 ُ (U) 0.9
د (d) 2.1 َو (O:) 0.9 ف (f) 2.2 (æ) 0.3
پ (p) 2.0 ےَ (æ:) 0.7 ھچ (tSh) 2.2 یئآ (a:i:) 0.3
ی (j) 1.7 ہِ (e) 0.5 ب (b) 1.6 ںی (ẽ:) 0.3

و (v) 1.3 ںَی (Aẽ:) 0.4 و (v) 1.3 آ،اِ (ea:) 0.3

ز،ظ،ض،ذ (z) 1.2 ُ (æ) 0.4 ہ،ح (h) 0.8 ُو (u:) 0.2
گ (g) 1.2 ہ (o) 0.4 ز،ظ،ض،ذ (z) 0.7 ہِ (e) 0.1

ج (dZ) 1.2 ںو (õ:) 0.3 ل (l) 0.6 ےَ (æ:) 0.1

ٹ (t) 1.1 ںآ،ںا (Ã:) 0.3 ی (j) 0.4 ںَی (Aẽ:) 0.1

ف (f) 1.0 ںُو (ũ:) 0.2 ٹ (t) 0.4
ش (S) 0.8 ںی (̃i:) 0.1 م (m) 0.3
چ (tS) 0.7 ِءآ (a:I) 0.1 ھک (kh) 0.3
ق (q) 0.6 آ،اِ (ea:) 0.0 ج (dZ) 0.3
خ (x) 0.5 یئآ (a:i:) 0.0 ڑ (r) 0.2
ڈ (d) 0.5 گ (g) 0.2
ھت (th) 0.4 ھت (th) 0.1
ھچ (tSh) 0.3
ھب (bh) 0.3
ھک (kh) 0.3
ڑ (r) 0.2
ھٹ (th) 0.2

Table 18: Frequency of occurrence of Urdu phonemes in training and testing data
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Abstract

Text-to-speech (TTS) technology enhances
human-computer interaction and accessibility.
While vocoders like WaveNet and MelGAN
have been extensively studied for English TTS,
their application to Nepali TTS remains under-
explored. This research addresses this gap by
evaluating the performance of WaveNet and
MelGAN vocoders for Nepali text-to-speech
synthesis using mel-sepctrograms generated by
the Tacotron2 model.
The analysis is based on two datasets: Nepali
OpenSLR and News male voice recordings.
Performance was measured using Mean Opin-
ion Score (MOS) and Mel-Ceptral Distortion
(MCD). The findings reveal that Tacotron2 with
MelGAN achieved better naturalness and ac-
curacy compared to Tacotron2 with WaveNet.
On the Nepali OpenSLR dataset, Tacotron2 +
MelGAN achieved an average MOS score of
4.245, while Tacotron2 + WaveNet scored 3.65.
Similarly, on the male voice dataset, Tacotron2
+ MelGAN achieved an MOS of 2.885, com-
pared to 2.31 for Tacotron2 + WaveNet.

1 Introduction

Text-To-Speech technology allows machines to
turn text into human-like speech. This technology
is widely used in applications such as virtual
assistants, educational tools, and accessibility
solutions (Tan et al., 2024). Recent advancements
in deep learning have greatly improved the natu-
ralness and quality of TTS systems (Shen et al.,
2018). Tacotron2 is one such model, generating
clear and natural speech by converting text into
spectrograms (Shen et al., 2018). However, turning
these spectrograms into actual audio depends on
vocoders, which impact both the quality and speed

*Corresponding Author: prakash@ku.edu.np

of the final speech (Van den Oord et al., 2016;
Kumar et al., 2019).
TTS technology has evolved significantly,
transitioning from rule-based systems to deep
learning-driven approaches that produce more
natural and intelligible speech (Tan et al., 2024).
Among these advancements, Tacotron2 has
emerged as a leading model for TTS, using a
sequence-to-sequence architecture to convert text
into spectrograms, which are then transformed into
audio waveforms by vocoders (Shen et al., 2018).
Vocoder selection is particularly important for
optimizing TTS systems, with different vocoders
offering unique strengths.

This paper focuses on using Tacotron2 for Nepali
TTS, a language that has seen little development in
this area. It compares two vocoders, MelGAN and
WaveNet, to evaluate their performance in speech
quality and processing speed, aiming to improve
TTS for Nepali and similar low-resource languages.

2 Literature Review

Text-to-Speech technology plays crucial role in
converting written text into spoken language. It
is widely used in applications such as voice as-
sistants, educational aids (Klein et al., 2020), and
assistive technologies for individuals with visual
impairments (Manirajee et al., 2024).

The concatenation-based approach on the Nepali
Text-to-Speech(TTS) has been studied by Ghimire
and Bal (2017). The author used existing TTS and
enchanced the quality by adding the pre and post
processing units. The transformer based Nepali
TTS has been published recently by Dongol and
Bal (2023). They have achieved a Mean Opin-
ion Score (MOS) of 3.70. Dhakal Chhetri (2023)
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explores the capabilities of deep learning tech-
niques for synthesizing Nepali Text-to-Speech us-
ing Tacotron. The goal is to develop a system that
produces speech that sounds real. The researchers
achieved successful voice output by creating a new
Nepali speech dataset and building a model based
on Tacotron1. However, the research is deficient in
terms of comparisons with alternative vocoders and
comprehensive data analysis. This initial research
establishes the groundwork for future studies to
enhance the model, explore alternative vocoders,
and ultimately create more resilient Nepali text-to-
speech systems.

In the research, Tan et al. (2024) investigate a
new method for Text-to-Speech synthesis by em-
ploying a Variational Autoencoder (VAE) in or-
der to produce a voice that is comparable to hu-
man quality. Their approach utilizes pre-trained
phoneme sequences and a duration predictor to
build speech. Unlike conventional autoregressive
models such as Tacotron or FastSpeech, this VAE-
based system utilizes a non-autoregressive struc-
ture, resulting in considerably faster speech cre-
ation. The model is trained on the LJSpeech dataset,
which undergoes meticulous pre-processing to
transform text into phonemes and generate Mel-
Spectrograms. The objective of this research is to
narrow the underlying gap between existing text-
to-speech systems and authentic human speech in
terms of quality. This work presents systematic re-
search and the development of NaturalSpeech, with
the goal of improving the performance and quality
of text-to-waveform production in TTS technology.

Basnet (2021) study utilizes deep learning tech-
niques to develop a Nepali Text-to-Speech synthe-
sis system. The method employs a two-stage tech-
nique to transform written Nepali text into speech
that sounds natural. Initially, convolutional neu-
ral networks examine the text and make predic-
tions about spectrograms. Afterwards, recurrent
neural networks equipped with attention mecha-
nisms utilize these spectrograms to produce audio
waveforms, prioritizing essential segments of the
text to ensure precision. The study investigates
the use of convolutional neural networks to predict
spectrograms, recurrent neural networks to gen-
erate voice, attention mechanisms to focus, and
advanced signal processing techniques to refine the
results. The model, trained on a dataset of Nepali
speech and validated using both subjective and ob-
jective approaches, showcases the efficacy of this
deep learning technique for Nepali Text-to-Speech.

Existing Nepali Text-to-Speech systems face dif-
ficulties in generating speech, as they are unable
to accurately capture the intricate details of the
language (Subedi, 2015). In order to address this
disparity, this study suggests an end-to-end deep
learning approach. Their network comprises sev-
eral essential elements: text normalization for con-
sistent processing, an encoder-decoder architecture
for fundamental text-to-speech conversion, atten-
tion mechanisms to concentrate on significant ele-
ments in the text, and a WaveNet vocoder to convert
the generated representation into audio. However,
the research acknowledges a constraint: the lack
of Nepali speech samples restricts further progress.
They emphasize the importance of having addi-
tional Nepali datasets that are easily accessible.

Additionally, vocoders are integral to the success
of Text-to-Speech systems, as they enable the pro-
duction of high-quality audio. However, many TTS
studies typically concentrate on a single vocoder.
This research seeks to bridge the gap by evaluating
the effectiveness of various vocoders in a Tacotron-
based model, with the objective of achieving opti-
mal Nepali audio synthesis.

3 Experimental Workflow

3.1 System Block Diagram

The block diagram in Figure 1 illustrates the overall
system flow.

Figure 1: Block diagram for end-to-end TTS synthesis

Pre-Processing: Before inputting the text into
the Tacotron2 model, preprocessing is carried out.
During the preprocessing stage of this research,
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the input text is transformed into Unicode. The
‘unidecode’ function is employed to transform
Nepali text into Unicode format. Here’s an
example of how to convert Nepali text into
Unicode before inputting it into the Tacotron2
model:

Tacotron2 Model: Character embedding is
applied to the input data of a Tacotron2 model
before it is used for training. It is a crucial
preliminary phase in Tacotron2. The character
embedding layer is enhanced with pre-trained
vectors. The system converts individual Nepali
characters into numerical representations that
accurately capture the meaning and context of the
language. To create a numerical representation
of the term, Character embedding examines the
arrangement of characters using a one-dimensional
Convolutional Neural Network. For example,
the word ‘paani’ can be decomposed into indi-
vidual characters: pa, aa, ni, i. An embedding
vector can represent each character. pa: 0.7, 0.2,
0.4, aa: 0.1, 0.9, 0.2, ni: 0.2, 0.5, 0.1, i: 0.4, 0.2, 0.6

Mel-Spectrogram:Tacotron2 uses multiple
layers, such as character embedding and encoder-
decoder networks, to process input text. It
generates an important representation called the
Mel-Spectrogram. The Mel-Spectrogram captures
the intensity of varoius frequencies in speech over
time. The frequency axis is represented using
Mel scale, which reflects the non-linear nature
of human auditory perceptionn. During training,
the model learns from paired samples of text and
corresponding Mel-Spectrograms. These spec-
trograms are derived from real voice recordings.
Using its encoder-decoder structure, Tacotron2
maps the textual input to the Mel-Spectrogram
representation. This allows it to generate natural
and intelligible speech.

Vocoders for Speech Waveform Gen-
eration: Once Tacotron2 has produced the
Mel-Spectrogram, a distinct model known as a
vocoder is employed to construct the ultimate
voice waveform. In this research, the vocoder
models WaveNet and MelGAN are employed in
conjunction with Tacotron2.

WaveNet Vocoder: WaveNet is a predictive
model that uses the previously generated audio
samples and Mel-Spectrogram information to
forecast the next audio sample in the speech
waveform. It utilizes a sequential prediction
approach to effectively capture the complex
temporal relationships seen in speech. This paper
employs WaveNet to synthesize speech audio
waveforms by employing the Mel-Spectrogram
produced by the Tacotron2 model.

MelGAN Vocoder: MelGAN is a vocoder
model that utilizes Generative Adversarial Net-
works (GANs) as its basis. The system consists of
two networks: a generator and a discriminator. The
generator’s objective is to produce authentic speech
waveforms using the Mel-Spectrogram, whereas
the discriminator’s goal is to differentiate between
genuine and created speech. The adversarial train-
ing procedure facilitates the acquisition of the abil-
ity for MelGAN to generate speech of high quality.
In this research, the MelGAN model, trained sepa-
rately, can generate audio waveforms from the Mel-
Spectrogram generated by the Tacotron2 model,
just like WaveNet.

3.2 Dataset
To develop a natural-sounding Nepali speech syn-
thesis system, high-quality audio data with min-
imal background noise and clear pronunciation
was essential. The research collected Nepali au-
dio recordings paired with corresponding transcrip-
tions. Audio files were encoded in .wav format and
segmented into fragments of 1 to 12 seconds using
Audacity software (Zen et al., 2013). This segmen-
tation aligned with the natural rhythms, making it
easier for the model to capture authentic patterns
and reducing computational resource requirements
(Van den Oord et al., 2016).

The dataset included transcriptions for each seg-
ment and recordings from multiple male news pre-
senters to enhance diversity. Both the OpenSLR
dataset (Sodimana et al., 2018) and the male voice
data collected from Nepal Television were used
separately for this research. Details about the male
voice dataset from news recording are provided in
Table 1.

3.3 Model Prepared
This research used the Tacotron2 model along
with the MelGAN and WaveNet vocoders. The
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Table 1: News Male Voice Data

Feature Description

Speaker Multiple male speakers
Source Nepal Television broadcasts
Format Varies, resampled to 22.05 kHz
Size Approximately 2100 samples
Data Split 80% training, 20% validation/testing

OpenSLR dataset and a male voice dataset were
used separately for analysis. The training process
followed the parameters setup described by (Kumar
et al., 2019; Shen et al., 2018; Van den Oord et al.,
2016).

3.3.1 Tacotron2 Model
The Tacotron2 model’s effective training depends
on key audio parameters that determine its interpre-
tation of raw audio input. For the training process,
a learning rate of 0.001 and a batch size of 8 were
employed.

3.3.2 MelGAN Model
The MelGAN model was trained by adjusting mul-
tiple training parameters, as detailed in Table 2.

Table 2: MelGAN Training Parameters

Parameter Value

Batch Size 16
Learning Rate 0.0001
Optimizer Adam
Beta-1 0.5
Beta-2 0.9

3.3.3 WaveNet Model
Similarly, the WaveNet model was trained with
various hyperparameters, as detailed in Table 3.

Table 3: WaveNet Training Parameters

Parameter Value

Learning Rate 0.001
Batch Size 8
Optimizer Adam

3.4 Verification and Validation

3.4.1 Qualitative Approach
A qualitative methodology was employed to
compare the audio waveforms generated by the
Tacotron2 + MelGAN model and the Tacotron2 +
WaveNet model with the original test data audio
waveforms. This comparison was done individually
for both OpenSLR and male voice data.

3.4.2 Quantitative Approach
The Mel Cepstral Distortion (MCD) metric is an
objective and quantitative measure. The process
involves comparing the melspectrograms of gener-
ated speech with those of recorded speech. Mathe-
matically it can be computed as in Equation(1).

MCD =
√
2
∑

((mel1 −mel2)2) (1)

where, mel1 and mel2 represent the respective mel-
spectrograms.

The MCD values were obtained for both the
OpenSLR and male voice datasets using the
Tacotron2 + MelGAN and Tacotron2 + WaveNet
models. Subsequently, a comparison was con-
ducted between the MCD values acquired for each
model and dataset.

Figure 2: Average MCD values by Model and Dataset

The average MCD values for the Tacotron2 +
MelGAN model were 928.37 on the OpenSLR
dataset and 987.87 on the News male voice data.
On the other hand, the Tacotron2 + Wavenet model
yielded mean MCD values of 1131.42 and 987.87,
respectively. The findings indicate that Tacotron2 +
MelGAN generally outperforms in terms of voice
quality on the OpenSLR dataset, however both
models demonstrate similar performance on the
News male voice data. Figure 2 shows a detailed
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analysis.

Figure 3: Boxplot of MCD values by Model and Dataset

MelGAN and WaveNet were directly compared
to see how well they reproduce target speech. A
boxplot in Figure 3 displays their MCD values
side by side. The boxplot analysis illustrates that
both the Tacotron2 + MelGAN and Tacotron2 +
WaveNet models demonstrate almost equal me-
dian values for the news male voice dataset. How-
ever, the quantity of outliers is significantly re-
duced in comparison to the OpenSLR dataset. In
the OpenSLR dataset, the Tacotron2 + MelGAN
model exhibits a relatively lower median value.
A lower median value typically indicates supe-
rior model performance (Kubichek, 1993). Conse-
quently, drawing from this quantitative analysis of
the dataset and model, it can be inferred that the
Tacotron2 + MelGAN model attains better results
on the OpenSLR dataset.

4 Results

In order to accomplish to assess the efficacy of Mel-
GAN and WaveNet vocoders when used together
with the Tacotron2 model for synthesizing Nepali
text into speech, a model was first trained and evalu-
ated using the predominantly female-voiced Nepali
OpenSLR dataset. Afterwards, the model was re-
trained using male voice data obtained from Nepal
Television.

4.1 OpenSLR Data (Model Training)

The Tacotron2 model completed its training af-
ter 112,000 steps, which took around 54 hours.
The ultimate training loss reached a convergence
point of 0.314. Significantly, the validation loss
at step 112,000 was measured to be 0.459. After
the completion of training the Tacotron2 model on
the OpenSLR dataset, the training of the MelGAN
model was initiated. The training procedure of Mel-
GAN involves a dynamic interaction between the
generator and discriminator. In this research, the
MelGAN training ended after completing 516,444
steps. The generator loss was 89.587, and the dis-
criminator loss was 59.432 at this stage.

This study also trained the WaveNet model to
assess the effectiveness of different vocoders. Dur-
ing the training process, the model’s performance
is evaluated by considering both the training loss
and validation loss. The training procedure finished
after approximately 1,000 epochs, which is equiv-
alent to 220,000 training steps. The ultimate loss
at the end of the training phase was 4.818. The
validation loss at this point was 5.436.

4.2 Male Voice Data (Model Training)

The Tacotron2 model underwent additional train-
ing after being trained on the OpenSLR dataset,
which consisted of male voices data from various
speakers on Nepal Television. The model training
process involved monitoring the loss for both train-
ing and validation data. The number of training
steps equaled to 70,000 in total. At this stage, the
training loss value achieved was 0.28. The valida-
tion loss value achieved during this training stage
was 0.65. Figure 4 displays the training and vali-
dation graph for the male voice dataset using the
Tacotron2 model.

Figure 4: Tacotron2 training & validation loss

The MelGAN model was retrained with Nepali
news male voice data, just as it was trained on the
OpenSLR dataset. The model underwent a training
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process, during which it completed 600,000 steps.
After training the models, the combined Tacotron2
and MelGAN models were used to generate the
final speech output by running inference on the
Nepali news male voice test dataset. An assess-
ment of the loss generated by the generator and
discriminator was carried out during the complete
training procedure of the MelGAN model. At the
600, 000th step of training, the generator’s training
loss had reached 201.84, while the discriminator’s
training loss was 52.92. The generator and dis-
criminator have validation losses of 319.35 and
208.89 respectively. Figure 5 and 6 illustrate the
training and validation losses for the generator and
discriminator.

Figure 5: Generator, Discriminator training loss

Figure 6: Generator, Discriminator validation loss

The training and validation losses of the
WaveNet model are illustrated in Figure 7. The
WaveNet model underwent training using the male
voice dataset for a duration of up to 250,000 steps.
The training loss value was 4.77, while the valida-
tion loss value was 5.24 at this stage.

After conducting independent training of the
models using the OpenSLR and male voice data,
the Tacotron2 + MelGAN model and the Tacotron2
+ WaveNet model were utilized to perform infer-
ence on the test data from both OpenSLR and male
voice datasets. This resulted in predictions for
speech synthesis.

Figure 7: WaveNet training & validation loss

5 Discussion and Analysis

5.1 Inference Time Comparison: MelGAN vs.
WaveNet

The speech synthesis on the test data involved the
utilization of two models: Tacotron2 + MelGAN
and Tacotron2 + WaveNet. Both the Tacotron2 +
MelGAN and Tacotron2 + WaveNet models were
inferred using an NVIDIA GTX 960M GPU. The
average time required for each synthesis process is
compared in Table 4.

Table 4: Inference Time Comparison

Model Inference Time (s)

Tacotron2 + MelGAN 0.142
Tacotron2 + WaveNet 1320

The processing design of MelGAN provides a
clear advantage over WaveNet in terms of its speed.
Compared to WaveNet, which produces output in
a sequential manner, MelGAN is capable of pro-
cessing the full input at the same time. By using
parallel processing, MelGAN achieves a reduction
in inference time, making it a highly efficient op-
tion.

5.2 MOS Score Comparison: WaveNet vs.
MelGAN

The MOS score was calculated using data collected
through Google Forms. Each model produced four
samples for evaluation. Participants rated the sam-
ples on a scale of 1 to 5, assessing naturalness and
accuracy. A total of 40 participants provided the
ratings used to calculate the final MOS score. The
MOS scores for naturalness and accuracy between
Tacotron2 + MelGAN and Tacotron2 + WaveNet
on the OpenSLR dataset are presented in Table
5. Similarly, the MOS scores for the male voice
dataset are shown in Table 6.
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Table 5: MOS Score Comparison (OpenSLR Data)

Model Naturalness Accuracy

Tacotron2 + MelGAN 4.21 4.28
Tacotron2 + WaveNet 3.56 3.74

Table 6: MOS Score Comparison (Male Voice Data)

Model Naturalness Accuracy

Tacotron2 + MelGAN 2.97 2.80
Tacotron2 + WaveNet 2.33 2.29

These findings indicate that the Tacotron 2 +
MelGAN model outperforms the Tacotron 2 +
WaveNet model in terms of both the naturalness
and accuracy of the generated output.

The OpenSLR dataset, which predominantly
emphasizes female voices, demonstrates reduced
variability in pitch and frequency across different
speakers. In contrast, the inclusion of male voice
data, which consists of various speakers and differ-
ent tones even within individual speakers for dis-
tinct transcripts, presents more difficult obstacles
for models to generalize data. The intrinsic vari-
ability of male voice data and the limited amount of
data have a substantial impact on MOS scores, re-
sulting in lower overall ratings. Moreover, the com-
plexity of male voice data could result in increased
noise production during the process of speech syn-
thesis.

5.3 Comparison with Existing System

The research titled "Natural TTS Synthesis by Con-
ditioning WaveNet on Mel Spectrogram Predic-
tion" by (Shen et al., 2018), stated that the WaveNet
model achieved a Mean Opinion Score of 4.53
when it was trained using the US English dataset.

In the study "MelGAN: Generative Adversarial
Networks for Conditional Waveform Synthesis"
conducted by (Kumar et al., 2019), the MelGAN
model demonstrated a Mean Opinion Score of 3.61
± 0.06 after being trained on the LJ Speech dataset.
After being trained on the VCTK dataset, the Mel-
GAN model got a Mean Opinion Score of 3.49
± 0.09. Similarly, in the research "Attention and
WaveNet Vocoder Based Nepali Text-to-Speech
Synthesis" by (Basnet, 2021), a MOS of 3.07 was
forecasted.

Table 7 presents the average MOS score calcu-
lated by taking the mean of the naturalness and

accuracy rating in this research.

Table 7: Average MOS Score (OpenSLR & Male Voice
Data )

Model Dataset Average MOS

Tacotron2 + MelGAN OpenSLR 4.245
Tacotron2 + MelGAN Male Voice 2.885
Tacotron2 + WaveNet OpenSLR 3.65
Tacotron2 + WaveNet Male Voice 2.31

The Tacotron2 + MelGAN model achieved an av-
erage MOS score of 4.245 for the Nepali OpenSLR
dataset. This number is greater than the MOS
scores presented for both the LJ speech data and
VCTK English datasets. Nevertheless, the mean
opinion score achieved for male voice data using
the Tacotron 2 + MelGAN model is comparatively
lower than the MOS scores obtained in previous
studies (Kumar et al., 2019) for both LJ Speech
data and VCTK English datasets using the Mel-
GAN model.

Table 8: MOS Score Comparison (WaveNet Model)

Model Average MOS

WaveNet (US English) 4.53

Existing Nepali TTS ((Basnet, 2021)) 3.07

Tacotron2 + WaveNet (Nepali OpenSLR) 3.65

Tacotron2 + WaveNet (Male Voice) 2.31

Based on the data presented in Table 8, the
WaveNet model achieved the highest Mean Opin-
ion Score when trained on the English dataset.
Its performance surpassed that on the Nepali
OpenSLR and male voice datasets. It also outper-
formed results from prior Nepali Text-To-Speech
studies.

6 Conclusion and Future work

The research findings clearly demonstrate that the
selection of a vocoder has significant impacts on
the performance of a Nepali Text-to-Speech sys-
tem. When combined with Tacotron2, MelGAN
consistently outperformed WaveNet in terms of the
naturalness, accuracy, and overall quality of speech.
The superiority of the Tacotron2 + MelGAN model
is apparent by the higher Mean Opinion Scores
(MOS) and lower Mel-cepstral Distortion (MCD)
it achieves.
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Furthermore, MelGAN exhibited a significant
benefit in terms of inference time. Compared to
WaveNet, MelGAN has a lower computing time
need for voice generation, making it a more effi-
cient option for real-time applications. However,
the research was hindered by the scarcity of Nepali
datasets with multiple-speaker male voices. This
impeded the assessment of the model’s effective-
ness on a broader spectrum of datasets. Moreover,
the model encountered difficulties in precisely ar-
ticulating numbers and symbols, highlighting a
constraint that should be tackled in future inves-
tigations.

Although there are several restrictions, the
Tacotron2 + MelGAN model is considered the best
setup for creating Nepali TTS systems of superior
quality. Future research can improve efficiency by
optimizing single-speaker male voice datasets. Cus-
tomizing the model to handle numbers and symbols
can enhance usability. Exploring context-based ap-
proaches and hybrid architectures, like combining
Tacotron2 with Transformer-based models, may
further advance Nepali TTS systems.

Acknowledgments

The authors would like to extend sincere thanks to
the reviewers for their constructive comments and
suggestions.

References
Ashok Basnet. 2021. Attention and wavenet vocoder

based nepali text-to-speech synthesis. Master’s the-
sis.

Ganesh Bdr. Dhakal Chhetri. 2023. Nepali text to
speech using tacotron. Master’s thesis, Thapathali
Campus, Tribhuvan University.

Ishan Dongol and Bal Krishna Bal. 2023. Transformer-
based Nepali text-to-speech. In Proceedings of the
20th International Conference on Natural Language
Processing (ICON), pages 651–656, Goa University,
Goa, India. NLP Association of India (NLPAI).

Rupak Raj Ghimire and Bal Krishna Bal. 2017. Enhanc-
ing the Quality of Nepali Text-to-Speech Systems. In
Alla Kravets, Maxim Shcherbakov, Marina Kultsova,
and Peter Groumpos, editors, Creativity in Intelligent
Technologies and Data Science, volume 754, pages
187–197. Springer International Publishing.

Andreas Klein, Andreas Hinderks, Maria Rauschen-
berger, and Jorg Thomaschewski. 2020. Exploring
voice assistant risks and potential with technology-
based users.

Robert F. Kubichek. 1993. Mel-cepstral distance mea-
sure for objective speech quality assessment. In Pro-
ceedings of IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing, vol-
ume 1, pages 125–128. IEEE.

Kundan Kumar, Ritesh Kumar, Thibault De Boissiere,
Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexan-
dre De Brebisson, Yoshua Bengio, and Aaron C.
Courville. 2019. Melgan: Generative adversarial
networks for conditional waveform synthesis. Ad-
vances in Neural Information Processing Systems,
32.

Lalitha Manirajee, Siti Qatrunnada Hanis Shariff, and
Syar Meeze Mohd Rashid. 2024. Assistive technol-
ogy for visually impaired individuals: A systematic
literature review (slr). International Journal of Aca-
demic Research in Business and Social Sciences, 14.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan,
Rif A. Saurous, Yannis Agiomvrgiannakis, and
Yonghui Wu. 2018. Natural tts synthesis by con-
ditioning wavenet on mel spectrogram predictions.
In Proceedings of the 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4779–4783. IEEE.

Keshan Sodimana, Knot Pipatsrisawat, Linne Ha, Mar-
tin Jansche, Oddur Kjartansson, Pasindu De Silva,
and Supheakmungkol Sarin. 2018. A step-by-step
process for building tts voices using open source data
and framework for bangla, javanese, khmer, nepali,
sinhala, and sundanese. In Proceedings of the 6th
International Workshop on Spoken Language Tech-
nologies for Under-Resourced Languages (SLTU),
pages 66–70, Gurugram, India. Association for Com-
putational Linguistics.

Kaushal Subedi. 2015. Nepali text-to-speech. Master’s
thesis.

Xu Tan, Jiawei Chen, Haohe Liu, Jian Cong, Chen
Zhang, Yanqing Liu, Xi Wang, Yichong Leng, Yuan-
hao Yi, Lei He, et al. 2024. Naturalspeech: End-to-
end text-to-speech synthesis with human-level qual-
ity. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.

Aaron Van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. 2016. Wavenet: A generative model
for raw audio.

Heiga Zen, Andrew Senior, and Mike Schuster. 2013.
Statistical parametric speech synthesis using deep
neural networks. In Proceedings of the 2013 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 7962–7966. IEEE.

192



Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025), pages 193–201
January 19, 2025. ©2025 International Committee on Computational Linguistics

EmoTa: A Tamil Emotional Speech Dataset

Jubeerathan Thevakumar and Luxshan Thavarasa and Thanikan Sivatheepan
and Sajeev Kugarajah and Uthayasanker Thayasivam

Department of Computer Science and Engineering
University of Moratuwa

Colombo, Sri Lanka
{jubeerathan.20, luxshan.20, thanikan.20, kugarajah.21, rtuthaya}@cse.mrt.ac.lk

Abstract

This paper introduces EmoTa, the first emo-
tional speech dataset in Tamil, designed to re-
flect the linguistic diversity of Sri Lankan Tamil
speakers. EmoTa comprises 936 recorded utter-
ances from 22 native Tamil speakers (11 male,
11 female), each articulating 19 semantically
neutral sentences across five primary emotions:
anger, happiness, sadness, fear, and neutrality.
To ensure quality, inter-annotator agreement
was assessed using Fleiss’ Kappa, resulting in
a substantial agreement score of 0.74. Initial
evaluations using machine learning models, in-
cluding XGBoost and Random Forest, yielded
a high F1-score of 0.91 and 0.90 for emotion
classification tasks. By releasing EmoTa as
open-access, we aim to encourage further ex-
ploration of Tamil language processing and the
development of innovative models for Tamil
Speech Emotion Recognition.

1 Introduction

The development of emotional speech datasets has
significantly advanced Speech Emotion Recogni-
tion (SER), enhancing human-computer interac-
tion by enabling systems to interpret and respond
to emotions in nuanced, human-like ways (Cowie
et al., 2001). However, for low-resource languages
like Tamil, particularly in the Sri Lankan con-
text, high-quality emotional datasets remain scarce.
This scarcity restricts the development of SER mod-
els tailored to Tamil-speaking communities, limit-
ing applications in localized assistive technology,
emotion-based mental health diagnostics, and cus-
tomer service for Tamil-speaking users.

In this work, we introduce EmoTa1 , a novel,
acted Tamil emotional speech dataset that captures
the linguistic and cultural diversity of Sri Lankan
Tamil speakers. The dataset focuses on five fun-
damental emotionsanger, happiness, sadness, fear,
and neutralitychosen for their wide recognition and

1https://github.com/aaivu/EmoTa

relevance in SER and to reflect the range of emo-
tional expressions commonly encountered in ev-
eryday Tamil communication. These core emo-
tions also align with those used in established
SER datasets, allowing comparative studies while
maintaining a culturally relevant focus. To ensure
clarity and isolate prosodic cues, we use semanti-
cally neutral sentences, a practice inspired by sim-
ilar works in emotional speech corpora such as
EMOVO (Costantini et al.), EMODB (Burkhardt
et al., 2005), CaFE (Gournay et al., 2018). This
approach reduces the risk of lexical bias, ensuring
that models trained on this dataset can accurately
recognize emotional tone independent of content.

The accessibility of this high-quality emotional
speech dataset is a cornerstone of its contribution,
enabling reproducibility, facilitating collaboration,
and supporting the validation and benchmarking
of SER models across varied Tamil dialects. By
filling an essential gap in Tamil SER resources,
this open-access dataset advances the SER field
for low-resource languages, serving as a reference
point for related work and creating pathways for
future developments.

2 Related Work

Established SER datasets such as EMOVO (Italian)
(Costantini et al.), EMODB (German) (Burkhardt
et al., 2005), and CaFE (Canadian French) (Gour-
nay et al., 2018) have set benchmarks by providing
structured, acted datasets that ensure consistency,
quality, and controlled variation in emotional por-
trayals. These datasets highlight the benefits of
the acted approach, where carefully guided perfor-
mances yield emotionally distinct, reliable data that
enhances model training and generalization.

For Tamil, some progress has been made in de-
veloping emotional speech datasets. Rajan et al.
(2019) introduced TaMaR-EmoDB, a multilingual
emotional speech database covering Tamil, Malay-

193



alam, and Ravula. However, this corpus remains
inaccessible to the public, limiting reproducibility
and broader applicability. Similarly, Ram and Pon-
nusamy (2014) created a custom Tamil emotional
speech dataset using standard feature extraction
techniques, but it focused on a specific subset of
Tamil speakers. Vasuki et al. (2020) developed two
Tamil emotional corpora for children and adults,
drawn from Tamil films and plays to capture cultur-
ally resonant expressions. Furthermore, Fernandes
and Mannepalli (2021) constructed a dataset to sup-
port deep learning model development for Tamil
SER.

Despite these contributions, existing datasets
primarily focus on Indian Tamil and lack repre-
sentation of the linguistic and cultural diversity
found in the Sri Lankan Tamil community. Unique
prosodic features, dialects, and emotional expres-
sions specific to Sri Lankan Tamil speakers require
tailored datasets for reliable SER applications. In-
spired by the methodologies of EMOVO (Costan-
tini et al.), EMODB (Burkhardt et al., 2005), and
CaFE (Gournay et al., 2018), our dataset adopts an
acted approach, ensuring distinct and reproducible
emotional expressions while capturing the dialectal
richness of Sri Lankan Tamil.

3 Dataset Development

3.1 Selection of Emotions and Actors

For the Tamil speech emotion dataset, we focused
on five core emotions commonly recognized in
speech emotion recognition: Anger, Happiness,
Sadness, Fear, and Neutral. These emotions were
selected based on their relevance in affective com-
puting and their consistent presence in other emo-
tional speech datasets. To ensure clarity and con-
sistency in emotional expressions, detailed descrip-
tions of each emotion were provided to the actors.

We adopted a discrete theory of emotions, specif-
ically drawing from Ekmans classification (Ekman,
1992), which effectively captures the range of emo-
tional expressions applicable to spoken language.
Although some researchers (James, 1922; Lazarus,
1994) suggest additional emotions, such as love
or hope, we opted for the more universally under-
stood basic emotions that can be reliably conveyed
through speech. This approach minimizes ambi-
guity in emotional expression, which is crucial for
the effective training of machine learning models
in speech emotion recognition.

The actors were selected through a recruitment

process that included local advertisements and a
pre-selection session. Approximately 40 native
Tamil-speaking candidates, aged between 23 and
25 from diverse regions of Sri Lanka performed
sample utterances in a controlled environment. A
panel of three experienced drama teachers evalu-
ated these recordings for emotional delivery and
naturalness. From this pool, 22 actors were cho-
sen, 11 males and 11 females, ensuring a balanced
representation of the genders. All selected actors
demonstrated exceptional ability to convey emo-
tions and have at least a ’B’ grade in drama at the
G.C.E (O/L) examination2. Figure 1 illustrates the
geographic distribution of the actors, highlighting
the richness of the data set in regional variation.

By carefully selecting emotions and actors from
diverse regions and backgrounds, this dataset pro-
vides a robust resource for research on speech emo-
tion recognition, offering valuable insights into
emotional expression in different Tamil dialects.

Figure 1: Regional breakdown of Actors.

3.2 Linguistic Material and Emotional
Contexts

To develop the Tamil Speech Emotion Recognition
(SER) dataset, EmoTa, we selected 19 semantically
neutral sentences, allowing for a wide range of

2https://en.wikipedia.org/wiki/GCE_Ordinary_
Level_in_Sri_Lanka
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emotional expressions without introducing word-
based biases. Inspired by datasets such as EMOVO
(Costantini et al.) and EMODB (Burkhardt et al.,
2005), we focused on everyday Tamil phrases that
actors can easily recall and connect with emotion-
ally. This approach encourages emotional delivery
through vocal tone and prosody rather than specific
words, helping SER models capture authentic vocal
expressions.

Figure 2 provides sample sentences with their
pronunciation and English translation. These sen-
tences, used commonly in Tamil interactions, con-
tain balanced phonetic elements to support detailed
acoustic analysis. By keeping the language neutral,
the dataset encourages actors to rely on vocal de-
livery for emotion expression.

Example of Emotional Adaptability: One versa-
tile sentence in the dataset, "Nan unnai cantikka
ventum." ("I need to meet you"), can represent mul-
tiple emotions depending on the context:

• Sadness: Used when conveying longing for a
loved one who has been absent for a long time,
this sentence is spoken with vulnerability and
yearning.

• Neutral: In a professional setting, it simply
requests a meeting with a colleague, delivered
in a straightforward tone.

• Happiness: Spoken with excitement to share
good news, such as a new job or engagement,
this phrase becomes an expression of joy.

• Fear: When responding to an urgent situation
concerning a friend, its spoken with anxiety
and concern.

• Anger: In a tense setting, this phrase becomes
a demand to meet in person to resolve a dis-
agreement, with a tone of frustration and as-
sertiveness.

These context-based scenarios help capture the
nuances of vocal emotion, allowing SER models
to focus on emotional prosody over lexical content.
This method enables a deeper understanding of
how emotions are expressed through voice alone,
enhancing the effectiveness of SER models in real-
world applications.

3.3 Recording Protocol and Data Curation
The recordings for the Tamil speech emotion
dataset were conducted in a soundproof studio us-
ing professional equipment to ensure high-quality
audio. Recordings were captured at a 48 kHz

sampling rate and later downsampled to 16 kHz
for compatibility across applications. Actors were
given flexibility in their movements and expression,
while being mindful of microphone placement to
ensure consistent sound quality. Each one-hour
recording session was supervised by a team of pho-
neticians, with two providing instructions and feed-
back and one managing equipment. Before each
utterance, actors received prompts to avoid reading
intonations and were provided emotional context
to encourage authentic expression.

Actors recorded each sentence four to five times
to capture subtle variations, with the best take se-
lected based on acting quality and clarity of record-
ing. Special emphasis was placed on avoiding ex-
aggerated expressions, maintaining a natural and
conversational style. However, challenges such as
proximity variations and fluctuating intonation con-
tours were addressed by adjusting recording levels
and providing additional guidance.

To ensure efficient organization and retrieval, we
adopted a systematic file naming convention:

<spkID>_<senID>_<emo>.wav
For example, the file name 01_02_ang.wav indi-
cates that this file corresponds to speaker ID 01,
sentence ID 02, and an angry emotion.

The final dataset consists of 936 utterances from
22 actors, represents five different emotions happi-
ness, sadness, anger, fear, and neutralitywith a total
recording duration of approximately 48 minutes.
Figure 3 provides a visual breakdown of the distri-
bution of utterances across the various emotions.
This distribution is key for ensuring that the dataset
offers a balanced representation of emotional ex-
pressions, which is crucial for the development of
emotion recognition models.

3.4 Inter-Annotator Agreement

To evaluate the reliability of our dataset, we as-
sessed the inter-annotator agreement using Fleiss’
kappa (Randolph, 2005) coefficient, a metric suit-
able for measuring agreement among multiple an-
notators. Inter-annotator agreement quantifies how
well annotators consistently make the same anno-
tation decisions for a particular category. This is
essential to ensure the annotation process is consis-
tent and that different annotators are assigning the
same emotion label to a given sample. The kappa
score is calculated as follows:

κ =
p0 − pe
1− pe

(1)
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Figure 2: Sample Selected Sentences.

Figure 3: Distribution of utterances across emotions.

where p0 represents the observed agreement, and
pe is the expected agreement by chance. The results
of the inter-annotator agreement between our an-
notators yielded a substantial kappa score of 0.74,
indicating high agreement across the five annota-
tors. Notably, sadness and fear showed higher dis-
agreements among annotators, contributing to the
overall results.

4 Feature Extraction Techniques

In Speech Emotion Recognition (SER), select-
ing the right features is crucial, as speech sig-
nals contain various parameters that convey emo-
tional information. Zero-Crossing Rate (ZCR),
Chroma Features, Mel-Frequency Cepstral Coef-
ficients (MFCC), Root Mean Square (RMS), and
Mel Spectrogram are highly used for emotion clas-
sification (Ahmed et al., 2023). Each method of-
fers unique insights into the emotional content of
speech, which we will review briefly below.

4.1 Zero-Crossing Rate (ZCR)

Zero-Crossing Rate (ZCR) measures how often the
signal changes sign, indicating the frequency of
waveform zero crossings. It serves as an impor-
tant indicator of speech dynamics and can help dif-
ferentiate between voiced and unvoiced segments.
Higher ZCR values typically indicate more dy-
namic speech, which may correspond to higher
emotional intensity (Aouani and Ayed, 2020). Sam-
ple ZCR plots for each of the five emotions are
shown in Figure 4.

4.2 Chroma Features

Chroma features capture the energy distribution
across the 12 pitch classes of the chromatic scale.
This technique is valuable for analyzing harmonic
content in speech, as it can provide insights into
the emotional expression related to musicality and
intonation (Garg et al., 2020). Sample Chroma
Features plots for each of the five emotions are
shown in Figure 5.

4.3 Mel-Frequency Cepstral Coefficients
(MFCC)

Mel-Frequency Cepstral Coefficients (MFCCs) are
widely recognized as effective features for speech
and audio analysis (Likitha et al., 2017). They
are derived from the power spectrum of sound and
are designed to reflect human auditory perception.
MFCCs encapsulate the timbral properties of audio
signals, making them essential for emotion recog-
nition tasks, as they capture both spectral and tem-
poral information in speech. Sample MFCC plots
for each of the five emotions are shown in Figure 6.
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Figure 4: Zero Crossing Rate (ZCR) for various emotions: Happy, Sad, Angry, Fear, and Neutral. The ZCR
measures the rate at which the signal changes from positive to negative.

Figure 5: Chroma features for different emotions: Happy, Sad, Angry, Fear, and Neutral. Chroma features capture
the energy distribution across 12 different pitch classes, providing insights into the harmonic content of the audio
signals.

Figure 6: MFCCs for various emotions: Happy, Sad, Angry, Fear, and Neutral. MFCCs represent the short-term
power spectrum of sound, widely used in speech and audio processing to capture the characteristics of human
speech and music.

4.4 Root Mean Square (RMS)

The Root Mean Square (RMS) value quantifies the
magnitude of a varying quantity in audio signals.
In the context of speech, it measures loudness and
energy. Higher RMS values are often associated
with more intense emotions, while lower values
may indicate calmer emotions. Thus, RMS is a
crucial feature for differentiating emotional states
based on speech amplitude. Sample RMS plots for
each of the five emotions are shown in Figure 7.

4.5 Mel-Spectrogram

The Mel-Spectrogram combines the advantages of
the Mel scale with spectrogram analysis, offering
a visual representation of the frequency content

of audio signals over time. This technique em-
phasizes perceptually relevant features, aligning
with human auditory perception. By capturing the
dynamic changes in sound, the Mel spectrogram
enables effective modeling of emotional expression
in speech, especially useful in deep learning appli-
cations (Venkataramanan and Rajamohan, 2019).
Sample Mel-spectrogram plots for each of the five
emotions are shown in Figure 8.

5 Experimental Design

5.1 Model Training and Evaluation
In this study, we evaluated various models for
speech emotion classification. The dataset was di-
vided into training (80%) and testing (20%) subsets.
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Figure 7: Root Mean Square (RMS) values for different emotions: Happy, Sad, Angry, Fear, and Neutral. The RMS
value is a measure of the average power of the audio signal, indicating the loudness of the sound.

Figure 8: Mel Spectrograms for various emotions: Happy, Sad, Angry, Fear, and Neutral. The Mel spectrogram
provides a time-frequency representation of the audio signal, where the frequency scale is non-linear and mimics
human hearing.

Emotion P R F1
angry 0.74 0.72 0.73
fear 0.88 0.85 0.86
happy 0.65 0.68 0.67
neutral 0.78 0.67 0.72
sad 0.60 0.69 0.64
macro avg 0.73 0.72 0.73

Table 1: Results of XGBoost without Data Augmenta-
tion.

Emotion P R F1
angry 0.92 0.90 0.91
fear 0.93 0.94 0.93
happy 0.87 0.90 0.88
neutral 0.92 0.92 0.92
sad 0.91 0.90 0.90
macro avg 0.91 0.91 0.91

Table 2: Results of XGBoost with Data Augmentation.

The models were assessed using several evaluation
metrics, including Macro average precision, recall,
and F1-score. These metrics provide a comprehen-
sive understanding of each model’s performance
on individual emotion classes as well as an overall
classification assessment.

We selected several traditional models, including
Logistic Regression, Decision Tree, Random For-
est, Support Vector Machine (SVM), and XGBoost.
Additionally, we implemented a 1D CNN archi-
tecture, which captures important features from
audio signals through the use of convolutional lay-
ers, making it well-suited for emotion classification
tasks. To further enhance the model’s capabilities,
we employed a 1D CNN with an attention mech-
anism, which allows the model to focus on sig-
nificant features within the audio input, thereby
improving the identification of emotional cues.

5.2 Data Augmentation Techniques
To enhance the model’s performance and increase
the robustness of the speech emotion classification
system, several data augmentation techniques were
applied to the audio dataset. These techniques are
designed to artificially expand the training data
by introducing variations that simulate real-world
conditions (Ahmed et al., 2023).

One of the methods employed was noise injec-
198



Model
Non-Aug Aug

P R F1 P R F1

Logistic Regression 0.48 0.48 0.47 0.40 0.41 0.40

Decision Tree 0.39 0.37 0.38 0.60 0.60 0.60

Random Forest 0.70 0.71 0.70 0.90 0.90 0.90

Support Vector Machine 0.32 0.22 0.11 0.46 0.27 0.23

XGBoost 0.73 0.72 0.73 0.91 0.91 0.91
K-Nearest Neighbors 0.59 0.59 0.59 0.58 0.58 0.58

1D CNN 0.52 0.53 0.49 0.60 0.59 0.59

1D CNN (with Attention) 0.60 0.59 0.59 0.88 0.87 0.87

Table 3: Macro Average Precision, Recall and F1-Score on the test set for all the Models with and without
augmentation.

tion, which adds random noise to the audio sig-
nals, helping the model differentiate emotional
content in noisy environments. Time stretching
altered the speed of the audio without changing
its pitch, simulating variations in speech delivery.
Random shifting involved slightly shifting the au-
dio in time, reducing sensitivity to minor timing
variations while pitch-shifting modified the pitch
to expose the model to a broader range of vocal
expressions.

Together, these methods increased the diversity
and variability of the training dataset, enhancing
the model’s ability to recognize and classify emo-
tions. These techniques significantly improved the
model’s performance, making it more resilient to
variations in speech delivery, timing, and audio
quality.

6 Results and Discussion

6.1 Model Performance Comparison

Table 3 summarizes the performance of various
models on both the original (Non-Aug) and aug-
mented (Aug) data. For Non-Augmented data, XG-
Boost achieves the highest F1-score of 0.73, fol-
lowed closely by Random Forest with an F1-score
of 0.70. On the augmented data, both XGBoost
and Random Forest reach the high F1-score of 0.91
and 0.90 respectively, demonstrating their effective-
ness after data augmentation. Among deep learn-
ing models, the 1D CNN with Attention performs
notably well, achieving an F1-score of 0.87 on aug-
mented data, suggesting that attention mechanisms
enhance model accuracy. However, the Support
Vector Machine (SVM) model performs the low-

Figure 9: Confusion Matrix for XGBoost without Data
Augmentation.

est on both Non-Augmented and Augmented data,
with an F1-score of 0.11 and 0.23, respectively,
indicating challenges in handling this task. The de-
tailed results of XGBoost are presented in Table 1
for non-augmented data and Table 2 for augmented
data.

6.2 Error Analysis and Model Limitations

The confusion matrix analysis (Figures 9 and 10)
for XGBoost shows that data augmentation signifi-
cantly enhances model performance. Without aug-
mentation, notable misclassifications are observed,
particularly happy being confused with angry and
vice versa, as well as sad with fear and neutral. Af-
ter augmentation, the model improves, with fewer
misclassifications and an overall increase in pre-
diction accuracy. However, confusion between an-
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Province
Non-Aug Aug

P R F1 P R F1

Nothern 0.55 0.55 0.54 0.98 0.98 0.98

Eastern 0.59 0.62 0.60 0.88 0.87 0.88

Western 0.65 0.66 0.65 0.93 0.89 0.90

Central 0.67 0.50 0.54 0.93 0.94 0.93

Table 4: Macro Average Precision, Recall and F1-Score on the test set for different dialects with and without
augmentation using XGBoost.

Figure 10: Confusion Matrix for XGBoost with Data
Augmentation.

gry and happy persists, suggesting challenges in
distinguishing emotions with overlapping acoustic
features. This indicates that while augmentation
is beneficial, further advancements in model archi-
tecture, feature extraction techniques, and possibly
the inclusion of additional contextual or prosodic
cues are needed to better distinguish emotions with
similar acoustic characteristics.

7 Conclusion

This paper introduces the EmoTa dataset, specifi-
cally designed for Tamil speech emotion recogni-
tion, comprising 936 audio samples recorded from
22 native Tamil speakers. Each speaker conveys
five distinct emotionsanger, happiness, sadness,
fear, and neutralusing 19 semantically neutral sen-
tences to eliminate semantic bias and focus purely
on emotional delivery. The dataset provides a ro-
bust foundation for evaluating emotion recognition
models, with results comprehensively reported in
terms of precision, recall, and F1-Score to highlight
various aspects of model performance. Further-

more, the dataset’s reliability is assessed through
inter-annotator agreement, quantified using Fleiss’
kappa, ensuring consistency in emotional labeling.
This resource aims to advance research in Tamil
speech emotion recognition, addressing the scarcity
of datasets in this domain.

8 Limitations of the work

The EmoTa dataset, created from emotional speech
samples by actors aged 23 to 25, could benefit from
an expanded age range to increase its generalizabil-
ity across diverse age groups. This would make
the dataset more suitable for broader applications
in Tamil speech emotion recognition. Currently,
EmoTa includes 48 minutes of recorded speech,
which serves as a foundation for preliminary re-
search. However, a larger volume of samples would
enhance its robustness, supporting more in-depth
analysis. The dataset presently covers five emo-
tions: happy, sad, angry, neutral, and fear. Adding
more emotions would improve the datasets utility
and enable greater accuracy in recognizing emo-
tional nuances in Tamil speech.
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Abstract

Whisper, a large-scale multilingual model, has
demonstrated strong performance in speech
recognition benchmarks, but its effectiveness
on low-resource languages remains under-
explored. This paper evaluates Whisper’s per-
formance on Pashto, Punjabi, and Urdu, three
underrepresented languages. While Automatic
Speech Recognition (ASR) has advanced for
widely spoken languages, low-resource lan-
guages still face challenges due to limited data.
Whisper’s zero-shot performance was bench-
marked and then its small variant was fine-
tuned to improve transcription accuracy. Sig-
nificant reductions in Word Error Rate (WER)
were achieved through few-shot fine-tuning,
which helped the model better handle chal-
lenges such as complex phonetic structures,
compared to zero-shot performance. This study
contributes to improving multilingual ASR for
low-resource languages and highlights Whis-
per’s adaptability and potential for further en-
hancement.

1 Introduction

The globalization of technology and communica-
tion increasingly necessitates the development of
effective natural language processing (NLP) tools
for low-resource languages. These languages, spo-
ken by millions, are often underrepresented in com-
putational linguistics. Languages such as Pashto,
Punjabi, and Urdu play vital roles in diverse cul-
tural contexts, yet their development for ASR is
hampered by a scarcity of labeled data (Krasadakis
et al., 2024) and limited computational resources.
As a result, existing ASR systems struggle to pro-
vide accurate solutions, limiting access to critical
technologies in areas like voice-activated devices,
education, healthcare, and government services.

Zero-shot learning, which allows models to per-
form tasks on languages they were not explicitly
trained for, has emerged as a promising solution
(Yang et al., 2024). OpenAI’s Whisper (Radford

et al., 2023), a transformer-based ASR model, ben-
efits from large-scale multilingual data, enabling
strong performance across multiple languages even
without language-specific fine-tuning. However,
while zero-shot models generalize effectively, their
performance on low-resource languages is hindered
(Waghmare et al., 2023) by the lack of sufficient
training data and an inability to capture unique
phonetic, morphological, and syntactic features, re-
sulting in lower transcription accuracy.
Languages like Pashto, with unique phonological
structures, require fine-tuning on language-specific
datasets for optimal accuracy (Sher et al., 2024).
Fine-tuning pre-trained models like Whisper has
been shown to improve ASR performance in low-
resource settings, reducing WER even with limited
data (Liu and Qu, 2024; Pratama and Amrullah,
2024; Do et al., 2023a). Few-shot fine-tuning, us-
ing as little as four hours of data, has demonstrated
resource efficiency and adaptability, achieving near-
optimal performance (Talafha et al., 2023).
Benchmarking ASR systems on multilingual
datasets has become a focal point of recent research
(Maheshwari et al., 2024). While Whisper’s perfor-
mance on languages like Urdu has been explored in
prior studies (Arif et al., 2024), Pashto and Punjabi
have not yet been evaluated in this context.

This study addresses this gap and Whisper’s
zero-shot ASR performance on Pashto, Punjabi,
and Urdu was benchmarked and the impact of few-
shot fine-tuning on language-specific datasets was
assessed. Results show that few-shot fine-tuning
significantly improves Whisper’s performance, em-
phasizing the importance of domain-specific adap-
tation for better ASR accuracy in low-resource set-
tings.

2 Dataset and Preprocessing

Datasets for Pashto, Punjabi, and Urdu were cu-
rated to capture linguistic variations and speaker
demographics for few-shot fine-tuning and evaluat-
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ing the Whisper model on low-resource languages.
Details of these datasets are provided below.

2.1 Pashto Dataset

For experimentation, the ELRA-S0381 Dataset1 is
used which includes 108 hours of transcribed broad-
cast news in Standard Afghan Pashto from over
1,000 speakers across five sources, such as Ashna
TV2, Azadi Radio3, Deewa Radio 4, Mashaal Ra-
dio5 and Shamshad TV6. This dataset, with 46,000
segments and 1.1 million words, provides a robust
foundation for Pashto ASR. For this study, a care-
fully selected 15-hour dataset from 300 speakers
was used for n-shot learning, while 4.8 hours from
137 speakers were reserved for evaluation, ensuring
diverse accents and age groups.

2.2 Punjabi Dataset

The lack of any publicly available dataset for the
Majhi dialect of Punjabi as spoken in Pakistan,
along with its corresponding Shahmukhi annota-
tion, necessitated the creation of a custom in-house
dataset to address this gap. This dataset, sourced
from Bulekha TV7, represents the variety of Pun-
jabi spoken in Pakistan. As the available data in
the broadcast domain was limited, the recordings
primarily comprised vlogs. These recordings were
first converted to .wav format with specified prop-
erties: mono channel, 256 kbps bitrate, and 16 kHz
sampling rate.

The dataset covers diverse topics relevant to the
Punjabi-speaking audience. Annotation was car-
ried out using XTrans (Glenn et al., 2009) in the
Punjabi Shahmukhi script by trained annotators.
For this study, carefully considered 15-hour dataset
was used for few-shot learning, for ensuring bal-
anced finetuning across all datasets to maintain
consistency in performance evaluations.
For evaluation, 4.2 hours of data sourced from 52
speakers was utilized.

2.3 Urdu Dataset

Two datasets were used for the Urdu language: the
Urdu Broadcast and Urdu Telephonic datasets, with

1https://catalogue.elra.info/en-us/repository/
browse/ELRA-W0092/

2https://www.youtube.com/@VOAPashto
3https://pa.azadiradio.com/
4https://www.voadeewanews.com/live/audio/49
5https://www.mashaalradio.com/
6https://www.shamshadtv.tv/
7https://www.youtube.com/c/BhulekhaTv

detailed descriptions provided in the following sub-
sections.

2.3.1 Urdu Broadcast Dataset
The Urdu Broadcast Dataset (Khan et al., 2021)
contains approximately 800 hours of spoken Urdu
from various broadcast platforms like Radio,
YouTube, and TV. The dataset covers genres such
as news, health, entertainment, and political dis-
cussions, capturing dialectal and phonetic variabil-
ity. For this study, a thoughtfully chosen 15-hour
dataset from 131 speakers was used for few-shot
learning, while 4.3 hours from 45 speakers were
allocated for evaluation, covering a wide range of
regional accents and demographics.

2.3.2 Urdu Telephonic Dataset
The Urdu Telephonic Dataset consists of 111.5
hours of read speech, balanced by gender and rep-
resenting various districts of Pakistan. The dataset,
recorded via laptop and telephone, captures con-
versational speech patterns typical in telephonic
interactions. For this study, a carefully curated
15-hour dataset from 179 speakers was used for
few-shot learning, while 10.2 hours from 60 speak-
ers were set aside for evaluation, representing a
variety of accents and age groups.

The Table 2 provides a breakdown of the
datasets, including the fine-tuning and evaluation
splits, as well as the total number of utterances for
each dataset.

2.4 Pre-processing
Following pre-processing steps were implemented:
(a) All audio files were converted to mono for-
mat with a sample rate of 16 kHz; (b) selected
a subset of 15 hours from each dataset for few-
shot fine-tuning; (c) ensured the audio segments
were accurately aligned with their corresponding
transcriptions; and (d) removed any unnecessary
punctuation and characters from the transcriptions
to maintain consistency. Additionally, the 15-hour
subset was divided into 1-hour, 5-hour, 10-hour,
and 15-hour splits for the purpose of few-shot ex-
perimentation.

3 Experiment

The evaluation consists of two phases: zero-shot
evaluation and few-shot fine-tuning. In the zero-
shot phase, Whisper-small, Whisper-medium, and
Whisper-large are evaluated on various datasets (as
detailed in Section 2). For few-shot fine-tuning,
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Language Dataset Small WER Medium WER Large WER
Pashto Broadcast 98.43 99.04 85.60
Punjabi Broadcast 86.83 86.04 54.73
Urdu Broadcast 42.57 35.57 27.97

Telephonic 70.09 62.12 46.64

Table 1: Zero-shot %WER for Whisper models (Small, Medium, Large) on Pashto, Punjabi and Urdu datasets

Language Dataset Fine-tuning Evaluation Fine-tuning Evaluation
Duration Duration Utterances Utterances

Pashto Broadcast 15 h 4.8 h 7746 2226
Punjabi Broadcast 15 h 4.2 h 13110 2361
Urdu Broadcast 15 h 4.3 h 8206 2633

Telephonic 15 h 10.2 h 14066 6358

Table 2: Fine-tuning and Evaluation Data Breakdown for Whisper on Pashto, Punjabi, and Urdu

Language Dataset 1hr WER 5hrs WER 10hrs WER 15hrs WER
Pashto Broadcast 53.08 40.33 36.38 34.10
Punjabi Broadcast 45.18 41.57 41.80 38.01
Urdu Broadcast 33.14 27.26 23.43 22.28

Telephonic 74.16 66.40 63.42 62.01

Table 3: Fine-tuned %WER for Whisper Small on Pashto, Punjabi, and Urdu datasets

Whisper-small is selected due to hardware con-
straints, with 15 hours of labeled data from each
dataset, split into 1-hour, 5-hour, 10-hour, and 15-
hour subsets to analyze the effect of dataset size.
The zero-shot performance of Whisper-large is
compared with the few-shot fine-tuned Whisper-
small, focusing on the reduction in WER between
the models.

3.1 Experimental Setup

The experiments are conducted on a system with
two NVIDIA RTX 3060 GPUs8, each with 12 GB
of VRAM. To manage memory constraints, gradi-
ent accumulation is employed during fine-tuning.
The AdamW optimizer is used with a learning rate
of 1e-5 and a warmup period of 500 steps for sta-
bility. Fine-tuning is performed for a maximum of
100 epochs, with early stopping after 3 epochs to
prevent overfitting.

3.2 N-shot Learning

Whisper’s performance was evaluated in zero-shot
and few-shot settings across Pashto, Punjabi, and
Urdu. Zero-shot results set a baseline, while few-
shot fine-tuning demonstrates how WER reduces

8https://www.nvidia.com/en-us/geforce/graphics-cards/30-
series/rtx-3060-3060ti/

with increasing data, offering insights into the
model’s real-world potential. Zero-shot Learning:
In all zero-shot evaluations, the target language for
transcription was explicitly specified by passing its
corresponding language code as a parameter to the
model. Whisper transcribes Pashto with inconsis-
tent script usage, occasionally switching between
the script conventions used for Northern Pashto
dialects and Southern Pashto dialects. This vari-
ability reflects regional differences in orthographic
practices, which led to inconsistencies in the tran-
scription output. Similarly, for the Punjabi dataset,
Whisper defaulted to Gurmukhi script, despite the
widespread use of Shahmukhi by 94.4 million users
(Ahmad et al., 2020), leaving the Shahmukhi script
underrepresented in the transcription process.
Few-shot Learning: In the few-shot phase,
Whisper-small was fine-tuned on datasets in in-
cremental batches of 1 hour, 5 hours, 10 hours, and
a maximum of 15 hours. The 15-hour limit was
maintained for all languages, as the Punjabi few-
shot learning dataset only consisted of 15 hours of
data. Each step of fine-tuning allowed the model
to progressively refine its transcription accuracy,
capturing the nuances of scripts, and accents as
explained in detail in the later section.
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4 Results

This section presents the performance of Whisper
on Pashto, Punjabi, and Urdu, emphasizing the
impact of few-shot fine-tuning on transcription ac-
curacy.
Zero-shot Results: All the outputs were post-
processed to remove any punctuations marks. For
Pashto, transcription consistency was ensured by
converting the script conventions used for North-
ern dialect into standard Afghan Pashto using
GPT-prompt to compute the WER. Whisper Large
achieved a WER of 85.60, reflecting challenges
with script variations, while Whisper Medium and
Small recorded WERs above 90. Despite explic-
itly specifying the target language, Whisper Small
and Medium exhibited frequent language switching
during transcription. For Punjabi, post-processing
was performed to convert Gurmukhi to Shahmukhi
script using a GPT-prompt, with Whisper Large
recording a WER of 54.73, outperforming Whis-
per Small’s WER of 86.83. For Urdu, Whisper
Large excelled in the Broadcast dataset with a WER
of 27.97, surpassing Whisper Small’s 42.57. On
the Telephonic dataset, Whisper Large achieved a
WER of 46.64, significantly outperforming Whis-
per Small, which had a WER of 70.09. Further
details on these performance discrepancies regard-
ing Pashto, Punjabi and Telephonic Urdu Datsets
are provided in Appendix A. Despite its overall su-
perior performance, Whisper Large struggled with
regional accents, necessitating further adaptation.
The results of zero-shot evaluation are presented in
Table 1.
Few-shot Learning Results: Fine-tuning Whis-
per Small with varying durations resulted in sig-
nificant WER reductions. For Pashto, WER de-
creased from 53.08 to 34.10 after 15 hours of
fine-tuning, hence improving transcription in stan-
dard Afghan Pashto demonstrating the impact of
domain-specific data. In Punjabi, fine-tuning re-
duced WER from 45.18 to 38.01, enabling tran-
scription in Shahmukhi script, which was previ-
ously rendered in Gurmukhi. For Urdu, fine-tuning
yielded substantial improvements, lowering WER
from 33.14 to 22.28 for Broadcast and from 74.16
to 62.01 for Telephonic, indicating better adapta-
tion to formal broadcast speech. The results are
shown in Table 3.
An interesting observation is that fine-tuning Whis-
per Small significantly narrows the gap with Whis-
per Large in zero-shot performance. For Pashto,

WER dropped from 53.08 to 34.10, surpassing
Whisper Large’s 85.60. In Punjabi, WER de-
creased from 45.18 to 38.01, outperforming Whis-
per Large’s 54.73. For Urdu Broadcast, WER
improved from 33.14 to 22.28, exceeding Whis-
per Large’s 27.97. However, for Urdu Telephonic,
WER dropped from 74.16 to 62.01, but Whisper
Large’s 46.64 still outperformed the fine-tuned
model. These results demonstrate that fine-tuning
Whisper Small with domain-specific data leads
to substantial improvements across languages and
datasets, significantly reducing the performance
gap with Whisper Large.

5 Conclusion

This research highlights the effectiveness of fine-
tuning Whisper models for low-resource languages
like Pashto, Punjabi, and Urdu. While Whisper
Large excelled in zero-shot evaluation, fine-tuning
Whisper Small with domain-specific data led to
substantial improvements in transcription accuracy.
The significant reductions in WER across these
languages demonstrate the power of fine-tuning to
optimize performance and adapt Whisper to the
unique linguistic characteristics of low-resource
settings.

6 Limitation

This study has several limitations. Due to GPU
resource constraints, fine-tuning was limited to
Whisper Small, restricting the model’s full poten-
tial. With access to more computational resources,
fine-tuning Whisper Medium or Large could have
enhanced performance across a wider range of
datasets. Furthermore, the evaluation datasets for
both Pashto and Punjabi were limited to a single
dialect, which may not fully capture the linguistic
diversity present within these languages. Addi-
tionally, Whisper would benefit from more diverse
fine-tuning data, particularly for low-resource di-
alects, to improve generalization and achieve better
results.
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A Discussion on Errors in Zero-Shot
Evaluation

In this section, we analyze the performance of dif-
ferent Whisper model variants (Small, Medium,
and Large) on Pashto, Punjabi, and Urdu datasets
in a zero-shot setting. The primary focus is on
evaluating the transcription

errors observed in each language and understand-
ing the limitations of the models in detail. Table
4 provides a comparative overview of the outputs
from each model. Whisper Small and Medium pro-
duced unintelligible outputs, mixing scripts like
Khmer and Telugu (e.g., " "), and generating gib-
berish, especially in Pashto and Punjabi (e.g., "livel,
ündarvs"). In Urdu, they misinterpreted numerals
and proper nouns (e.g., "gnignnaM "). Whisper
Large performed better but still missed key contex-
tual phrases in Pashto (e.g., missing " " – "Accept
my greetings"), had subtle phonetic errors in Pun-
jabi (e.g., misinterpreting " " as "old master"), and
struggled with numerals in Urdu (e.g., " " instead of
"twenty-seventh"). Overall, Whisper Large showed
improvement but still faced significant limitations,
indicating the need for further pretraining to im-
prove zero-shot performance on these languages.
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Language Reference Small Medium Large
Pashto دساامزهلجميويدارۍدازاد

ونمردقئنموهنومالسرفنضغهللا

وكنوديروا ("Azadi Radio Maga-
zine, this is Asadullah Ghazan-
far. Accept my greetings, dear
listeners.")

ila Di Vo
Soga al H
expected
Emread this

الگا

livel, ündarvs វរំរ

snail iziert <|ru|>
säga selamun
hpanaatge el ani beit
cor generation తరాా

పలాయా భసాిల లరా్

واهّلجمیویڈاریدازاهد

ورلثحبهکارابیداپ

("This is the Azadi Ra-
dio Magazine, and we
have a discussion on
this topic.")

Punjabi ںاہناےتاںینیئایشیایبونجےرت

ےتےلباقمہیناطرباقآانارپادںانت

ےہ ("This is not your South
Asia; here, the old master of
all three, Britain, is in compe-
tition.")

వనాినినిందిని Vermikha sharwa
sa arpaki ya
akarpesha

ਤਰੇ ਜੁਨੂਬੀ ਏਿਸ਼ਆਈ

ਨੇ ਉਤੇ ਇਨਾ ਤੀਨਾ ਦਾ

ਪੁਰਾਨਾ ਆਕਾ ਬਰਤਾਨੀਆ

ਮੁਕਾਬਲੇ ਤੇ ਹੇ ("The
South Asian stars are
facing their old boss
Britain.")

Urdu ٹسرفیٹنیوٹلیرپاھتنویسیٹنیوٹایک

اگےئاپنبمیڈکت ("Will the
dam be completed by the
twenty-seventh of April or by
the twenty-first?")

atra듈 ہوکسgnignnaMایک

("Will Mannging sk-
ouh?")

یڈلٹیڈینویسیٹنودایک

ڈنیڈسروفیڈنزؤاس

اگےئاجڈنیڈ ("Will
Donte Sioni detal de
sauzen de force dand
dand go?")

Table 4: Whisper Model Responses Comparison for Different Languages (Pashto, Punjabi, and Urdu) in Zero-Shot
Evaluation
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Abstract

Natural Language Understanding (NLU) is cru-
cial for conversational AI, yet low-resource lan-
guages lag behind in essential tasks like intent
detection and slot filling. To address this gap,
we translated the widely-used English SNIPS
dataset to Bangla using LLaMA 3, creating a
dataset that captures the linguistic complexities
of the language. With this translated dataset,
we compared both independent and joint model-
ing approaches using transformer architecture.
Results demonstrate that a joint approach based
on multilingual BERT (mBERT) achieves su-
perior performance, with 97.83% intent accu-
racy and 91.03% F1 score for slot filling. This
work advances NLU for Bangla and provides
insights for developing robust models in other
low-resource languages. 1

1 Introduction

Natural Language Understanding (NLU) is an im-
portant part of artificial intelligence (AI), power-
ing applications from home assistants to conversa-
tional agents, text analysis, and language transla-
tion (Vanzo et al., 2019; Liu et al., 2021; Carvalho
et al., 2019; Bender and Koller, 2020; Stahlberg,
2020; Bast et al., 2016). Although we see a signifi-
cant advance in languages with abundant resources,
low- to medium-resource languages face substan-
tial challenges in NLU development. The Bangla
language is spoken by almost 280 million people
and still remains notably underrepresented in this
domain (Ethnologue, 2024). The rich morphology,
complex sentence structure, and compound charac-
ters of Bangla make it challenging for NLU tasks.

Intent detection and slot filling represent core
NLU tasks that are important for building effec-
tive language understanding systems. Intent detec-
tion identifies the user’s purpose while slot filling
extracts specific details such as time, location, or

1The dataset and the code can be found here: https://
github.com/AHMRezaul/Joint_IDSF_Bangla.

quantity. If a user says, "What’s the weather in New
York tomorrow afternoon?" intent detection identi-
fies the goal as "GetWeather," and slot filling pulls
out details like location ("New York") and time
("tomorrow afternoon"). According to the findings
of Grishman and Sundheim, these tasks share simi-
larities with Named Entity Recognition (NER) in
extracting structured information from text but they
go beyond entity identification by requiring the
system to understand the user’s goal and dynami-
cally extract task-specific details. These tasks have
been extensively studied for English (Weld et al.,
2022; Niu et al., 2019; Qin et al., 2021; Liu and
Lane, 2016; Goo et al., 2018), and some progress
has been made for several low-resource languages,
including Bangla (Dao et al., 2021; Akbari et al.,
2023; Stoica et al., 2021; Sakib et al., 2023). Al-
though there are a few prominent studies on Bangla
NLU (Bhattacharjee et al., 2021; Hossain et al.,
2020; Alam et al., 2021) research remains limited,
mainly due to the lack of large annotated datasets.
Tackling this data deficiency is essential for ex-
panding the representation of Bangla in AI and
improving NLU systems for diverse languages.

Our work focuses on two primary objectives:
1. We develop a high-quality Bangla NLU

dataset using English-to-Bangla translation models
and Large Language Models (LLM). This work
demonstrates how automated methods can effec-
tively generate resources for underrepresented lan-
guages.

2. We evaluate separate and joint modeling for
Bangla intent detection and slot filling tasks. Our
evaluation compares these approaches with estab-
lished methods from English NLU research.

Through these objectives, our aim is to estab-
lish a foundation for NLU systems in Bangla while
providing insight that can benefit other underrepre-
sented languages.
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2 Related Work

Conversational AI has advanced intent detection
and slot filling. Early models like Hidden Markov
Models and Conditional Random Fields (Bhargava
et al., 2013; Shen et al., 2011), treated these tasks
separately, limiting generalization capabilities. The
introduction of Recurrent Neural Networks, mainly
Long Short-Term Memory networks, improved per-
formance by modeling language sequences (Mesnil
et al., 2013; Sreelakshmi et al., 2018).

After recognizing the dependency between in-
tent detection and slot filling tasks, joint modeling
was adopted (Zhang et al., 2018; Weld et al., 2022;
Qin et al., 2021). The slot-gated model (Goo et al.,
2018) advanced this approach by using intent pre-
dictions to guide slot filling. JointBERT (Chen
et al., 2019) further improved performance through
transformer-based joint optimization. While ef-
fective in resource-rich languages, applying them
to low- and medium-resource languages such as
Bangla has been challenging due to limited datasets
(Sakib et al., 2023). Efforts to address this gap in-
cluded translating English datasets into languages
such as Vietnamese, Persian, and Romanian (Dao
et al., 2021; Akbari et al., 2023; Stoica et al., 2021)
and applying the established NLU methodologies.

Recent advances in machine translation (MT)
models such as Multilingual T5 (Xue et al., 2020),
XLM-ProphetNet (Qi et al., 2021), and BanglaT5
(Bhattacharjee et al., 2023; De bruyn et al., 2022)
offer promising solutions for translating benchmark
datasets to low- to medium-resource languages.
Additionally, LLMs including Mistral (Jiang et al.,
2023), LLaMA 2 (Touvron et al., 2023), LLaMA
3 (Meta, 2024), GPT-3.5 (Brown et al., 2020), and
GPT-4 (Achiam et al., 2023) show potential for
generating datasets in resource-scarce languages
(Xu et al., 2023; Mahfuz et al., 2024).

Our work translates a benchmark English dataset
to Bangla using traditional MT techniques and
LLMs, showing that LLMs excel in capturing con-
text and generating quality data. We use this trans-
lated dataset to develop and evaluate a Bangla
model for intent detection and slot filling, outper-
forming previous efforts.

3 Methodology

This section provides a comprehensive overview
of the dataset generation process and the models
implemented in this project.

Figure 1: A few-shot prompting approach with the input
query and the expected output for the LLaMA 3 model.

3.1 Dataset

3.1.1 SNIPS Dataset
We used the English SNIPS dataset (Coucke et al.,
2018) to generate the Bangla dataset. SNIPS is a
popular dataset for training and testing NLU mod-
els, especially for tasks like intent detection and
slot filling. It consists of 13,084 training, 700 test-
ing, and 700 validation samples, covering 7 intent
classes and 72 slot values. Each intent and slot
is carefully labeled to cover a large spectrum of
user interactions, making it a useful resource for
developing language models.

3.1.2 Dataset generation
The dataset generation process was completed in
two steps: (1) machine translation for the Training
and Validation sets, and (2) manual translation
for the Test set. This combined approach ensured
resource efficiency while maintaining high
accuracy for evaluating real-world performance.

A. Training and Validation sets:
For Training and Validation sets, various methods
were explored to generate the Bangla dataset from
the English SNIPS dataset.

BanglaT5 model: Initially, the BanglaT5
model (Bhattacharjee et al., 2023) was chosen
for machine translation due to its high BLEU
score compared to other English-to-Bangla models.
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However, it struggled with entity names (e.g.,
Artist, Location, Movie, Song), translating them
instead of transliterating, which altered the sen-
tence meaning and made the results unusable. To
address this, we applied the BNTRANSLIT model
(Sarkar, 2021), designed for English-to-Bangla
transliteration. We transliterated entity names be-
fore translating the sentences. Unfortunately, this
approach also produced suboptimal results, as the
overall translation quality remained insufficient.
LLaMA-3: Finally, the LLaMA-3-70B-Instruct
model (Meta, 2024) was employed using a
carefully crafted prompt that transliterated entity
names while translating the rest of the sentence.
We adopted a few-shot approach, providing
five examples from the original English dataset
along with their manually translated counterparts.
Figure 1 shows the prompt, specifying that entity
names should be transliterated, and the rest
of the sentence translated into Bangla. After
refining the prompt, the model delivered highly
accurate translations, nearing manual translation
quality. However, minor issues persisted, such
as untranslated English words and extraneous
information adding noise to the dataset. These
issues were resolved during post-processing
through automated rule-based methods, identifying
and removing irrelevant content and correcting
mismatches between slot values and translated
text. The results were then manually verified to
ensure the accuracy and consistency of the final
dataset. The final dataset was annotated using the
Beginning-Inside-Outside (BIO) notation.

B. Test set:
The test set was manually translated and annotated
to ensure accuracy when evaluating real-world
performance. Four doctoral students fluent in
English and Bangla participated in this process.
Initially, two annotators translated the English
SNIPS test set into Bangla and annotated slot
values using the BIO format. To ensure consis-
tency, two annotators independently annotated
10% of the samples and discussed their results
to agree on a unified annotation method. They
then applied this agreed-upon method to annotate
the remaining 90% of the dataset, achieving a
0.83 Cohen’s Kappa score A.2 for the entire
dataset. Following this, two additional independent
reviewers conducted sequential reviews of the
entire dataset, further enhancing its quality by
identifying and removing any remaining errors or

biases.

Dataset Stat. Train Valid. Test

SNIPS
(English)

Intents 13084 700 700

Slots 60412 3221 3276

Generated
(Bangla)

Intents 12850 685 694

Slots 54747 2865 3105

Table 1: Comparison of data distribution between gen-
erated Bangla dataset and the original English SNIPS
dataset.

Figure 2: A normalized distribution of Intent classes in
the generated Bangla train, validation, and test sets.

3.1.3 Dataset Analysis
The generated Bangla dataset contains 7 intent
classes but 80 (vs. 72 in English) unique slot labels.
The increase in the number of slot labels is due to
single-word slot values in English often translating
into multi-word slot values in Bangla. As a result,
many slots that previously required only a begin-
ning (B) tag in the English dataset now require
both beginning (B) and inside (I) tags in the Bangla
dataset. Table 1 compares the number of intent
and slot instances between the original English and
generated Bangla datasets.

The Bangla Train and Validation sets have
slightly fewer instances of intents and slots than
the English version as seen in Table 1, primarily
due to post-processing after the LLaMA 3 transla-
tion. Instances with errors that could not be easily
fixed were excluded to maintain the integrity of
the machine-translated corpus, as the focus was
on assessing LLM performance without manual
intervention.

The slight reduction in the number of slot values
can be attributed to two main factors:

Alignment Issues: Some slot values failed
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to align with the translated text, even after post-
processing, resulting in unannotated slots.

Linguistic Differences: In Bangla, certain
multi-word slot values in English are condensed
into single or fewer words, causing a reduction in
the number of slot values compared to the English
dataset.

Figure 2 shows a balanced distribution of in-
tent classes (normalized for better visualization)
across the training, validation, and test sets, reduc-
ing bias. However, there is an uneven distribution
of slot labels demonstrated in figure 3, with rare
slots potentially challenging the model’s prediction
accuracy as discussed in the appendix A.3.

Overall, the dataset effectively supports training
and evaluation for diverse intents and slot labels.

3.2 Models
We evaluated three transformer-based models on
our Bangla dataset: BERT Base (baseline), Multi-
lingual BERT (mBERT), and Bangla BERT (De-
vlin, 2018; Bhattacharjee et al., 2021). Bangla
BERT handles Bangla-specific processing, while
mBERT offers multilingual adaptability. Both sep-
arate and joint training approaches were tested, fol-
lowing the benchmarking methodology of the En-
glish SNIPS dataset. Detailed specifications are in
Appendix A.1.

4 Experiments and Analysis

The Bangla dataset was used to fine-tune the mod-
els with optimized hyperparameters: batch size of
32 for training and 64 for evaluation, maximum
sequence length of 160, learning rate of 5e-5, and
dropout rate of 0.1 gave the best performance.

4.1 Training details
We divided the experiments into two parts for each
of the BERT variants (BERT Base, mBERT and
Bangla BERT): (1) separate fine-tuning for intent
detection and slot filling, and (2) joint fine-tuning
using different BERT variants as the backbone. For
the joint setup, we adopted the JointBERT con-
figuration (Chen et al., 2019) with the mentioned
hyperparameters and applied similar settings to
the separate models. Models were trained across
varying epochs [1, 5, 10, 20, 30, 40], and the best
performances from these runs were recorded.

4.2 Result and Discussion
Table 2 presents intent detection accuracy and slot
filling F1 score at token level. It also illustrates

Model Intent
Accuracy Slot F1 Sentence

Accuracy

Separate
Training

BERT Base 95.53 86.13 -
mBERT 96.97 90.64 -
Bangla BERT 95.96 89.96 -

JointBERT
BERT Base 96.97 84.83 69.30
mBERT 97.83 91.03 79.39
Bangla BERT 97.69 89.42 76.65

Table 2: Results for intent detection and slot filling
tasks (%). Best scores for separate and joint models are
bolded, with the overall best score underlined.

the accuracy on a sentence level for the joint ap-
proach; this metric measures the percentage of
instances where both intent class and slot labels
were correctly predicted. The results clearly in-
dicate that a joint approach outperforms the sepa-
rate approaches. Notably, the multilingual BERT
(mBERT) model surpasses Bangla BERT, a model
specifically pre-trained in Bangla, in both joint and
separate task settings.

This outcome suggests that mBERT’s pre-
training on a diverse multilingual corpus enables
it to generalize effectively across languages, pro-
viding an advantage when dealing with the com-
plexities of the Bangla language. Although Bangla
BERT has shown superior performance in down-
stream tasks like sentiment analysis and hate
speech detection (Sarker, 2021), mBERT outper-
forms it in the slot filling task, which is closely
associated with Named Entity Recognition (NER)
(Grishman and Sundheim, 1996). This is consis-
tent with previous research, where mBERT outper-
formed Bangla BERT in the Bengali NER task us-
ing the ‘Bengali NER’ dataset (Rahimi et al., 2019).
The broad linguistic knowledge in pre-training of
mBERT appears to offer an advantage in tasks that
rely on accurate entity recognition.

Additionally, we observe the highest sentence-
level accuracy with mBERT. This measures how
often both the intent class and all slot labels are pre-
dicted accurately. This metric provides a holistic
view of the model’s performance.

Appendix A.4 presents a detailed error analysis
of the best-performing joint model, highlighting
common errors and identifying areas for potential
improvement.

5 Conclusion

This study offers a comprehensive evaluation of
joint intent detection and slot filling for Bangla, a
resource-scarce language. To overcome the lack of
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available data, we generated a Bangla dataset from
the benchmark English SNIPS dataset using the
LLaMA 3 model and applied well-established NLU
methodologies. Using a manually curated test set,
we confirmed that joint modeling outperformed sep-
arate approaches, with the mBERT variant achiev-
ing better results than the language-specific Bangla
BERT.

Our research also highlights the potential of
LLMs in generating training data for low- to
medium-resource languages. By leveraging ex-
isting benchmark datasets, LLMs can produce
datasets that are effective for real-world applica-
tions. This approach provides a scalable solution
for training high-performing models.

6 Limitations

We manually translated and annotated the SNIPS
test set. However, we encountered resource con-
straints that limited our ability to manually curate
the entire dataset. So, we relied on LLaMA 3 to
generate training and validation data, utilizing its
machine translation and entity recognition capabil-
ities. While we recognize that a manually curated
dataset would likely result in better fine-tuning and
improved model performance, the resource limita-
tions made machine translation a more practical
and feasible option for this study. This experi-
ence also suggests that LLM-generated datasets
can effectively support model fine-tuning for spe-
cific tasks.
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A Appendix

A.1 Implemented Models
A.1.1 BERT and its Variants
BERT (Bidirectional Encoder Representations
from Transformers) (Devlin, 2018) revolutionized
NLP by using deep bidirectional representations
and self-attention mechanisms (Vaswani, 2017).
We utilized three key BERT variants: BERT Base,
which is trained on lower-cased English text, ideal
for tasks where case sensitivity is less critical; Mul-
tilingual BERT (mBERT), trained on over 100 lan-
guages, making it suitable for cross-lingual tasks;
and Bangla BERT (Bhattacharjee et al., 2021),
specifically trained on Bangla text, making it more
effective at handling the unique linguistic and cul-
tural aspects of Bangla. 2.

These models were chosen to evaluate perfor-
mance on Bangla language tasks. BERT Base
was used to assess how the base English model,
which established the original benchmark on the
English SNIPS dataset, performs on Bangla data
and to measure improvements with other variants.
mBERT provided insights into cross-lingual trans-
fer learning, while Bangla BERT leveraged its
Bangla-specific training to address linguistic nu-
ances.

A.1.2 JointBERT Modeling
The JointBERT model (Chen et al., 2019) com-
bines intent detection and slot filling into a single

2Huggingface BERT Base, mBERT, Bangla BERT

Figure 3: A normalized distribution of different slot
labels across the train, valid. and test sets demonstrate
an imbalance of different slot labels.

architecture using a BERT backbone. It classifies
intent based on the [CLS] token and assigns slot la-
bels to each token in the input sequence. By jointly
modeling both tasks, JointBERT enhances contex-
tual understanding and improves accuracy in both
intent detection and slot filling, making it highly
suitable for conversational AI tasks in the Bangla
language.

A.2 Inter-annotator Agreement
In this research, Cohen’s Kappa (Cohen, 1960) was
used as a key metric to assess inter-annotator agree-
ment, ensuring the quality and reliability of the
manually translated and annotated test set. Cohen’s
Kappa assesses the level of agreement among anno-
tators, considering the likelihood of agreements oc-
curring by chance. A score of 1 signifies complete
agreement, whereas 0 indicates no more agreement
than what might be anticipated by chance. In this
instance, 0.83 Cohen’s Kappa score indicates a
high level of agreement between the annotators,
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Figure 4: Instances of predicted intent class and the slot labels by the JointBERT(mBERT) model compared with
the true predictions. 1) Both intent and slot value predictions are wrong, 2) Only a single slot value is incorrectly
predicted, 3) Everything is predicted correctly.

Figure 5: Confusion matrix highlighting shared
vocabulary-induced misclassifications of Intent classes
by JointBERT model with mBERT.

reflecting the consistency and reliability of the an-
notations.

Inter-annotator agreement is crucial for verifying
the accuracy of translations and annotations in a
dataset, especially when it involves subjective tasks
like labeling slot values and intents. By applying
this metric, we can ensure that different annotators
interpret the data consistently, directly affecting the
dataset’s quality and the performance of models
trained on it.

A.3 Distribution of Slot Labels

Figure 3 shows the normalized distribution of slot
labels across the generated train, validation, and

Error Type No. of errors
Missing slot value in prediction
(entirely or partly)

34

Predicted slot value matches an ’O’ label 11
Predicted slot has correct label
but incorrect boundary

23

Predicted slot has the correct
boundary but incorrect label

70

Total errors 138

Table 3: The number of different error types noticed for
the JointBERT model with mBERT on the Test set.

test sets. It is clear that the frequency of differ-
ent slot labels varies significantly, which can in-
troduce bias during fine-tuning. More frequent
slot labels are likely to be predicted more of-
ten than less frequent ones. This bias is evi-
dent in a predicted instance shown in Figure 4,
where the slot label ‘movie_name’ is incorrectly
labeled as ‘object_name’. The distribution indi-
cates that ‘object_name’ appears more frequently
than ‘movie_name’ across all datasets, which likely
causes the model to favor the more frequent la-
bel. However, achieving a balanced dataset with
an equal distribution of slot labels is difficult in the
real world.

Although the model correctly identifies slot
boundaries, it struggles to distinguish between la-
bels, possibly because of the lack of semantic infor-
mation about the entity, such as whether the entity
is a movie name. Providing the model with this
additional context could improve label accuracy.
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A.4 Error Analysis
The confusion matrix for the JointBERT model
using the mBERT variant in figure 5 shows a re-
curring pattern of confusion between the ‘Search-
ScreeningEvent’ and ‘SearchCreativeWork’ intents.
This likely occurs because of the overlap in vo-
cabulary across these intents, where terms related
to screening events and creative works appear in
similar contexts, leading to misclassification. An
example instance of figure 4 also highlights this
misclassification of intent classes.

Table 3 highlights the types of slot prediction
errors. Out of 138 instances of incorrect slot pre-
dictions, about half involve the model correctly
identifying the slot boundary, but mislabeling the
slot values itself. These errors often occur in cate-
gories like ‘city’, ‘country’ and ‘state’, or between

‘movie_name’ and ‘object_name’, and ‘track’ and
‘playlist’. This can be because of the model’s re-
liance on recognizing patterns from its training
phase without understanding the semantic meaning
of an entity name. Additionally, the imbalance in
slot label frequencies skews predictions towards
more common slot labels, such as predicting ‘ob-
ject_name’ instead of ‘movie_name’.

Another instance of figure 4 shows that even
though ‘timeRange is a common slot label, the
model still predicted it to be ‘restaurant_name.
This can be because the slot ‘restaurant_name’ ap-
pears more frequently with the other predicted slots
from this instance than the ‘timeRange’ slot.

The second most common type of error involves
the model missing certain slot values, especially
those that have been transliterated. This can cause
confusion regarding their semantic meaning. Addi-
tionally, the model sometimes predicts the correct
slot label but struggles with boundary detection,
particularly for multi-word slot values where part
of the entity name is mistaken as a portion of the
sentence. Lastly, some common words are incor-
rectly tagged as slot values due to their high fre-
quency as a slot value in the training data, leading
the model to incorrectly assign a label.
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Abstract

Large Language Models (LLMs) have demon-
strated remarkable multilingual capabilities, yet
challenges persist in adapting these models
for low-resource languages. In this study, we
investigate the effects of Low-Rank Adapta-
tion (LoRA) Parameter-Efficient Fine-Tuning
(PEFT) on multilingual Gemma models for
Marathi, a language with limited resources. Us-
ing a translated Alpaca dataset with 52,000
instruction-response pairs, our findings reveal
that while evaluation metrics often show a per-
formance decline post-fine-tuning, manual as-
sessments frequently suggest that the fine-tuned
models outperform their original counterparts.
The observations indicate improvements in tar-
get language generation capabilities but a reduc-
tion in reasoning abilities following language
adaptation. These results underscore the need
for improved evaluation methodologies and the
creation of high-quality native datasets to ac-
curately assess language-specific model perfor-
mance in low-resource settings.

Keywords: LoRA · PEFT · Fine-tuning · Low-
resource languages · Marathi · Gemma

1 Introduction

The emergence of Large Language Models (LLMs)
such as the Llama and Gemma series has revealed
substantial abilities in managing various multilin-
gual tasks (Team et al., 2024a,b). These models
have shown competence in multiple high-resource
languages, yet their effectiveness with low-resource
languages is still a challenge that needs addressing
(Huang et al., 2023; Chang et al., 2023). Typically,
fine-tuning is used to enhance model performance
in particular domains or languages. Nonetheless,
this strategy has yielded inconsistent outcomes for
low-resource languages (Alam et al., 2024; Lank-
ford et al., 2023a).

Our research focuses on Marathi, which is con-
sidered a low-resource language due to the scarcity

of naturally occurring training data (Ogueji et al.,
2021; Dhamecha et al., 2021). We leverage the ca-
pabilities of LoRA PEFT, a parameter-efficient ap-
proach enabling model adaptation, instead of using
the classic vanilla Supervised Fine-Tuning (SFT)
(Hu et al., 2021; Han et al., 2024). We prefer PEFT
over SFT as it works in low data scenarios, is com-
putationally effective so more widely adopted, and
avoids catastrophic forgetting due to usage of non-
English data only (Weng, 2024; Aggarwal et al.,
2024). We execute this method with the Gemma
models employing the Alpaca dataset, translated
into Marathi. Automated assessments based on
NLU and commonsense reasoning usually indicate
a decline in the performance of fine-tuned models.
However, human evaluations, which directly judge
response quality, show that these models excel in
specific contextual and cultural aspects (Gala et al.,
2024; Zhu et al., 2024).

Our study challenges the effectiveness of current
evaluation methods, especially for low-resource
languages (Richburg and Carpuat, 2024). We high-
light how automated metrics may overlook impor-
tant qualitative improvements, particularly when
models produce responses that resonate with spe-
cific linguistic contexts (Barnett et al., 2024). Au-
tomated benchmarks, often based on logits, may
be unsuitable for evaluating instruction-tuned mod-
els, further raising concerns about reliance on these
metrics (Gurgurov et al., 2024). We recommend
adopting more rigorous evaluation methods that
better align with human judgment (Aggarwal et al.,
2024; Barnett et al., 2024).

2 Related Work

Using LLMs for low-resource languages, espe-
cially Supervised Fine-Tuning (SFT), has been thor-
oughly researched before. SFT proves to be very
effective in high-resource settings, but it falls short
in low-resource languages, facing many difficulties

217



due to the data scarcity. Methods that were curated
to handle constraints of low-resource languages
were used through multilingual models (Lankford
et al., 2023a; Tang et al., 2020). This resulted in
highlighting a performance decline, caused by cul-
tural inconsistencies in datasets (Huang et al., 2023;
Chang et al., 2023).

As opposed to this, some of the issues have
been reduced by parameter-efficient techniques like
LoRA PEFT, as they minimize the number of pa-
rameters during fine-tuning. This method signifies
that computational efficiency is offered and the
original model’s robustness is retained, by adjust-
ing only some of the parameters (Hu et al., 2021).
A broader study emphasized that using LoRA in
low-resource settings comes with low computa-
tional overhead (Han et al., 2024; Weng, 2024).
Despite this, there remains a considerable gap for
exploration when it comes to leveraging LoRA
for low-resource languages on Multilingual LLMs
(Gurgurov et al., 2024).

Existing frameworks for evaluation of low-
resource languages contain limitations that need
to be studied (Richburg and Carpuat, 2024; Aggar-
wal et al., 2024). Low-resource languages have
cultural nuances and context-dependent accuracy
embedded in them, and traditional evaluation met-
rics may not capture them (Barnett et al., 2024;
Ogueji et al., 2021). This necessitates using alterna-
tive evaluation metrics, one of them being human
assessments, to corroborate model performance
(Gala et al., 2024). For example, as explored, Hindi-
language tasks require cultural specificity, as it does
for Marathi, our study finds (Dhamecha et al., 2021;
Gala et al., 2024). Thus we researched how fine-
tuning methods like LoRA produce quality outputs,
especially when they are used in culturally refined
contexts (Gala et al., 2024; Alam et al., 2024).

3 Experimental Setups

3.1 Dataset

The Alpaca dataset, consisting of 52,000
instruction-response pairs originally in English,
was utilized for our research. The Google translate
API was used to convert the dataset’s instruction,
input, and output columns into Marathi so that
it could be used to fine-tune Gemma models.
Through this translation process, we were able to
produce a sizable dataset for Marathi, which helped
us build the models for a language with little
resources. The dataset that was created offered a

systematic and uniform format for assessing the
performance of the models on instruction-driven
tasks in Marathi, making it easier to compare the
base and fine-tuned variants of the Gemma models.

3.2 Models and Fine-tuning

For our experiments, we employed several ver-
sions of the Gemma model family (Team et al.,
2024a) to assess the impact of LoRA PEFT tuning
on Marathi, a low-resource language. Specifically,
we worked with the following base models:

• gemma-2b: A 2-billion parameter model with
robust multilingual capabilities, serving as
one of the baseline models.

• gemma-2b-it: An instruction-tuned variant of
Gemma-2B, specifically designed to excel at
instruction-based tasks.

• gemma-2-2b: An enhanced and more recent
version with additional pretraining on multi-
lingual corpora, aimed at improving perfor-
mance in complex linguistic tasks.

• gemma-2-2b-it: An instruction-tuned variant
of Gemma-2.2B, optimized further for multi-
lingual and instruction-following tasks.

We fine-tuned these models using LoRA PEFT
to efficiently adapt them to the Marathi language,
producing the following fine-tuned models:

• gemma-2b (Mr): The fine-tuned version
of Gemma-2b for Marathi using the Alpaca
dataset.

• gemma-2-2b (Mr): The fine-tuned version of
Gemma-2-2b for Marathi.

• gemma-2-2b-it (Mr): The fine-tuned version
of Gemma-2-2b-it for Marathi, specialized for
instruction-following tasks.

LoRA PEFT allowed us to tune a smaller subset
of model parameters, which minimized computa-
tional costs while maintaining the core functional-
ity of the Gemma models. This approach was par-
ticularly advantageous in adapting these large mod-
els to a low-resource language like Marathi, where
we aimed to optimize model performance without
requiring extensive computational resources.
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MODEL F1 Scores
indicsentiment ai2_arc-easy arc challenge indic copa indic xnli

gemma-2b 0.7772 0.4435 0.4240 0.6547 0.3582
gemma-2b-it 0.7444 0.4651 0.4043 0.2963 0.3066
gemma-2b (Mr) 0.9397 0.6048 0.3848 0.4219 0.1675

Table 1: F1 Scores for Gemma1 models.

MODEL F1 Scores
indicsentiment ai2_arc-easy arc challenge indic copa indic xnli

gemma-2-2b 0.9206 0.6384 0.6463 0.6577 0.2191
gemma-2-2b (Mr) 0.8411 0.6135 0.5271 0.5764 0.2753
gemma-2-2b-it 0.9749 0.6851 0.7210 0.7210 0.2814
gemma-2-2b-it (Mr) 0.9589 0.6343 0.6374 0.5835 0.1667

Table 2: F1 Scores for Gemma2 models.

3.3 Evaluation

Our assessment emphasizes two complementary
methods:

Automated Evaluation: We utilize established
benchmarks from AI4Bharat to assess the perfor-
mance of the models on tasks such as IndicSen-
timent, ARC-easy, ARC Challenge, Indic COPA,
and Indic XNLI (Gala et al., 2024). These bench-
marks enable a quantitative evaluation of the mod-
els across a variety of language tasks, allowing us
to compare the results with those of other multilin-
gual models

Manual Evaluation: As we used the automated
metrics, we also performed thorough assessments
manually, using a subset of 150 questions from our
curated sheet of questions. Then, leveraging the
models, we generated responses for each model
and each question to ascertain which model demon-
strated better performance. The questions encom-
passed fields like knowledge-based, quantitative
analysis, culture and history, mathematics, science,
problem-solving, scenario-based, geography, and
politics. This manual evaluation revealed some
important model capabilities that were previously
overlooked by automated metrics, like cultural sig-
nificance, linguistic patterns, nuances, and the ca-
pacity to follow instructions

By integrating both automated and manual eval-
uations, we achieved a more thorough understand-
ing of model performance, pinpointing areas where
fine-tuned models excel and where they may fall
short .

4 Results

4.1 Result Discussion

In the manual assessment of 150 questions, illus-
trated in Figure 1, fine-tuned versions like gemma-
2-2b-it (Mr) and gemma-2b-it (Mr) showed higher
win rates than their base counterparts, indicating
their enhanced ability to generate contextually rel-
evant answers in Marathi. Nonetheless, the base
models occasionally generated responses in En-
glish, as depicted in Appendix Figure 2, reveal-
ing ongoing issues with language consistency that
the fine-tuned models somewhat alleviated, though
not completely. While the fine-tuned models per-
formed better in most of the aspects, there were
some instances where the base models matched
their performance, reflecting the intricate chal-
lenges of adapting models for low-resource lan-
guages such as Marathi.

In the evaluation of the F1 score, represented
in Table 1 for gemma-1 models and Table 2 for
gemma-2 models, gemma-2-2b frequently per-
formed better than the other models in signifi-
cant benchmarks, including sentiment analysis and
question-answering tasks. However, fine-tuned
models like gemma-2-2b-it (Mr) displayed varied
outcomes, showing enhancements in certain tasks
while experiencing declines in others, particularly
in benchmarks like Indic XNLI and ARC Chal-
lenge. These findings highlight that even though
fine-tuning can enhance performance in specific ar-
eas, it does not guarantee improvements across all
tasks, underlining the necessity for more focused
fine-tuning strategies for low-resource languages.

Overall, we observe a degradation in NLU and
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Figure 1: Manual Evaluation Performance.

reasoning benchmarks following language adapta-
tion. However, the adapted model performs better
on the open-ended question answering dataset dur-
ing manual evaluation. This suggests the need for a
more comprehensive evaluation strategy and more
suitable datasets to fully assess the benefits of lan-
guage adaptation. While automated benchmarks
indicate degradation, they may not be the ideal met-
ric for evaluating instruction-based models. We
require more effective benchmarks that can assess
the reasoning capabilities of the model without re-
lying on logit-based evaluation metrics.

5 Limitations

While researching, we faced quite a few limita-
tions that hindered progress. Firstly, we used a
dataset that was translated, instead of fetching natu-
rally occurring Marathi content from the web. This
proved unfruitful as the translated dataset does not
entirely capture the complexities of the language.
Next issue we faced was of limited computational
resources, which resulted in limited experimental
explorations, and thwarting us from exploring a
broader range of models. Another challenge per-
tained to comprehensively evaluating the Marathi
language generation, as previous benchmarks may
not understand its complexities. Furthermore, the
translation process contained biases, affecting the
accuracy and quality of the question-answer pairs.
Lastly, high-quality Marathi evaluation datasets
were scarce, limiting our abilities in judging model
performance in detail, this called for more robust
resources in low-resource settings.

6 Conclusion

To conclude, our results showcase how fine-tuning
of Gemma models for Marathi using LoRA PEFT
compromises performance if it is based on tradi-

tional and automated evaluation metrics. On the
contrary, manual assessments indicate better per-
formance as the fine-tuned models excel in pro-
cessing culturally sound and contextually relevant
responses. This necessitates the use of alternate
and enhanced evaluation techniques that can suc-
cessfully take into account the complex nuances of
low-resource languages.

A change needs to be made in developing more
robust evaluation methods which provide more
accuracy and more effective performance in low-
resource settings. Moreover it is also important to
perpetuate the generation of high-quality naturally
occurring Marathi datasets for continued advance-
ments in this discipline.
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Abstract

This paper presents a detailed system descrip-
tion of our entry for the CHiPSAL 2025 shared
task, focusing on language detection, hate
speech identification, and target detection in
Devanagari script languages. We experimented
with a combination of large language mod-
els and their ensembles, including MuRIL, In-
dicBERT, and Gemma-2, and leveraged unique
techniques like focal loss to address challenges
in the natural understanding of Devanagari lan-
guages, such as multilingual processing and
class imbalance. Our approach achieved com-
petitive results across all tasks: F1 of 0.9980,
0.7652, and 0.6804 for Sub-tasks A, B, and C
respectively. This work provides insights into
the effectiveness of transformer models in tasks
with domain-specific and linguistic challenges,
as well as areas for potential improvement in
future iterations.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing (NLP) yet South
Asian languages remain largely underrepresented
within these advancements despite being home
to over 700 languages, 25 major scripts, and ap-
proximately 1.97 billion people. Addressing these
gaps, this paper focuses on three critical NLP tasks
of CHiPSAL 2025 (Sarveswaran et al., 2025) in

* equal contribution

Devanagari-scripted languages: 5-way classifica-
tion of the text based on the language of the text
(Sub-task A), Binary classification for detecting
hate speech in the text (Sub-task B), and 3-way
classification for detecting target of hate speech
in a text (Sub-task C) (Thapa et al., 2025). Our
system leverages the multilingual capabilities of
open-source LLMs namely IndicBERT V2 (Dodda-
paneni et al., 2023), MuRIL (Khanuja et al., 2021),
and Gemma-2 (GemmaTeam, 2024) and their en-
sembles for natural language understanding of De-
vanagari script languages. Our work contributes
to advancing language technology in South Asia,
aiming for inclusivity and deeper understanding
across diverse linguistic landscapes.

2 Dataset & Task

The goal of Sub-task A is to determine the lan-
guage of the given Devanagari script among the 5
languages to address the critical need for accurate
multilingual identification. The dataset consists of
text in Nepali (Thapa et al., 2023; Rauniyar et al.,
2023), Marathi (Kulkarni et al., 2021), Sanskrit (Ar-
alikatte et al., 2021), Bhojpuri (Ojha, 2019), and
Hindi (Jafri et al., 2024, 2023). For Sub-task B, the
goal is to determine if the text contains hate speech
or not. The dataset consists of social media text
(tweets) in Hindi and Nepali languages. Sub-task
C follows Sub-task B, where the goal is to identify
the targets of hate speech among "individual", "or-
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ganization", or "community". Similar to Sub-task
B, the dataset for Sub-task C is in Hindi and Nepali
languages. The distribution of labels for the three
datasets can be seen in table 1, 2, and 3 respectively.

Class Train Dev Test
Nepali 12544 2688 2688
Marathi 11034 2364 2365
Sanskrit 10996 2356 2356
Bhojpuri 10184 2182 2183
Hindi 7664 1643 1642
Total 52422 11233 11234

Table 1: Class distribution for Sub-task A

3 Methodology

The common approach to all three Sub-tasks was to
fine-tune a multitude of multilingual models in the
train set and use the dev set to select the best few
models during the Evaluation phase. The selected
best models were then fine-tuned again on both the
train and dev sets and their ensemble, by major-
ity voting, was used for the final prediction of the
test set during the Testing phase as shown in Fig-
ure 1. The models fine-tuned under this approach
include decoder-only models such as Gemma-2
9B, Llama 3.1 8B (LlamaTeam, 2024), and Mistral
Nemo Base 12B (MistralAI, 2024), and BERT (De-
vlin et al., 2019) based models such as IndicBERT
V2, MuRIL, XLM Roberta (Conneau et al., 2019),
mDistilBERT (Sanh et al., 2019) and mBERT (De-
vlin et al., 2018). For decoder-only models, each
Sub-task was formulated as a text-generation task
where each model was asked to generate only one
option among the given choices. For BERT-based
models, each Sub-task was formulated as a multi-
label classification task by adding a classification
head to the model.
For Sub-task A, each decoder-only models were
trained for 1 epoch with a learning rate of 2e-4. The
BERT-based models were trained for 5 epochs with
a learning rate of 4e-5 with weighted cross-entropy
loss. For Sub-task B, decoder-only models were
trained for 2-4 epochs with a learning rate of 2e-4.
The BERT-based models were trained for 5 epochs
with a learning rate of 4e-5.
To handle the class imbalance in sub-task B, focal
loss (Lin et al., 2018) was used for BERT-based
models. Focal loss modifies cross-entropy by re-
ducing the relative loss for well-classified exam-

Class Train Dev Test
Non-hate 16805 3602 3601
Hate 2214 474 475
Total 19019 4076 4076

Table 2: Class distribution for Sub-task B

Class Train Dev Test
Individual 1074 230 230
Organization 856 183 184
Community 284 61 61
Total 2214 474 475

Table 3: Class distribution for Sub-task C

ples, focusing more on hard, misclassified exam-
ples. The focal loss is given by formula 1:

Lfocal = −αt(1− pt)
γ log(pt) (1)

Where, αt is the balancing factor for class t, pt is
the model’s estimated probability for the correct
class, and γ is the focusing parameter that adjusts
the rate at which easy examples are down-weighted.
The hyperparameters αt and γ were determined us-
ing grid search as 0.35 and 4.0 respectively.
For Sub-task C, only decoder models were used
during the Testing phase as BERT-based models
massively underperformed in limited tests. An
additional Gemma-2 27B model was fine-tuned
for Sub-task B and C using Odds Ratio Prefer-
ence Optimization (ORPO) (Hong et al., 2024) for
better alignment. All the fine-tuning of decoder-
only models was carried out using Unsloth with
Low-Rank Adaptation of Large Language Models
(LoRA) (Hu et al., 2021). The rank (r) and alpha
(α) values used were 16 for both.

Model F1 Recall Precision
mBERT 0.9962 0.9962 0.9962
mDistilBERT 0.9955 0.9957 0.9954
XLM Roberta 0.9965 0.9966 0.9964
MuRIL 0.9978 0.9978 0.9977
IndicBERT V2 0.9978 0.9978 0.9977
Llama 3.1 8B 0.9957 0.9957 0.9958
Gemma-2 9B 0.9965 0.9965 0.9965
Mistral Nemo 12B 0.9962 0.9962 0.9961

Table 4: Performance metrics for Sub-task A on dev set
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Figure 1: System design workflow. The development set is initially used to select the best-performing models,
which are then retrained on the combined train and development set. Selected models are ensembled to generate
final predictions on the test set.

Model Description F1
MuRIL Fine-tuned on train+dev set 0.9968
IndicBERT V2 Fine-tuned on train+dev set 0.9977
Gemma-2 9B Fine-tuned on train+dev set 0.9973

Ensemble-1
MuRIL’s prediction as fallback
in case of no majority

0.9979

Ensemble-2
IndicBERT V2’s prediction as
fallback in case of no majority

0.9980

Ensemble-3
Gemma-2 9B’s prediction as
fallback in case of no majority

0.9979

Table 5: Performance metrics for Sub-task A on test set

Model F1 Recall Precision
mBERT 0.7142 0.7152 0.7133
mDistilBERT 0.6286 0.6093 0.6668
XLM Roberta 0.7182 0.7367 0.7037
MuRIL 0.6773 0.7741 0.6530
IndicBERT V2 0.7298 0.7215 0.7392
Gemma-2 9B 0.7094 0.6677 0.8051
Gemma-2 9B (Few-shot) 0.7412 0.7019 0.7929

Table 6: Performance metrics for Sub-task B on dev set

Model F1 Recall Precision
IndicBERT V2 0.7582 0.7732 0.7455
Gemma-2 9B (Few-shot) 0.7588 0.7360 0.7895
Gemma-2 27B Orpo 0.7494 0.7261 0.7814
Ensemble 0.7652 0.7441 0.7925

Table 7: Performance metrics for Sub-task B on test set

Model F1 Recall Precision
mDistilBERT 0.4173 0.4296 0.4560
mBERT 0.4398 0.4567 0.4926
XLM Roberta 0.5455 0.5765 0.5528
IndicBERT V2 0.4639 0.4648 0.4643
Gemma-2 9B 0.6937 0.6691 0.7520

Table 8: Performance metrics for Sub-task C on dev set

4 Results and Discussion

4.1 Evaluation Phase

During the Evaluation phase, various models were
assessed across Sub-tasks A, B, and C using the
dev set to identify the top-performing models for
each task. For Sub-task A (Table 4), the BERT-
based models and decoder-only models, both deliv-
ered strong performances, with IndicBERT V2 and
MuRIL emerging as the best models, each achiev-
ing an F1 score of 0.9978. They also had high
recall and precision, indicating their robustness
in effectively balancing sensitivity and specificity
in task A classification. mBERT, XLM-Roberta,
and larger generative models like Gemma-2 and
Mistral Nemo also scored close to the top con-
tenders, demonstrating that BERT-based and re-
cent LLMs both possess considerable ability in text
classification. For Sub-task B (Table 6), models’
performance varied more significantly, reflecting
the increased complexity compared to Sub-task A.
Among the evaluated models, fine-tuned Gemma-2
9B with few-shot prompting yielded an F1 score
of 0.7412. This shows Gemma-2’s effective adap-
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Model Description F1 Recall Precision

Gemma-2 9B
Fine-tuned on train+dev set with learning
rate 2e-4 and batch size of 4 for 2 epochs

0.6213 0.6084 0.6734

Gemma-2 9B
Fine-tuned on train+dev set with learning
rate 2e-4 and batch size of 2 for 2 epochs

0.6503 0.6371 0.6982

Gemma-2 27B
Fine-tuned on train+dev set using ORPO
with a batch size of 8 for 1 epoch

0.6804 0.6669 0.7183

Table 9: Performance metrics for Sub-task C on test set

tation in low-resource scenarios even with limited
examples. IndicBERT V2 and XLM-Roberta also
provided competitive results, with IndicBERT V2
achieving an F1 score of 0.7298, reinforcing its
efficacy across both tasks. This marked Gemma-2
9B and IndicBERT V2 as the top choices to be
further evaluated for Sub-task B during the Test-
ing phase. In Sub-task C (Table 8), Gemma-2 9B
demonstrated superior results with an F1 score of
0.6937. This outcome was significantly better than
all other models, indicating Gemma-2’s robust per-
formance for tasks with limited examples. XLM
Roberta achieved the second-highest F1 score of
0.5455. The performance of other models shows
the complexity of the task as except for Gemma-2,
other models couldn’t cross the F1 score of 0.6.

4.2 Testing Phase

For the testing phase, we retrained the top-selected
models from the Evaluation phase by incorporat-
ing both the train and dev sets to create a more
generalized model for final testing. For Sub-task
A (Table 5), ensemble techniques were applied to
enhance accuracy further, leading to notable im-
provements in performance. Three ensembles were
constructed, each with a different fallback model
for cases without a majority prediction. Among
these, Ensemble-2, which defaulted to IndicBERT
V2’s predictions when no majority was reached,
yielded the highest F1 score of 0.9980. This en-
semble strategy was instrumental in refining clas-
sification outcomes by leveraging the strengths of
multiple models while relying on IndicBERT V2’s
consistency as a fallback. As a result, Sub-task
A saw an optimal performance boost, indicating
the success of ensembling techniques in improv-
ing classification tasks with high base accuracy.
For Sub-task B (Table 7), we employed a similar
ensemble approach to maximize prediction perfor-
mance. Ensemble results demonstrated improved
robustness and balance across the metrics, culmi-

nating in an F1 score of 0.7652, with strong recall
(0.7441) and precision (0.7925). For the ensemble,
we employed an additional Gemma-2 27B trained
using ORPO with the two models selected dur-
ing the Evaluation phase. The overall gains from
the ensemble approach for this task underscore
its potential to improve tasks with more nuanced,
challenging data patterns. In Sub-task C (Table 9),
instead of using ensembling, we selected Gemma-2
27B ORPO as the optimal model for its strong per-
formance during testing. This model achieved an
F1 score of 0.6804, with balanced recall (0.6669)
and precision (0.7183), showcasing its capability
to handle more granular classification without the
need for ensemble interventions. The decision to
forego ensembling was based on the observation
that Gemma-2 27B’s setup offered robust, reliable
performance on its own, suggesting that, for some
tasks, a single, finely-tuned model can sometimes
match or exceed ensemble outcomes.

5 Conclusion

Our results demonstrate the importance of leverag-
ing tailored approaches to tackle complex natural
language understanding tasks across multiple lan-
guages in Devanagari script. By combining the
multilingual strengths of the BERT-based models,
focal loss for class sensitivity, and the generative
power of Gemma-2, we achieved notable perfor-
mance improvements across the subtasks. These
findings highlight the value of adapting model ar-
chitectures and training strategies to the nuances
of each task, especially in handling multilingual
contexts and imbalanced classes. This work lays a
foundation for more refined, scalable hate speech
detection systems for South Asian languages that
can respond effectively to diverse and complex on-
line discourse.
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Limitations

The datasets used for training and evaluation in
hate speech and target detection are relatively small,
which may impact the generalizability of the mod-
els in real-world applications. The challenges such
as unbalanced datasets, difficulties in data collec-
tion, and issues with code-mixed languages, as
noted in prior research (Parihar et al., 2021), re-
main significant hurdles in the accurate detection
of hate speech. Although techniques like focal loss
and Odds Ratio Preference Optimization (ORPO)
were applied to improve performance, the models
still struggle with fine-grained distinctions in am-
biguous hate speech contexts. Additionally, the
decoder-only models were trained in 4-bit preci-
sion due to computational limitations, and they
may perform better in full-precision mode. While
these models performed well in most tasks, they
are computationally intensive, requiring substan-
tial resources for both fine-tuning and inference.
On the other hand, BERT-based models performed
well in Sub-tasks A and B, and with larger datasets,
they may offer better performance for Sub-task C
at a lower computational cost than decoder-only
models.

Ethical Considerations

When developing models for detecting hate speech
and its targets, it’s important to address several
ethical concerns. A major issue is the potential for
bias in both the data and the model’s outputs. Since
the datasets used in the development are limited
and might not fully represent all social contexts,
there’s a risk that the models could unintentionally
reinforce biases or target specific groups unfairly.
These models might also be used in ways that could
cause harm, such as censoring or flagging content
incorrectly without human oversight. Given the
complex nuances of hate speech, it’s crucial to
avoid over-censorship, which may otherwise lead
to the unjust targeting of certain communities or
the stifling of legitimate free speech.
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A Appendix

A.1 Confusion Matrix

We provide the confusion matrix for all the models
we tested below:

A.1.1 Sub-task A: Language Detection

Evaluation Phase

Figure 2: mBERT’s Confusion Matrix for Language
Detection

Figure 3: mDistilBERT’s Confusion Matrix for Lan-
guage Detection

Figure 4: XLM Roberta’s Confusion Matrix for Lan-
guage Detection

228



Figure 5: MuRIL’s Confusion Matrix for Language
Detection

Figure 6: IndicBERT V2’s Confusion Matrix for Lan-
guage Detection

Figure 7: Llama 3.1 8B’s Confusion Matrix for Lan-
guage Detection

Figure 8: Gemma-2 9B’s Confusion Matrix for Lan-
guage Detection

Figure 9: Mistral Nemo’s Confusion Matrix for Lan-
guage Detection

Testing Phase

Figure 10: MuRIL’s Confusion Matrix for Language
Detection
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Figure 11: IndicBERT V2’s Confusion Matrix for Lan-
guage Detection

Figure 12: Gemma-2 9B’s Confusion Matrix for Lan-
guage Detection

Figure 13: Ensemble-1’s Confusion Matrix for Lan-
guage Detection

Figure 14: Ensemble-2’s Confusion Matrix for Lan-
guage Detection

Figure 15: Ensemble-3’s Confusion Matrix for Lan-
guage Detection

A.1.2 Sub-task B: Hate Speech Detection

Evaluation Phase

Figure 16: mBERT’s Confusion Matrix for Hate Speech
Detection
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Figure 17: mDistilBERT’s Confusion Matrix for Hate
Speech Detection

Figure 18: XLM Roberta’s Confusion Matrix for Hate
Speech Detection

Figure 19: IndicBERT V2’s Confusion Matrix for Hate
Speech Detection

Figure 20: Gemma-2 9B’s Confusion Matrix for Hate
Speech Detection

Figure 21: Gemma-2 9B (Few-shot)’s Confusion Matrix
for Hate Speech Detection

Testing Phase

Figure 22: IndicBERT V2’s Confusion Matrix for Hate
Speech Detection
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Figure 23: Gemma-2 9B (Few-shot)’s Confusion Matrix
for Hate Speech Detection

Figure 24: Gemma-2 27B ORPO’s Confusion Matrix
for Hate Speech Detection

Figure 25: Ensemble’s Confusion Matrix for Hate
Speech Detection

A.1.3 Sub-task C: Hate Speech Target
Detection

Evaluation Phase

Figure 26: mBERT’s Confusion Matrix for Hate Speech
Target Detection

Figure 27: mDistilBERT’s Confusion Matrix for Hate
Speech Target Detection

Figure 28: XLM Roberta’s Confusion Matrix for Hate
Speech Target Detection
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Figure 29: IndicBERT V2’s Confusion Matrix for Hate
Speech Target Detection

Figure 30: Gemma-2 9B’s Confusion Matrix for Hate
Speech Target Detection

Testing Phase

Figure 31: Gemma-2 9B Alpha’s Confusion Matrix for
Hate Speech Target Detection

Figure 32: Gemma-2 9B Beta’s Confusion Matrix for
Hate Speech Target Detection

Figure 33: Gemma-2 27B’s Confusion Matrix for Hate
Speech Target Detection

A.2 System Replication

We provide the details of hyperparameters used in
training for replicating the process in Table 10 and
11.

Hyperparameter Values
Max length of input sequence 64
Batch size 512
Num of workers 2
Num of epochs 5
Learning rate 4e-5
Learning rate scheduler linear
Focal loss Alpha 0.35
Focal loss Gamma 4.0

Table 10: Hyperparameters’ values for BERT-based
models
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Hyperparameter Value
Learning rate 2e-4
Learning rate scheduler linear
Weight decay 0.01
LoRA rank 16
LoRA alpha 16
LoRA dropout 0
Language Detection
Max length (tokens) 2048
Batch size 9
Gradient accumulation 3
Warmup steps 5
Num of epochs 1
Hate Speech Detection
Max length (tokens) 1024
Batch size 16
Gradient accumulation 1
Warmup steps 10
Num of epochs 2-4
Hate Speech Target Detection
Max length (tokens) 1024
Batch size 2-4
Gradient accumulation 1
Warmup steps 0
Num of epochs 2

Table 11: Hyperparameters’ values for decoder-only
models across tasks

Table 11 presents the hyperparameters for
decoder-only models across tasks, with core values,
such as learning rate, weight decay, and LoRA val-
ues shared across tasks. Task-specific parameters
like maximum token length, batch size, gradient
accumulation, warmup steps, and epochs were ex-
perimented with to meet the requirements of each
task. For hyperparameters not listed, default values
were used for each model.

A.3 Prompts
The prompts used for decoder-only models are pro-
vided below:

A.3.1 Task A: Language Detection

Task: You are an expert linguist specializing
in Devanagari script languages. Your task
is to identify the language of the given
text.

### Instruction:
Analyze the following Devanagari script text

and determine its language. Choose the
correct language code from these options:

0: Nepali
1: Marathi

2: Sanskrit
3: Bhojpuri
4: Hindi

### Input:
Text: {text}

### Response:
The language code for the given text is: {label}

A.3.2 Task B: Hate Speech Detection

Task: You are fluent in Nepali and Hindi
languages. Your task is to classify if the
given input text contains hate speech or
not.

### Instruction:
The goal of this subtask is to identify the

targets of hate speech in a given text.
Choose the correct category from these
options:

1: Hate
0: Non-Hate

### Examples:
Input: {example_text1}
Response: {example_text1_label}

Input: {example_text2}
Response: {example_text2_label}

Input: {example_text3}
Response: {example_text3_label}

Input: {example_text4}
Response: {example_text4_label}

Input: {example_text5}
Response: {example_text5_label}

### Input:
{text}

### Response:
{label}

A.3.3 Task C: Hate Speech Target Detection

You are an expert linguist specializing in
detecting hate speech targets in
Devanagari-script tweets. Your task is to
classify the target of hate speech.

### Instruction:
Analyze the given tweet in Devanagari script

and determine who the hate speech is
targeting.

Step 1: First, decide if the target is an
individual or a group.

Step 2 (if group): If it’s a group, further
classify it as either an organization or a
community.

Classify the final label according to these
categories:

0. Individual: A specific person or a small set
of identifiable individuals
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1. Organization: A formal entity, institution,
or company

2. Community: A broader group based on
ethnicity, religion, gender, or other
shared characteristics

### Input:
{}

### Response:
{}
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Abstract
Identifying languages written in Devanagari
script, including Hindi, Marathi, Nepali, Bho-
jpuri, and Sanskrit, is essential in multilin-
gual contexts but challenging due to the high
overlap between these languages. To address
this, a shared task on "Devanagari Script Lan-
guage Identification" has been organized, with
a dataset available for subtask A to test lan-
guage identification models. This paper intro-
duces an ensemble-based approach that com-
bines mBERT, XLM-R, and IndicBERT mod-
els through majority voting to improve lan-
guage identification accuracy across these lan-
guages. Our ensemble model has achieved an
impressive accuracy of 99.68%, outperforming
individual models by capturing a broader range
of language features and reducing model biases
that often arise from closely related linguis-
tic patterns. Additionally, we have fine-tuned
other transformer models as part of a compara-
tive analysis, providing further validation of the
ensemble’s effectiveness. The results highlight
the ensemble model’s ability in distinguishing
similar languages within the Devanagari script,
offering a promising approach for accurate lan-
guage identification in complex multilingual
contexts.

1 Introduction

Effectively processing and comprehending many
languages and scripts has become crucial for
natural language understanding (NLU) to meet
the growing diversity of multilingual content
available online. Since Devanagari-scripted lan-
guages—such as Hindi, Marathi, Nepali, Bhojpuri,
and Sanskrit—are among the most commonly used
in South Asia, precise language identification is
essential for enabling a wide range of applications,
including sentiment analysis, user behavior anal-
ysis, and content moderation. In order to meet
these needs, CHIPSAL@COLING 2025 (Thapa
et al., 2025) has organized a shared task on Natu-
ral Language Understanding of Devanagari Script

Languages and focused on three main tasks: lan-
guage identification, hate speech detection, and
target identification within hate speech.

Languages written in Devanagari script often
share similar sounds, word structures, and sen-
tence patterns. This makes it hard for computers
to distinguish between them. The problem is made
worse by people often mixing languages, using
different regional accents, and using words from
dialects. Though several works have been done for
Devanagari script language identification using ma-
chine learning (Indhuja et al., 2014), deep learning
(Sharma and Mithun, 2023) and transformer-based
(Thara and Poornachandran, 2021) approaches, the
existing works struggle to understand the underly-
ing variances described above.

In the shared task (Sarveswaran et al., 2025),
subtask A aims to accurately categorize texts writ-
ten in Devanagari script into distinct languages.
Though almost 2.5 billion people speak these lan-
guages, these languages have still been resource-
constrained in the NLP research field. Therefore,
the organizers have organized this shared task on
Devanagari languages to enhance research on these
languages. To improve automatic information pro-
cessing in these languages, further research will
help in more sophisticated and accurate identifica-
tion of these languages. By achieving this, vari-
ous works like detecting hate speech (Sahoo et al.,
2024), determining target for hate speech (Sharma
et al., 2024), dialect identification (Das and Bhat-
tacharjee, 2024) etc. can be enhanced towards fur-
ther improvement.

The primary objective of this task is to detect
language from Devanagari scripts. To accomplish
this objective, we have developed a number of
transformer-based approaches. We have used the
provided dataset in the shared task. The key contri-
butions of our research are :

• We have developed an ensemble method that
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leverages the strengths of multiple transform-
ers namely mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020) and In-
dicBERT (Kakwani et al., 2020).

• We have trained the developed model and eval-
uated its performance on the provided test set
by the organizers.

• We have compared the performance of our de-
veloped model with other fine-tuned models.

2 Related Works

Language identification from texts is a popular re-
search topic in natural language processing. Identi-
fying a language from a text involves determining
the language or languages present in the written
input. Unlike voice, which is processed as a con-
tinuous signal, it uses discrete letters, which enable
different mathematical techniques to analyze the
text (Jauhiainen et al., 2024). An n-gram-based
approach using a combination of word search and
stop word detection has been proposed in (Pinge
et al., 2023). This approach has achieved 95.6%
accuracy. In another study, various ML models (Lo-
gistic Regression, Decision Tree, Random Forest,
and Naive Bayes) have been implemented for lan-
guage detection. Carpenter (2024) has developed
a system using a multinomial naive Bayes algo-
rithm. This system can identify 22 languages with
95% accuracy. Other researchers have also found
multinomial naive Bayes effective in language iden-
tification task (Sriharsha et al., 2024; Rawat et al.,
2023; Menon, 2022). In (R and George, 2023), au-
thors have developed BiLSTM and DCNN-based
methods to detect languages like Malayalam, As-
samese, Hindi, etc. To identify English Malay-
alam code-mixed texts, transformer-based models
(BERT, CamemBERT, DistilBERT) have been used
(Thara and Poornachandran, 2021). This methodol-
ogy has increased the f1-score by 9% from existing
works. Another study has used a transformer-based
model to identify code-mixed Kannada texts (Tonja
et al., 2022). Finetuning transformers is also an
effective way to achieve good performance in vari-
ous language detection researches (Saifullah et al.,
2024; Hossain et al., 2024; Farsi et al., 2024).

3 Dataset and Task

We have participated in subtask A named “Devana-
gari Script Language Identification". The provided
dataset for the task contains 5 languages: Nepali

(Thapa et al., 2023; Rauniyar et al., 2023), Marathi
(Kulkarni et al., 2021), Sanskrit (Aralikatte et al.,
2021), Bhojpuri (Ojha, 2019), and Hindi (Jafri
et al., 2023, 2024). Table 1 describes the provided
dataset:

Language
Number of Samples

Train Validation Test
Nepali 12,544 2688 2688
Marathi 11,034 2364 2365
Sanskrit 10,996 2356 2356
Bhojpuri 10,184 2182 2183

Hindi 7664 1643 1642
Combined 52,422 11,233 11,234

Table 1: Distribution of Languages in Datasets (Train,
Validation and Test)

Language
Total No. of Words

Train Validation Test
Nepali 224,033 47,991 48,361
Marathi 273,959 59,134 59,642
Sanskrit 222,568 47,083 46,224
Bhojpuri 292,995 64,460 63,401

Hindi 146,609 32,171 32,254
Combined 1,160,164 250,839 249, 882

Table 2: Word Distribution in Combined Dataset (Train,
Validation and Test)

4 System Overview

In our proposed methodology, we have devel-
oped an ensemble technique that consists of
three transformer-based models. The ensem-
ble technique combines the strengths of multi-
ple transformer-based models to make more accu-
rate predictions. We have ensembled three SOTA
transformer-based models.

• mBERT: Multilingual BERT or mBERT
(Devlin et al., 2019) is a transformer-based
model pre-trained on 104 languages, includ-
ing Devanagari languages. mBERT captures
language-agnostic embeddings. Therefore, it
has been proven effective in many multilin-
gual tasks.

• XLM-Roberta: XLM-RoBERTa or XLM-R
(Conneau et al., 2020) is another transformer-
based model pre-trained on 100 languages.
It captures a wide range of cross-lingual pat-
terns and can handle diverse linguistic syntax.
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Figure 1: Overview of the methodology

This ability makes it effective for multilingual
tasks.

• IndicBERT: IndicBERT (Kakwani et al.,
2020) is a lightweight transformer model
specifically designed for Indic languages. Un-
like XLM-R and mBERT, IndicBERT focuses
on Indian languages and has been pre-trained
on a corpus containing several Devanagari-
scripted languages, making it particularly rel-
evant for our task.

For our final predictions, we have used a ma-
jority voting technique in combination generation
portion of Figure 1 that aggregates the predic-
tions from XLM-R, mBERT, and IndicBERT. Each
model independently predicts the language of a
given Devanagari-scripted text. The final predic-
tion has been determined based on the majority
vote among the three models. This ensemble ap-
proach reduces the influence of individual model bi-
ases or errors while utilizing the distinct advantages
of each model to increase overall performance.
Through this approach, our system can more ef-
fectively handle the linguistic similarities and com-

plexities within Devanagari-scripted languages, en-
hancing the precision of language identification in
multilingual contexts.

5 Experimental Results

In this section, we have discussed the results
obtained while developing various models. As
transformer-based models outperform ML and DL
models in text classification, we have only exper-
imented with transformer-based models. Table 3
shows the experimental results of different models
on the test dataset.

Name Acc. P. R. F1
mBERT 0.9959 0.9955 0.9953 0.9954
XLM-R 0.9959 0.9954 0.9954 0.9954

IndicBERT 0.9953 0.9947 0.9947 0.9947
Ensemble 0.9968 0.9964 0.9966 0.9965

Table 3: Results of different models on Test set

The individual models mBERT, XLM-R, and In-
dicBERT all have performed well with accuracies
ranging from 0.9953 to 0.9959. However, the pro-
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(a) Word Count Distribution in Train Set

(b) Word Count Distribution in Validation Set

(c) Word Count Distribution in Test Set

Figure 2: Word Count Distributions for Train, Validation
and Test Set

posed ensemble method has outperformed them,
reaching the greatest accuracy of 0.9968. The en-
semble method has also been proven superior to
individual models in terms of Precision, Recall,
and F1 score. This is because by combining several
models, biases of individual models can be reduced
significantly.

6 Error Analysis

Qualitative Analysis: Individual models have
faced limitations in finding language nuances. In-
dicBERT has struggled in low-resource cases like
Bhojpuri while mBERT and XLM-R have misclas-
sified texts due to their broader multilingual fo-
cus. These issues have affected in majority voting

Figure 3: Confusion Matrix

leading to a decrease in performance. Besides,
there exist linguistic similarities among Devana-
gari scripted languages. Our models have been
confused by these similarities and so the perfor-
mance scores have been dropped. The influence of
dialects and regional variations in texts have acted
as a barrier against the model.

Quantitative Analysis: The confusion matrix
in figure 3 analysis shows that Nepali is mostly
accurately classified, with only 0.2% misclassified.
Marathi has 9 misclassifications out of 2365 in-
stances, mostly due to confusion with Hindi and
Nepali. Sanskrit has no misclassifications out of
2356 instances, indicating 100% accuracy. Bho-
jpuri has 9 misclassifications out of 2183 instances,
mostly due to confusion with Hindi and Nepali.
Hindi has the highest misclassification rate, with
12 out of 1650 instances incorrectly labeled.

7 Conclusion

In this work, we have explored various transformer-
based approaches for Devanagari script language
identification (subtask A). We have developed an
ensemble approach combining mBERT, XLM-R,
and IndicBERT. Using majority voting in an en-
semble approach, we have achieved an outstanding
result with an F1 score of 0.9965. For our work, we
have used the provided datasets in the shared task.
However, after analyzing the performance, we have
observed that in some cases our model has misclas-
sified due to misclassification of individual models.
In the future, we aim to try various combinations
of other transformer models for the ensemble and
check the performance of LLMs.
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8 Limitations

The study has limitations, including the use of
underrepresented dialects and informal usages of
Devanagari-scripted languages in training models,
and the close linguistic relationships among lan-
guages like Hindi, Marathi, Nepali, and Bhojpuri,
which can lead to ambiguous cases and challenges
in accurate classification. The ensemble model
may struggle with sentences lacking context or
code-switching. Additionally, traditional evalua-
tion metrics like accuracy may not accurately repre-
sent the models’ performance, potentially leading
to an overestimated sense of effectiveness without
addressing underlying weaknesses.

9 Ethical Considerations

The study’s limitations include underrepresented
dialects, close linguistic relationships, and potential
bias. It also highlights the need for inclusivity
and responsibility in future language processing
endeavors, highlighting the need for data privacy
and transparency.
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A Experimental Setup

A.1 Data Preparation
In the shared task, organizers provided a training
dataset and a evaluation dataset. We merged the
two datasets and split them to use as train and val-
idation dataset. We have used 80% of the com-
bined dataset for training and the rest for validation
dataset. This merging process has created a larger
dataset than the provided training dataset and thus,
helped the model for better training.

A.2 Parameter Settings
The overall parameter settings used in this experi-
ment have been described in table 4.

Parameter Value
Epoch 5

Batch size 32
Loss Function CrossEntropyLoss
Learning Rate 1e−3

Table 4: Parameter Configuration

A.3 Environment Setup
A personal computer with a Ryzen-9 CPU (3.00
GHz) and an NVIDIA GeForce GTX 2060 GPU
has been used to run the simulation. Additionally,
a Kaggle Notebook set up with a P100 GPU has
been used to guarantee sufficient processing power.

B Data Preprocessing

For preprocessing, we focused on normalizing
the input text by converting it to a standard Uni-
code format to handle variations in Devanagari
script encoding. The text was then tokenized us-
ing model-specific tokenizers, such as those for
mBERT, XLM-R, and IndicBERT, to break it into
meaningful subword units. Additionally, padding
and truncation were applied to ensure that all input
sequences were of same length.
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Abstract

This paper presents a novel approach to hate
speech detection and target identification across
Devanagari-script languages, with a focus on
Hindi and Nepali. Leveraging an Attention
BiLSTM-XLM-RoBERTa architecture, our
model effectively captures language-specific
features and sequential dependencies crucial
for multilingual natural language understand-
ing (NLU). In Task B (Hate Speech Detec-
tion), our model achieved a Macro F1 score
of 0.7481, demonstrating its robustness in iden-
tifying hateful content across linguistic vari-
ations. For Task C (Target Identification), it
reached a Macro F1 score of 0.6715, highlight-
ing its ability to classify targets into "individ-
ual," "organization," and "community" with
high accuracy. Our work addresses the gap in
Devanagari-scripted multilingual hate speech
analysis and sets a benchmark for future re-
search in low-resource language contexts.

1 Introduction

The rapid growth of online platforms has height-
ened concerns around the detection and mitiga-
tion of hate speech. In the context of South Asia,
where languages such as Nepali and Hindi predomi-
nantly use the Devanagari script, there is a pressing
need for specialized natural language understand-
ing (NLU) approaches that can handle the complex,
multilingual nature of online discourse. Address-
ing these concerns, the "Shared Task on Natural
Language Understanding of Devanagari Script Lan-
guages" at CHIPSAL@COLING 2025 presents a
series of challenges focused on hate speech pro-
cessing, specifically hate speech detection and tar-
get identification(Thapa et al., 2025; Sarveswaran
et al., 2025).

Subtask B, Hate Speech Detection in Devana-
gari Script Languages, tackles the task of binary
classification, aiming to identify whether a given
sentence contains hate speech. The multilingual

dataset, containing texts in Nepali and Hindi, un-
derscores the need for models that can handle the
nuances of each language while using a common
script. This task emphasizes language-specific con-
siderations essential for accurate detection, as hate
speech often exhibits linguistic subtleties, cultural
references, and slang unique to each language.

Expanding upon the hate speech detection task,
Subtask C, Target Identification for Hate Speech in
Devanagari Script Languages, introduces the chal-
lenge of identifying specific targets of hate speech.
Given a hateful sentence, the task requires partic-
ipants to classify the target as an individual, or-
ganization, or community. Target identification is
crucial to understanding the nature and intended fo-
cus of hate speech, providing valuable insights that
facilitate more effective responses and moderation
strategies.

Our hybrid model integrates an attention-driven
BiLSTM with XLM-RoBERTa embeddings to
tackle hate speech detection and target identifica-
tion. The attention mechanism enhances the BiL-
STM’s ability to focus on critical contextual cues,
while XLM-RoBERTa provides robust multilingual
embeddings. Together, these components enable
our architecture to achieve exceptional precision,
contributing to sophisticated multilingual NLU sys-
tems and fostering safer online interactions, partic-
ularly for Devanagari-scripted languages.

2 Related Work

The rise of hate speech on digital platforms has
spurred research efforts in detection, yet studies
for Devanagari-script languages like Hindi, Nepali,
and Marathi remain limited due to script complex-
ity and dialect diversity. Detecting hate speech
in these languages is essential for fostering safer
online environments. To date, research has primar-
ily focused on monolingual hate speech detection
in Hindi, Nepali, and Marathi, with some stud-

242



ies exploring multilingual hate speech detection in
Hindi-Marathi and Hindi-English combinations us-
ing traditional machine learning and Transformer-
based deep learning approaches. (Velankar et al.,
2021; Kumari et al., 2024; Sreelakshmi et al., 2020;
Sharma et al., 2022; Niraula et al., 2021; B. et al.,
2019; Shukla et al., 2022; Velankar et al., 2021;
T.Y.S.S and Aravind, 2019; Chavan et al., 2022;
Mathur et al., 2018). However, there is a notable
gap in multilingual hate speech detection specifi-
cally between Nepali and Hindi, where the com-
bined detection remains unaddressed. Additionally,
no study to date has incorporated a multilingual
Devanagari-script dataset that includes target iden-
tification, categorizing targets into "individual,"
"organization," or "community."

3 Dataset and Task

Subtask B involves identifying whether a sentence
contains hate speech in Devanagari-scripted lan-
guages, specifically Nepali(Thapa et al., 2023; Rau-
niyar et al., 2023) and Hindi (Jafri et al., 2024,
2023). The dataset is divided into Non-Hate and
Hate categories, as shown in Table 1, requiring
models to effectively detect hate speech within
these languages.

Class Train Valid Test
Non-Hate (0) 16805 3602 3601
Hate (1) 2214 474 745
Total 19019 4076 4076

Table 1: Distribution of samples in Train, Validation,
and Test datasets for Subtask B

In Subtask C, the objective is to identify the tar-
get of hate speech, categorizing it as "individual,"
"organization," or "community." This task is cru-
cial for understanding the specific direction of hate
speech within the Devanagari script context. Table
2 displays the dataset distribution for each target
category.

Class Train Valid Test
Individual (0) 1074 230 230
Organization (1) 856 183 184
Community (2) 284 61 61
Total 2214 474 475

Table 2: Distribution of samples in Train, Validation,
and Test datasets for Subtask C

Additionally, we curated datasets to fine-tune

the multilingual RoBERTa model (xlm-roberta-
base) for masked language modeling across five
languages, following the methodology of Joshi
(2022). The datasets included Bhojpuri (9.3MB
from GitHub1), Nepali (50MB from Kaggle2), San-
skrit (50MB from Kaggle3), and both Hindi and
Marathi (50MB each from AI4Bharat4).

4 Methodology

This study presents a hybrid Attention BiLSTM-
XLM-RoBERTa model, inspired by Hochre-
iter and Schmidhuber (1997); Conneau et al.
(2019); Manukonda and Kodali (2024a); Kodali
and Manukonda (2024); Manukonda and Kodali
(2024b); Brauwers and Frasincar (2023), for hate
speech detection and target identification in De-
vanagari script. As illustrated in Figure 1, the
model combines deep contextual embeddings from
the fine-tuned masked language model (MLM)
of XLM-RoBERTa with a BiLSTM and attention
mechanism to enhance language-specific feature
extraction.

Figure 1: Architecture of the BiLSTM-XLM-RoBERTa
Classifier Model. Residual components like layer nor-
malization and dropout regularization enhance general-
ization.

The input sequence is first passed to XLM-
RoBERTa base, generating embeddings X ∈
RT×D, where D = 768:

X = XLMRoBERTa(input_ids, attention_mask) (1)

1https://github.com/shashwatup9k/
bho-resources

2https://www.kaggle.com/datasets/lotusacharya/
nepalinewsdataset

3https://www.kaggle.com/datasets/
rushikeshdarge/sanskrit

4https://github.com/AI4Bharat/indicnlp_corpus
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These embeddings are fed into a BiLSTM, which
produces bidirectional hidden states Hfwd and
Hbwd, combined as:

Ht = [Hfwd,t;Hbwd,t] (2)

An attention mechanism assigns relevance to
each Ht, generating attention weights αt:

at = tanh(Watt·Ht), αt =
exp(at)∑T
t=1 exp(at)

(3)

The attention-weighted representation Hattended

is:

Hattended =
T∑

t=1

αt · Ht (4)

Layer normalization and dropout are optional
residuals that mitigate overfitting and stabilize
training, especially in complex language scenarios.
They are applied to Hattended to enhance stability,
particularly for smaller datasets:

Hdropout = Dropout(LayerNorm(Hattended))
(5)

Finally, Hdropout is passed through a classifica-
tion layer to produce logits:

logits = Wcls · Hdropout + bcls (6)

The model is trained using cross-entropy loss L:

L = −
N∑

i=1

yi log(ŷi) (7)

This architecture leverages XLM-RoBERTa em-
beddings, BiLSTM processing, and attention for
accurate language differentiation in Devanagari-
scripted contexts.

5 Experiment Setup

Our experimental setup involved data preprocess-
ing, model fine-tuning, and architecture optimiza-
tion to evaluate hate speech detection (Task B) and
target identification (Task C) across Devanagari-
scripted languages. Performance was assessed us-
ing accuracy and Macro F1 scores on the validation
dataset.

Data preprocessing included tokenization and
normalization to ensure compatibility with XLM-
RoBERTa, with all text standardized to the Devana-
gari script. Fine-tuning on masked language mod-
eling (MLM) used a 15% masking ratio, achieving

a perplexity score of 5.33 over 7 epochs, indicat-
ing effective contextual adaptation to Devanagari-
scripted languages.

After testing various classifiers, we selected an
Attention BiLSTM-XLM-RoBERTa architecture
(Figure 1) due to its superior performance. This
model integrates XLM-RoBERTa base embeddings
with a BiLSTM layer (hidden size of 256, 2 LSTM
layers, and dropout rate of 0.3) to capture sequen-
tial dependencies, with an attention mechanism to
emphasize language-specific and contextually rele-
vant features. For Task B (hate speech detection),
we used a learning rate of 1× 10−5, while for Task
C (target identification), a higher learning rate of
2 × 10−5 was applied. Optional residual layers
(layer normalization and dropout) were added to
improve stability and mitigate overfitting.

This setup provides a robust framework for eval-
uating the effects of model fine-tuning, architecture,
and data preparation on multilingual hate speech
detection and target identification within the De-
vanagari script.

6 Results and Discussion

During data processing, URLs and user IDs were
removed, while tweet tags were retained, as remov-
ing the tags slightly reduced F1 scores. Table 3
shows the performance of various classifiers us-
ing fine-tuned XLM-RoBERTa base embeddings
on Task B and Task C. The Attention BiLSTM-
XLM-RoBERTa model consistently outperformed
other classifiers, achieving the highest F1-Scores
of 0.7481 for Task B and 0.6715 for Task C. This
result underscores the effectiveness of combining
BiLSTM with XLM-RoBERTa base to capture se-
quential and contextual information essential for
Devanagari-scripted language tasks. The BiLSTM
with XLM-RoBERTa base embedding(BiLSTM-
XLM-RoBERTa) model alone showed the F1-
Scores of 0.7065 (Task B) and 0.6356 (Task C),
outperforming XLM-RoBERTa base model scores
of 0.6912 (Task B) and 0.6147 (Task C), demon-
strating the benefits of sequential processing.

Among traditional classifiers, Logistic Regres-
sion and XGBoost delivered moderate results, with
F1-Scores of 0.6528 and 0.6034 on Task B. Ensem-
ble methods did not outperform transformer-based
models, and SVC and Extra Trees showed the low-
est F1-Scores, indicating limited effectiveness in
handling this language data.

Our team, byteSizedLLM, secured 7th place
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Classifier Task B F1-Score Task C F1-Score
XLM-RoBERTa base (Transformers) 0.6912 0.6147
XGBoost (xgb) 0.6034 0.4856
Random Forest (rf) 0.5038 0.4310
Logistic Regression (lr) 0.6528 0.5059
Gradient Boosting (gb) 0.5455 0.4760
Support Vector Classifier (svc) 0.4691 0.4171
AdaBoost (ada) 0.5684 0.4056
Extra Trees (extra_trees) 0.4896 0.4089
Ridge Classifier (ridge) 0.5626 0.4714
Stochastic Gradient Descent (sgd) 0.5813 0.4509
Ensemble (xgb, lr, rf, svc, sgd) 0.5572 0.4641
BiLSTM-XLM-RoBERTa 0.7065 0.6356
Attention BiLSTM-XLM-RoBERTa 0.7481 0.6715

Table 3: Comparison of Classifiers on Task B and Task C Test Sets

in both Task B and Task C based on F1 Macro
scores, closely matching the top-ranked scores and
underscoring our model’s competitiveness. This
strong performance highlights our approach’s effec-
tiveness, though limited open-source datasets for
fine-tuning XLM-RoBERTa base on Devanagari-
scripted languages like Nepali and Marathi con-
strained our ability to capture nuanced linguistic
patterns and regional variations fully.

Fine-tuning XLM-RoBERTa’s masked language
model (MLM) on task-specific data significantly
boosted performance, illustrating the value of
tailored fine-tuning for Devanagari-scripted lan-
guages. The Attention BiLSTM-XLM-RoBERTa
model successfully captured complex linguistic fea-
tures by integrating attention mechanisms with BiL-
STM and XLM-RoBERTa embeddings. While data
limitations posed challenges, fine-tuning proved es-
sential for adapting the model to low-resource con-
texts. Future research could explore larger models
and expanded datasets to further improve adaptabil-
ity and robustness across diverse linguistic features.

7 Conclusion

This study introduced a hybrid Attention BiLSTM-
XLM-RoBERTa model for language identification
in Devanagari-scripted languages, effectively in-
tegrating XLM-RoBERTa base embeddings with
BiLSTM and attention mechanisms to capture both
contextual and sequential features. The model’s
competitive F1 scores in both Task B and Task
C validate this approach’s effectiveness for nu-
anced language classification, achieving a strong
7th-place ranking in both tasks despite limited fine-

tuning data.
Our findings underscore the strength of combin-

ing transformer-based embeddings with BiLSTM
and attention for accurate multilingual language
identification, particularly in low-resource contexts.
Future work could explore larger model variants
and expanded datasets to further improve perfor-
mance in these settings, enhancing the model’s
adaptability and effectiveness across diverse lin-
guistic features.

8 Limitations and Ethical Considerations

8.1 Limitations

The Attention BiLSTM-XLM-RoBERTa model
showed promising performance, though it has
limitations in generalizability. Using the XLM-
RoBERTa base may limit its ability to capture
complex linguistic nuances, and computational
constraints restricted exploration of larger XLM-
RoBERTa variants. Additionally, limited data for
fine-tuning the masked language model (MLM)
could impact robustness, particularly for less-
represented Devanagari-scripted languages.

8.2 Ethical Considerations

This study prioritizes inclusivity for low-resource
Devanagari-scripted languages, recognizing the po-
tential impacts on linguistic communities. To ad-
dress concerns of bias and fairness, we conduct
regular evaluations of training data and model out-
puts, promote responsible interpretation and imple-
mentation of model outputs, and carefully consider
community impact. These measures aim to foster
fair and inclusive language technologies.
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Abstract

This study explores the challenges of natu-
ral language understanding (NLU) in multilin-
gual contexts, focusing on Devanagari-scripted
languages such as Nepali, Marathi, Sanskrit,
Bhojpuri, and Hindi. Language identification
within these languages is complex due to their
structural and lexical similarities. We present
a hybrid Attention BiLSTM-XLM-RoBERTa
model, achieving a state-of-the-art F1 score of
0.9974 on the test set, despite limited resources.
Our model effectively distinguishes between
closely related Devanagari-scripted languages,
providing a solid foundation for context-aware
NLU systems that enhance language-specific
processing and promote inclusive digital inter-
actions across diverse linguistic communities.

1 Introduction

In the era of rapidly expanding digital content, de-
veloping effective natural language understanding
(NLU) capabilities in multilingual contexts is es-
sential, particularly for languages using the De-
vanagari script, such as Nepali, Marathi, Sanskrit,
Bhojpuri, and Hindi. The diversity and complex-
ity of these languages, coupled with their shared
script, present distinct challenges for language
identification and moderation. Addressing this
need, the Shared Task on Natural Language Un-
derstanding of Devanagari Script Languages at
CHIPSAL@COLING 2025 introduces three crit-
ical subtasks to enhance the automated identifica-
tion and analysis of Devanagari-scripted content
in multilingual environments (Thapa et al., 2025)
(Sarveswaran et al., 2025)

Subtask A: Devanagari Script Language Identifi-
cation hones in on discerning the specific language
within Devanagari-scripted text. In multilingual
digital spaces, accurately identifying the language
is a prerequisite for effective processing, enabling
robust multilingual NLU systems. Given a sentence
in Devanagari script, this subtask’s objective is to

determine whether the language is Nepali, Marathi,
Sanskrit, Bhojpuri, or Hindi, meeting the pressing
need for accurate language differentiation among
closely related languages that share the Devanagari
script. This foundational task supports precise lan-
guage identification, empowering deeper analysis
and tailored content moderation across Devanagari-
scripted languages.

Our hybrid architecture, combining an attention-
based BiLSTM with XLM-RoBERTa embeddings,
effectively captures the syntactic and semantic
nuances required for accurate language differen-
tiation. The BiLSTM component, enhanced by
attention, improves sequential modeling, while
XLM-RoBERTa provides robust multilingual em-
beddings. This integration enables high precision
in language identification and lays a foundation
for more advanced multilingual NLU. Additionally,
the model’s attention mechanism allows it to focus
on language-specific features, further enhancing its
ability to distinguish closely related Devanagari-
scripted languages.

2 Related Work

Two studies focus on language identification for
Indian languages in the Devanagari script. The
first uses n-gram models to classify languages like
Hindi, Marathi, and Sanskrit based on character-
and word-level frequency patterns Indhuja. et al.
(2014). The second applies machine learning and
deep learning to capture subtle lexical differences
in poetry Acharya et al. (2020). Both highlight
progress in language identification and the chal-
lenges of linguistic similarities and stylistic varia-
tions.

Expanding to native and romanized forms, pro-
posed Madhani et al. (2023), using FastText and In-
dicBERT to identify 22 Indic languages. Together,
these studies illustrate advancements and ongoing
challenges in distinguishing related languages and
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text styles in Devanagari.

3 Dataset & Task

Task A focuses on identifying the specific
Devanagari-scripted language of a given text, with
a dataset comprising samples from five languages:
Nepali (Thapa et al., 2023) (Rauniyar et al., 2023),
Marathi(Kulkarni et al., 2021), Sanskrit(Aralikatte
et al., 2021), Bhojpuri(Ojha, 2019), and Hindi(Jafri
et al., 2024)(Jafri et al., 2023). Accurate language
classification in multilingual contexts relies heavily
on this task. To facilitate training and evaluation,
the dataset is divided into training, validation, and
test sets.

The dataset consists of sentences in five
Devanagari-script languages, with labels assigned
as follows: ’Nepali’ is labeled as ’0’, ’Marathi’ as
’1’, ’Sanskrit’ as ’2’, ’Bhojpuri’ as ’3’, and ’Hindi’
as ’4’, allowing for efficient and accurate language
classification.

Table 1 provides a detailed analysis of language
distribution within the training and validation sets,
highlighting representation across subsets. The
curated and labeled data supports NLP tasks in
Devanagari-script languages, forming a foundation
for robust language differentiation.

Class Train Valid Test
Nepali (0) 12543 2688 2688
Marathi (1) 11034 2364 2365
Sanskrit (2) 10996 2356 2356
Bhojpuri (3) 10184 2182 2183
Hindi (4) 7659 1642 1642
Total 52416 11232 11234

Table 1: Distribution of samples in Train, Valida-
tion(Valid) and Test datasets for each class in SubTask
A

Additionally, we curated datasets to fine-
tune multilingual RoBERTa (xlm-roberta-base) on
masked language modeling for five languages, fol-
lowing the approach of Joshi (2022): Bhojpuri
(9.3MB from GitHub1), Nepali (50MB from Kag-
gle2), Sanskrit (50MB from Kaggle3), and Hindi
and Marathi (50MB each from AI4Bharat4).

1https://github.com/shashwatup9k/
bho-resources

2https://www.kaggle.com/datasets/lotusacharya/
nepalinewsdataset

3https://www.kaggle.com/datasets/
rushikeshdarge/sanskrit

4https://github.com/AI4Bharat/indicnlp_corpus

4 Methodology

This study presents a hybrid Attention BiLSTM-
XLM-RoBERTa model, inspired by Hochre-
iter and Schmidhuber (1997); Conneau et al.
(2019); Manukonda and Kodali (2024a); Kodali
and Manukonda (2024); Manukonda and Kodali
(2024b); Brauwers and Frasincar (2023), for lan-
guage identification within the Devanagari script.
As shown in Figure 1, the model integrates deep
contextual embeddings from the fine-tuned masked
language model (MLM) of XLM-RoBERTa with
a bidirectional LSTM and attention mechanism to
enhance language-specific feature extraction. Each
model component and its mathematical foundation
are detailed below.

The input sequence is first passed to XLM-
RoBERTa base, generating contextualized embed-
dings X ∈ RT×D, where D = 768 represents the
embedding dimension:

X = XLMRoBERTa(input_ids, attention_mask) (1)

These embeddings are fed into a BiLSTM to
capture sequential dependencies, producing bidi-
rectional hidden states Hfwd and Hbwd, which
combine as:

Ht = [Hfwd, t;Hbwd,t] (2)

An attention mechanism then assigns relevance
to each Ht, yielding attention weights αt:

at = tanh(Watt ·Ht), αt =
exp(at)∑

t = 1T exp(at)
(3)

The attention-weighted representation Hattended

is computed as:

Hattended =
∑

t = 1Tαt · Ht (4)

Layer normalization and dropout are optional
residual components that help mitigate overfitting
and stabilize training, especially in complex lan-
guage scenarios. They enhance generalization by
reducing variance and stabilizing weight updates,
benefiting smaller or noisier datasets. To combat
overfitting, Hattended undergoes layer normaliza-
tion and dropout:

Hdropout = Dropout(LayerNorm(Hattended))
(5)
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Figure 1: Architecture of the BiLSTM-XLM-RoBERTa
Classifier Model. Layer normalization and dropout regu-
larization enhance generalization, especially for smaller
or noisier datasets.

Finally, Hdropout is passed through a classifica-
tion layer to produce logits:

logits = Wcls · Hdropout + bcls (6)

During training, cross-entropy loss L is calcu-
lated between predicted logits and true labels:

L = −
N∑

i=1

yi log(ŷi) (7)

This hybrid model leverages XLM-RoBERTa
base embeddings, BiLSTM sequential processing,
and attention for precise language differentiation
in Devanagari-scripted multilingual contexts.

5 Experiment Setup

Our experiment setup involved data preprocessing,
model fine-tuning, and architecture optimization to
assess language identification across Devanagari-
scripted languages, evaluated by accuracy and
Macro F1 scores on the validation dataset.

Our unique setup involved tokenizing and nor-
malizing datasets for compatibility with the XLM-
RoBERTa base model, adapting samples to the De-
vanagari script. Fine-tuning on masked language
modeling (MLM) used a 15% masking ratio and a
learning rate of 2 × 10−5, achieving a perplexity
score of 5.33 over 7 epochs, indicating effective
contextual adaptation.

Following extensive classifier testing, we se-
lected the Attention BiLSTM-XLM-RoBERTa ar-
chitecture(Figure 1) for its superior performance.
This model incorporates a BiLSTM layer (hidden
size 256, 2 LSTM layers, dropout 0.3) to capture

sequential dependencies and an attention mecha-
nism to emphasize language-specific features. The
setup was fine-tuned over 6 epochs with a learning
rate of 1× 10−5, using optional residual layers for
normalization and dropout to enhance stability and
mitigate overfitting.

This setup provides a comprehensive framework
to evaluate the impact of model fine-tuning, ar-
chitecture, and data preparation on multilingual
classification within the Devanagari script.

6 Results and Discussion

Table 2 summarizes the performance of various
classifiers using fine-tuned XLM-RoBERTa base
embeddings for language identification within
Devanagari-scripted languages. Initially, we ex-
perimented with several traditional linear classi-
fiers; however, our hybrid Attention BiLSTM-
XLM-RoBERTa model achieved the best perfor-
mance on the validation set, leading us to proceed
with this architecture for the test set.

The Attention BiLSTM-XLM-RoBERTa
model outperformed all classifiers, achieving
an accuracy of 0.9986 and a Macro F1-score
of 0.9984 on the validation set, and 0.9976
accuracy with a 0.9974 Macro F1-score on the
test set. This superior performance highlights
the effectiveness of combining XLM-RoBERTa’s
contextual embeddings with BiLSTM and at-
tention mechanisms, enabling a nuanced focus
on language-specific features. The high scores
indicate robust language identification, capturing
syntactic and semantic nuances, even among
closely related languages. While other classifiers
using fine-tuned XLM-RoBERTa embeddings
performed well, the hybrid model provided a clear
advantage.

Table 3 provides a comparison of the top 5
ranked scores on the SubTask A test set, where
our team, byteSizedLLM, achieved 5th place with
an F1-score of 0.9974. This ranking reaffirms the
model’s effectiveness and positions it competitively
within the overall landscape.

Overall, our findings show that the hybrid Atten-
tion BiLSTM-XLM-RoBERTa architecture, com-
bining BiLSTM with transformer-based embed-
dings, provides a significant advantage. Fine-
tuning XLM-RoBERTa’s MLM on task-specific
data further improved performance. This approach
underscores the value of integrating bidirectional
embeddings and attention mechanisms for precise
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Classifier Val Acc Val F1 Test Acc Test F1
XLM-RoBERTa base (Transformers) 0.9972 0.9969 0.9970 0.9964
XGBoost (xgb) 0.9962 0.9957 0.9945 0.9939
Random Forest (rf) 0.9962 0.9957 0.9942 0.9936
Logistic Regression (lr) 0.9971 0.9967 0.9961 0.9957
Gradient Boosting (gb) 0.9954 0.9948 0.9933 0.9926
Support Vector Classifier (svc) 0.9969 0.9965 0.9954 0.9949
AdaBoost (ada) 0.9562 0.9514 0.9564 0.9520
Extra Trees (extra_trees) 0.9955 0.9950 0.9943 0.9937
Ridge Classifier (ridge) 0.9950 0.9944 0.9944 0.9937
Stochastic Gradient Descent (sgd) 0.9974 0.9971 0.9955 0.9950
Ensemble (xgb,lr, rf, svc, sgd) 0.9970 0.9967 0.9955 0.9949
Attention BiLSTM-XLM-RoBERTa 0.9986 0.9984 0.9974 0.9976

Table 2: Comparison of Validation (Val) and Test Accuracies (Acc) and Macro-F1 Scores (F1) Across Different
Classifiers

Team Name F1-Score Rank
CUFE 0.9997 1
CLTL 0.9982 2
1-800-SHARED-TASKS 0.9979 3
1-800-SHARED-TASKS 0.9976 4
byteSizedLLM 0.9974 5

Table 3: Comparison of Top 5 Ranked Scores on the
SubTask A Test Set

language differentiation in multilingual Devana-
gari contexts. A key limitation was the scarcity
of open-source datasets for fine-tuning MLM and
computational constraints limiting us to the base
model. Future exploration with larger models could
further improve language identification

7 Conclusion and Future work

This study presented an innovative hybrid approach,
combining the XLM-RoBERTa base embeddings
with traditional classifiers and an Attention BiL-
STM architecture for effective language identi-
fication in Devanagari-scripted multilingual con-
texts. Our proposed Attention BiLSTM-XLM-
RoBERTa model achieved top performance among
all classifiers tested, yielding high accuracy and
Macro F1 scores, and ultimately ranking 5th over-
all with minimal differences from the top entries.
These findings underscore the strength of integrat-
ing transformer-based embeddings with sequential
and attention mechanisms, highlighting the poten-
tial of this approach to capture language-specific
nuances even with limited MLM fine-tuning data
and computational resources.

Further fine-tuning MLM on a larger dataset and
scaling to XLM-RoBERTa-large could improve em-
bedding quality and capture nuanced language vari-
ations. This research underscores the importance of
robust embeddings with attention mechanisms for
language-specific features, advancing Devanagari
multilingual NLP capabilities.

8 Limitations and Ethical Considerations

8.1 Limitations

The Attention BiLSTM-XLM-RoBERTa model
demonstrated strong performance but has limi-
tations affecting generalizability. Using XLM-
RoBERTa base may restrict the model’s ability to
capture complex contextual nuances across diverse
languages. Computational constraints prevented
exploring larger XLM-RoBERTa variants, poten-
tially limiting performance gains, and limited data
for fine-tuning the masked language model (MLM)
may affect robustness, particularly for underrepre-
sented languages in the Devanagari script family.

8.2 Ethical Considerations

This study prioritizes inclusivity for low-resource
Devanagari-scripted languages, recognizing the po-
tential impacts on linguistic communities. To ad-
dress concerns of bias and fairness, we conduct
regular evaluations of training data and model out-
puts, promote responsible interpretation and imple-
mentation of model outputs, and carefully consider
community impact. These measures aim to support
developing fair and inclusive language technolo-
gies.
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Abstract

Text-based hate speech has been prevalent
and is usually used to incite hostility and vi-
olence. Detecting this content becomes im-
perative, yet the task is challenging, particu-
larly for low-resource languages in the Devana-
gari script, which must have the extensive la-
beled datasets required for effective machine
learning. To address this, a shared task has
been organized for identifying hate speech tar-
gets in Devanagari-script text. The task in-
volves classifying targets such as individuals,
organizations, and communities and identify-
ing different languages within the script. We
have explored several machine learning meth-
ods such as LR, SVM, MNB, and Random
Forest, deep learning models using CNN, Bi-
LSTM, GRU, CNN+BiLSTM, and transformer-
based models like Indic-BERT, m-BERT, Verta-
BERT, XLM-R, and MuRIL. The CNN with Bi-
LSTM yielded the best performance (F1-score
of 0.9941), placing the team 13th in the compe-
tition for script identification. Furthermore, the
fine-tuned MuRIL-BERT model resulted in an
F1 score of 0.6832, ranking us 4th for detecting
hate speech targets.

1 Introduction

Digital platforms such as Facebook, Instagram, and
YouTube have emerged as a common medium for
public expression with the rapid expansion of on-
line communication. Unfortunately, these digital
platforms also act as conduits for injurious content,
including hate speech, which fosters hostility and
marginalization of communities and threatens so-
cial cohesion. Hateful content can attack social
harmony based on race, gender, religion, national-
ity, political support, immigration status, and per-
sonal beliefs (Paz et al., 2020). Hence, determining
whether shared content on social media is hateful
is crucial.

*Authors contributed equally to this work.

While much recent work has focused on identi-
fying hate and offensive content in high-resource
languages such as English, Spanish (del Arco et al.,
2021), and Arabic (Omar et al., 2020), which have
abundant linguistic resources and datasets avail-
able, the challenge remains in low-resource set-
tings where effective hate speech detection is ob-
structed due to a lack of resources (Magueresse
et al., 2020). Hence, it is also crucial in a multi-
lingually rich region like South Asia, where mul-
tiple languages and scripts are used daily. In this
context, the identification of hate speech is essen-
tial in the Devanagari script, which encompasses
languages such as Hindi, Marathi, Nepali, and San-
skrit, each with millions of speakers. Moreover,
the complex structure of Devanagari, with frequent
code-mixing and nuanced expressions, makes it
challenging to distinguish between languages. At
the same time, detecting hate speech requires cul-
turally adept models able to estimate indirect or in-
exact language. Concentrated on the circumstances,
the organizers (Thapa et al., 2025) presented differ-
ent datasets for three subtasks by combining several
datasets (Jafri et al., 2023, 2024; Thapa et al., 2023;
Rauniyar et al., 2023; Ojha, 2019; Kulkarni et al.,
2021; Aralikatte et al., 2021) for identifying De-
vanagari script language in subtask A, hate speech
detection in subtask B, and target identification for
hate speech in subtask C in the first workshop on
Challenges in Processing South Asian Languages
(CHiPSAL) (Sarveswaran et al., 2025). However,
this work aims to outline the contributions to sub-
tasks A and C, which are as follows:

• Developed a hybrid model using CNN with
BiLSTM for Devanagari script identification
and fine-tuned MuRIL for target hate speech
detection in the Devanagari script language.

• Explored various Machine Learning (ML),
Deep Learning (DL), and transformer-based
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models to identify Devanagari script language
and target identification for hate speech.

• Investigated and contrasted multiple perfor-
mance metrics and in-depth error analysis for
the models to perceive the best strategy to-
ward identifying Devanagari script language
and classifying target hate speech.

2 Related Work

Earlier efforts involved traditional ML algorithms
to segregate the script and identify the language;
these laid a platform for more advanced techniques
in this area. For instance, KumarShrivastava and
Chaurasia (2012) obtained a 100% recognition rate
of Devanagari characters using SVM with polyno-
mial kernel by testing different kernels and seg-
ment count on their dataset. A survey conducted
by Jayadevan et al. (2011) reviewed the state-of-
the-art techniques concerning machine-printed and
handwritten Devanagari OCR by underlining dif-
ferent feature extraction methods and classification
models. Moreover, Halder et al. (2015) presented
their analysis of Devanagari characters for writer
identification with several techniques and achieved
99.12% accuracy with LIBLINEAR. Another work
focused on script identification from Indian docu-
ments such as Bangla, Devanagari, Gujarati, etc.,
using feature extraction techniques like Log-Gabor
Filtering and achieved 97.11% accuracy with ten
different Indian scripts using optimized KNN tech-
nique (Joshi et al., 2006).

While Devanagari script identification is go-
ing on, hate speech detection is also of prime
importance in research because it segregates so-
cial unity, and lots of research is being conducted
for high-resource languages. Fortuna and Nunes
(2018) gave a comprehensive overview of the hate
speech detection techniques, pinpointing the need
for approaches tailored for multilingual contexts.
Therein, Nandi et al. (2024) presented a review of
recent research on hate speech detection in Indian
languages, discussed the challenges, and then ana-
lyzed various methodologies, datasets, and results
to show the gaps and opportunities for future work
in this critical area of study. Another work done by
Jha et al. (2020) proposed a FastText-based model
for the Hindi Language to classify offensive and
non-offensive texts, and an accuracy of 92.2% has
been achieved by grid-search hyperparameter tun-
ing using the Devanagari Hindi Offensive Tweets

(DHOT) dataset1. The existing research contribu-
tions in hate speech detection, addressing types
related to racism, sexism, and religious hate, and
the methods developed for mitigating them, along
with the identification of challenges, have been
reviewed by Parihar et al. (2021). Furthermore,
several works have been performed to detect hate
speech in code-mixed Hindi-English (Chopra et al.,
2023), code-switched Hindi-English (Sharma et al.,
2022) by using deep learning, transformer-based
approaches to obtain superior performance. Prior
work has yet to focus on target-specific hate speech
detection (individual, community, organization)
in Devanagari script with code-mixed language.
In this context, our work introduces not only the
model for it but also proposes a script identification
component specific to Devanagari by addressing
the complexity of the script and challenges posed
due to code-mixing in South Asian languages.

3 Task and Dataset Description

In the shared task (Thapa et al., 2025), there were
three subtasks: A, B, and C. However, the goal of
subtask A was to identify whether the language
given in the dataset belongs to Nepali, Marathi,
Sanskrit, Bhojpuri, or Hindi, making it a multi-
class classification problem. Along with subtask A,
the objective of subtask C was to identify the target
of the hate speech, categorized as either Individual,
Organization, or Community classes in Devanagari
script language. For subtask A, the train, valid, and
test datasets comprise 52422, 11233, and 11234
texts, respectively. Class-wise samples and dataset
statistics are provided in Table 1.

Table 1: Class-wise distribution of train, validation, and
test set for subtask A, where WT and UWT denote total
words in three datasets and total unique words in train
set respectively

Classes Train Valid Test WT UWT

Nepali 12544 2688 2688 320384 26536
Marathi 11034 2364 2365 392735 32332
Sanskrit 10996 2356 2356 315875 64652
Bhojpuri 10184 2182 2183 420856 15779
Hindi 7664 1643 1642 211029 8933
Total 52422 11233 11234 1660879 148232

For subtask C, the train, validation, and test
datasets consist of 2214, 474, and 475 texts, and
the datasets are imbalanced. Table 2 provides the

1https://github.com/vikaskumarjha9/hindi_
abusive_dataset
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class-wise samples and dataset statistics. The im-
plementation details of the tasks will be found in
the GitHub repository2.

Table 2: Class-wise distribution of train, validation, and
test set for subtask C, where WT and UWT denote total
words in three datasets and total unique words in train
data respectively

Classes Train Valid Test WT UWT

Individual 1074 230 230 42438 11963
Organization 856 183 184 11586 8891
Community 284 61 61 10564 3931
Total 2214 474 475 64588 24785

4 Methodology

Several ML, DL, and transformer-based models
were explored to develop the baselines as depicted
in Figure 1.

Feature
Extraction

Dataset
Data

Preprocessing Keras
GloVe

TF-IDF
BoW

LR
RF
SVM
MNB

ML Models

CNN
LSTM
BiLSTM

CNN+GRU
CNN+
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XLM-R
MuRIL

Transformers

Task-A
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Subtask C
Prediction

m

d

t

m, d

m, d, t

Subtask A 
Prediction

Figure 1: Schematic process of Devanagari script iden-
tification and target identification for hate speech

4.1 Data Preprocessing

Since the dataset originates in Devanagari, aggre-
gated from several sources, by default, it contains
quite a large amount of irrelevant and duplicate
data. Therefore, the first significant work was ex-
tensive preprocessing of data. It included the re-
moval of emojis, symbols, signs, numbers, and
extra punctuation marks from the text. Data aug-
mentation techniques have not been used, as more
emphasis was put on cleaning and refining the data
to prepare them for appropriate model training.

2https://github.com/RJ-Hossan/CHIPSAL-25

4.2 Feature Extraction

Feature extraction in NLP transforms raw text into
numerical values for machine learning and deep
learning models. Our approach extracts unigram
and bigram features using TF-IDF for machine
learning algorithms. For deep learning, text pre-
processing involves tokenization via the Tokenizer
class of TensorFlow Keras3, which handles out-of-
vocabulary words using placeholder tokens. These
tokens are passed into an Embedding layer, convert-
ing them into dense vector representations. Addi-
tionally, we incorporate pre-trained GloVe embed-
dings, which map each word to a 100D vector, with
an embedding matrix of shape (10,000, 100) for
the top 10,000 words in the tokenizer’s vocabulary.

4.3 Machine Learning Models

We have employed various machine learning (ML)
models to identify instances of hate speech. Specif-
ically, we employed Logistic Regression (LR), Sup-
port Vector Machine (SVM), Multinomial Naive
Bayes (MNB), Random Forest (RF), Gradient
Boosting (GB). In subtask C, we have also em-
ployed hyperparameter tuning e.g., linear and RBF
kernel for SVM, different learning rate for LR,
GB, different estimator values, LIBLINEAR (Fan
et al., 2008) solver function for LR, etc., using
GridSearchCV4 to get the superior performance.

4.4 Deep Learning Models

For deep learning models, we considered several
approaches, such as LSTM, BiLSTM, CNN, CNN
+ BiLSTM, and CNN + GRU. These models were
trained with tokenization and embedding tech-
niques. The hybrid BiLSTM with CNN model
is configured with a maximum vocabulary size of
10,000, a sequence length of 100, and an embed-
ding dimension of 128. It has a CNN branch with
64 filters of size 5 and a BiLSTM branch with 64
units, trained over 45 epochs with a batch size of
32. Using sparse categorical cross-entropy as the
loss function and the ‘Adam’ optimizer at a learn-
ing rate of 1e-4, the class imbalance was addressed
by computing class weights. At the same time, the
training was optimized through Reduce Learning
Rate and Early Stopping callbacks for improved
performance in Subtask A. Table 3 shows the fine-

3https://www.tensorflow.org/api_docs/python/
tf/keras/layers/Embedding

4https://scikit-learn.org/dev/modules/
generated/sklearn.model_selection.GridSearchCV.
html
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tuned hyperparameters for the deep learning-based
models for subtask A.

Table 3: Model configuration for subtask A

Parameter Value
Vocabulary Size 10,000
Sequence Length 100
Embedding Dimension 128
CNN Filters 64 filters of size 5
BiLSTM Units 64
Epochs 45
Batch Size 32
Optimizer Adam
Learning Rate 1e-4

4.5 Transformer-Based Models
With the mechanism of attention embedding,
transformer-based models efficiently process large-
scale contextual information and, therefore, prove
ideal for multilingual and cross-lingual tasks.
To accomplish the tasks, we explored several
transformer-based models such as m-BERT (Pires
et al., 2019), Indic-BERT (Dabre et al., 2022),
MuRIL-BERT (Khanuja et al., 2021), and XLM-R
(Conneau et al., 2020) to study their performances
for a diverse range of linguistic settings. Each of
these models had been fine-tuned to the respective
classification tasks. In the MuRIL-BERT model,
hyperparameter tuning was done by fixing the batch
size to 8, the learning rate to 2e-4, and modifying
the weight decay to 0.06. Then, after training for
13 epochs, optimal performance was reached. Due
to more robust regularization from an increased
weight decay of 0.01 to 0.06, the training loss re-
duced when the model’s generalization improved.
Table 4 shows the fine-tuned hyperparameters for
the transformer-based models for subtask C.

Table 4: Model configuration for subtask C

Parameter Value
Batch Size 8
Epochs 13
Weight Decay 0.06
Learning Rate 2e-4

4.6 Computational Requirements
The model was trained on a dual GPU setup
(NVIDIA Tesla T4x2), using parallel processing for
BiLSTM, convolution, and transformer layers. The
BiLSTM+CNN model used 5-8 GB of GPU mem-
ory, while MuRIL-BERT required 20 GB. Training

for 45 epochs of BiLSTM+CNN and 13 epochs of
MuRIL-BERT took 45-60 minutes, depending on
dataset size and class weight calculations, balanc-
ing computational efficiency and performance.

5 Result Analysis

Table 5 compares classifier performance in two
subtasks, showing differences in precision, recall,
and F1-score. Traditional models for Devanagari
script identification, such as LR and SVM, produce
high F1-scores of 0.9628 and 0.9531, respectively,
but fall somewhat short of deep learning models.
Among these, the lowest performing remains RF,
with an F1-score of 0.9368. Finally, LSTM and
BiLSTM outperformed the neural networks by the
classical approaches, achieving F1-scores of 0.9791
and 0.9917, respectively. The CNN and CNN +
GRU models achieved F1-scores of 0.9916 and
0.9915, respectively, while CNN + BiLSTM out-
performed them with a near-perfect F1-score of
0.9941 (subtask A).

Table 5: Result comparison on test data, where P, R, and
F1 denote precision, recall, and F1-score, respectively,
and K and G represent Keras and GloVe embeddings

Classifiers Script Identification Target Hate Speech

P R F1 P R F1

LR 0.9628 0.9628 0.9628 0.61 0.53 0.54
SVM 0.9540 0.9524 0.9531 0.59 0.48 0.46
RF 0.9382 0.9359 0.9368 0.76 0.49 0.46
MNB 0.9511 0.9424 0.9454 0.56 0.45 0.43
CNN (K) 0.9916 0.9917 0.9916 0.57 0.55 0.56
LSTM (K) 0.9789 0.9797 0.9791 0.50 0.48 0.48
BiLSTM (K) 0.9917 0.9917 0.9917 0.48 0.47 0.47
CNN + GRU (K) 0.9917 0.9913 0.9915 0.49 0.48 0.48
CNN + BiLSTM (G) 0.7024 0.5789 0.5146 0.49 0.40 0.37
CNN + BiLSTM (K) 0.9941 0.9940 0.9941 0.48 0.46 0.47
Indic-BERT - - - 0.61 0.61 0.61
m-BERT - - - 0.61 0.60 0.60
verta-BERT - - - 0.61 0.60 0.61
XLM-R - - - 0.65 0.71 0.66
MuRIL-BERT - - - 0.68 0.68 0.68

For the target hate speech detection subtask, pre-
cision, recall, and F1-scores dropped across mod-
els, reflecting the task’s complexity. Traditional
models performed far worse, with the best among
them, LR, achieving an F1-score of only 0.54,
while MNB had the lowest performance with an
F1-score of just 0.43. The DL-based models also
showed relatively poor F1 scores, ranging from
0.37 to 0.56. Transformer-based models performed
much better on this task; specifically, MuRIL-
BERT had the highest F1-score of 0.68, outperform-
ing XLM-R (0.66) and m-BERT (0.60), helped us
to rank 4th in subtask C. Interestingly, both Indic-
BERT and verta-BERT achieved F1-scores of 0.61,
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reinforcing the trend that transformer-based models
consistently outperformed traditional and neural
network-based classifiers in the nuanced task of
hate speech detection.

Appedix A provides a comprehensive error anal-
ysis of the proposed models, examining their per-
formance in identifying the Devanagari script and
detecting hate speech targets.

6 Conclusion

This paper introduced techniques of Devanagari
script identification and target hate speech detec-
tion. This research bridges technology with lin-
guistic diversity, creating a more inclusive digital
world. The results demonstrated that the hybrid
CNN with BiLSTM model outperformed other ML
and DL models for script identification tasks by
achieving the highest F1-score of 0.9941. At the
same time, MuRIL-BERT performed best among
all other models in target hate speech detection
with an F1-score of 0.68. However, the integration
of transformer-based models might perform even
better for script identification. Therefore, in the
future, we will explore other word embedding tech-
niques and contextualized embeddings like GPT
and ELMo in these tasks for enhancing perfor-
mance for Devanagari script identification and tar-
get hate speech detection. Furthermore, ensemble
methods combining several transformers with vari-
ous fusion models designed for specific tasks can
improve the results.

7 Limitations

The current work on script identification and tar-
get hate speech detection has several drawbacks,
influenced by the following factors:

• Pre-trained transformer models may fail when
the context differs significantly from their
training data.

• The resort to DL models employed did not
give the anticipated result. This indicates that
other embeddings should be tried, and better
models must be devised.

• Overall, this work is limited by dataset imbal-
ance, reliance on existing models without ar-
chitectural innovation, moderate hate speech
detection performance, particularly in captur-
ing subtle contextual cues, and a lack of ad-
vanced data augmentation techniques to ad-
dress class imbalance.
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A Appendix

We have performed both quantitative and quali-
tative error analysis in order to obtain in-depth
insights into the performance of the proposed
model.

Quantitative Analysis: The best performing mod-
els were used to conduct a quantitative error anal-
ysis, utilizing confusion matrices shown in Figure
A.1 and Figure A.2 for subtasks A and C, respec-
tively.
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Figure A.1: Confusion matrix of the proposed model
(CNN+BiLSTM) for subtask A

Figure A.2: Confusion matrix of the proposed model
(finetuned MuRIL) for subtask C

The proposed hybrid CNN with BiLSTM
model for subtask A perfectly classified 11,174
instances among 11,234 samples with very
negligible misclassifications in Nepali and Sanskrit.
It performed badly in distinguishing similar
languages by mislabeling 16 Hindi samples as
Marathi and 7 as Bhojpuri. Additionally, the
fine-tuned MuRIL model performed well on
target hate speech detection, wherein it rightly
classified 182 out of 230 instances of Individual
and 143 out of 184 instances of Organization.
However, it misclassified 23 Organization and
38 Individual instances. The more difficult class
was Community with only 61 instances; only 29
were classified correctly, mostly confused with
Individual or Organization. This may happen due
to the difficulty in distinguishing targets, arising
from linguistic overlap in community-targeted
speech and the subtlety of contextual cues.

Qualitative Analysis: Figure A.3 portrays pre-
dicted outputs for sample inputs of the proposed
model for the Devanagari script identification task.
It correctly predicted the text samples 1, 2, and
3, but incorrectly predicted text sample 4 as Hindi
instead of Nepali. Figure A.4 represents the qualita-
tive analysis of the proposed MuRIL-BERT model
on target hate speech detection. Our proposed
model correctly predicted text samples 1 and 3
but wrongly predicted samples 2 and 4. These are
probably related to class imbalance, considering
the Community class has fewer instances, 284, com-
pared to the rest of the classes.

Figure A.3: Few examples of predicted outputs by the
proposed method (CNN + BiLSTM) for subtask A

Figure A.4: Few examples of predicted outputs by the
proposed method MuRIL-BERT for subtask C
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Abstract
Social networks have become essential plat-
forms for information exchange and free ex-
pression. However, their open nature also fa-
cilitates the spread of harmful content, such
as hate speech, cyberbullying, and offensive
language, which pose significant risks to so-
cial well-being. This study focuses on develop-
ing an automated system to detect hate speech
in Devanagari script languages, enabling effi-
cient moderation and timely intervention. Our
approach leverages a fine-tuned transformer
model for classifying offensive content. We
experimented with various machine learning
(ML) techniques, including Logistic Regres-
sion (LR), Support Vector Machines (SVM),
and Random Forest (RF), as well as deep learn-
ing (DL) architectures such as CNN, BiLSTM,
and CNN-BiLSTM. Additionally, we evalu-
ated transformer-based models, including In-
dicBERT, m-BERT, MuRIL, Indic-SBERT, and
XLM-R. Among these, the fine-tuned XLM-R
model delivered the best performance, achiev-
ing a macro f1-score of 0.74, demonstrating
its effectiveness in detecting hate speech in De-
vanagari script languages. However, the model
submitted for the shared task achieved a macro
f1-score of 0.73, ranking 13th in the subtask.

1 Introduction

In an increasingly interconnected and digital age,
the pervasive impact of communication through so-
cial media, online forums, and various digital plat-
forms cannot be overstated. Although these plat-
forms give individuals a voice, they expose them to
a spectrum of content, including hate speech. Hate
speech, defined as the use of language that dispar-
ages or discriminates against individuals or groups
based on attributes such as race, ethnicity, religion,
gender, politics, or sexual orientation, emerges as a
compelling social challenge that requires meticu-
lous attention (Raja Chakravarthi et al., 2021; Pari-
har et al., 2021). The challenge of manually iden-
tifying offensive texts on a large scale emphasizes

the urgent need for an automated system to detect
and manage hate speech efficiently, enabling faster
and more accurate responses to harmful content
(Aljarah et al., 2021). The challenge of identify-
ing offensive language has been addressed through
various approaches, including the detection of cy-
berbullying, aggression, toxicity, and abusive lan-
guage (Sharif et al., 2021; Sharif and Hoque, 2021).
However, there is a pressing need for more targeted
efforts to specifically address hate speech, espe-
cially within diverse linguistic contexts (Singh and
Thakur, 2024).

In recent years, significant research efforts have
focused on detecting hate and offensive content
in high-resource languages like English, Spanish,
and Arabic. These benefit from abundant linguistic
resources, extensive datasets, and advanced tools
(Kumar and Singh, 2022; Omar et al., 2020). How-
ever, effectively tackling this issue in low-resource
languages remains a significant challenge. To ad-
dress this challenge, a shared task (Thapa et al.,
2025; Sarveswaran et al., 2025) was organized to
detect hate speech in the Devanagari script, with a
specific focus on monolingual sentences in Nepali
and Hindi (Jafri et al., 2024; Thapa et al., 2023).
The objective was to determine whether a given sen-
tence contains hate speech, highlighting the impor-
tance of effective cross-linguistic detection within
the Devanagari script (Jafri et al., 2023; Rauniyar
et al., 2023). As participants in this shared task, we
contributed to developing and evaluating models
tailored for this purpose. The primary contributions
of our work are summarized as follows:

• We evaluated various models for hate speech
detection, encompassing ML, DL, and
transformer-based frameworks, with perfor-
mance improvements achieved through hyper-
parameter optimization.

• We conducted a comprehensive comparison
of various models, followed by an in-depth

260



performance analysis, which led to the pro-
posal of an optimal system for effective hate
speech detection.

2 Related Work

In the rapidly advancing field of hate speech detec-
tion, researchers have experimented with a wide
range of approaches, each playing a role in the on-
going improvement and sophistication of detection
models (Parihar et al., 2021). Hate speech detec-
tion in Devanagari-script languages, such as Hindi
and Nepali, is a technical challenge influenced by
social, cultural, and linguistic factors (Parihar et al.,
2021). The interpretation of hate speech can vary
significantly based on cultural norms, regional di-
alects, and the social context in which language
is used. For instance, certain offensive expres-
sions in one community may not be perceived as
such in another (Singh and Thakur, 2024; Thapa
et al., 2025). Additionally, the widespread use of
code-mixing and social media-specific slang fur-
ther complicates detecting hate speech. As the
field evolved, there was a clear shift from tradi-
tional ML techniques to DL, as demonstrated by
Omar et al. (2020) in their work on Arabic hate
speech detection. They utilized Recurrent Neural
Networks (RNN) to achieve a remarkable 98.7%
accuracy, outperforming Convolutional Neural Net-
works (CNN). Sharif and Hoque (2021) employed a
weighted ensemble approach combining m-BERT,
Distil-BERT, and Bangla-BERT, showcasing the
flexibility of these models in capturing complex lin-
guistic variations, especially in Bengali aggressive
text datasets.

Shukla et al. (2022) developed a BERT-CNN
model for detecting hate speech in low-resource
Hindi text, achieving an f1-score of 0.84. Sharif
et al. (2021) tackled the challenge of detecting of-
fensive content in code-mixed social media data
by leveraging powerful transformer models such as
XLM-R, m-BERT, and Indic-BERT for languages
like Tamil, Kannada, and Malayalam. Rauniyar
et al. (2023) introduced the NAET dataset, consist-
ing of 4,445 Nepali tweets focusing on political
discourse. Their study found that NepNewsBERT
outperformed traditional models, achieving an f1-
score of 0.64 in detecting hate speech. Jafri et al.
(2024) developed the CHUNAV dataset, which con-
tains Hindi election tweets for hate speech detec-
tion and target identification in low-resource lan-
guages. They also developed benchmark models,
including the Hard Ensemble of BERTs (HEB),

demonstrating effective performance with an f1-
score of 0.959.

3 Task and Dataset Description

In this shared task1, a dataset (Thapa et al., 2025) in
Devanagari script containing monolingual Nepali
and Hindi sentences was provided to facilitate hate
speech detection (Jafri et al., 2024; Thapa et al.,
2023). The dataset, designed for binary classifica-
tion tasks, includes a diverse collection of social
media posts and comments, categorized as either
hate or non-hate. Participants were provided train-
ing, validation, and test datasets to aid model de-
velopment, validation, and performance evaluation.
The training dataset consists of 19,019 samples,
with 16,805 non-hate instances and 2,214 hate in-
stances, highlighting a significant class imbalance.
A detailed breakdown of additional insights and
statistics of the dataset is provided in Table 1.

Classes Train Valid Test WT UT

Non-Hate 16805 3602 3601 368180 71654
Hate 2214 474 475 58333 19707
Total 19019 4076 4076 426513 91361

Table 1: Class-wise distribution of training, validation,
and test sets, where WT denotes total words and UT

denotes total unique words in the training set

4 Methodology

Figure 1 provides a diagrammatic representation
of the approach. We employed various ML and
DL techniques to develop the baseline models.
Furthermore, we employed five pre-trained trans-
former models for hate speech detection, including
MuRIL, XLM-R, m-BERT, Indic-BERT, and Indic-
SBERT.

4.1 Preprocessing

The dataset sourced from social media is character-
ized by a substantial presence of irrelevant content,
including code-mixed elements. Throughout the
preprocessing process, we diligently eliminated
noise, which comprised hyperlinks, emojis, punc-
tuation, alphanumeric characters, and special sym-
bols (like slashes, brackets, and ampersands) to
ensure a higher data quality.

1https://codalab.lisn.upsaclay.fr/
competitions/20000

261



Figure 1: An abstract framework for hate speech detec-
tion

4.1.1 Feature Extraction
We applied the TF-IDF technique to extract un-
igram features for the ML models. TF-IDF as-
signs weights to words based on their frequency
within a document and across the corpus, aiding
in identifying significant words that distinguish
documents. We employed Keras2 and pre-trained
FastText embeddings for the DL models. FastText
embeddings provide 300-dimensional word vec-
tors incorporating subword information through n-
grams (Bojanowski et al., 2017; Joulin et al., 2016).
Each transformer model utilized its specific tok-
enizer, obtained from the HuggingFace3 library, to
appropriately tokenize and pad the texts.

4.2 ML Models

In the implementation of LR, the ‘lbfgs’ solver
was employed alongside balanced class weights
and L2 regularization, with the C parameter fine-
tuned to mitigate overfitting. The SVM model uti-
lized a RBF kernel, with the gamma parameter
set to ‘scale’ to ensure optimal feature responsive-
ness. For the RF model, the number of estimators
(‘n_estimators’) was configured to 100.

4.3 DL Models

To leverage the effectiveness of DL methods for
sequential data analysis, we implemented three
approaches: CNN (LeCun et al., 2015), BiL-
STM (Hochreiter and Schmidhuber, 1997), and
CNN+BiLSTM. The CNN model uses an embed-
ding layer with 256-dimensional embedding, fol-

2https://keras.io/
3https://huggingface.co/

lowed by a 1D convolutional layer with 128 fil-
ters and a kernel size of 5, concluding with a sig-
moid output for binary classification. The BiL-
STM model uses an embedding layer with a 300-
dimensional embedding size and a maximum se-
quence length of 100. It then processes the input
text through two bidirectional LSTM layers with 64
and 32 units, followed by dropout layers with a rate
of 0.5. In the CNN+BiLSTM model, a CNN layer
with 128 filters and max-pooling is applied, fol-
lowed by a 200-cell BiLSTM layer with a dropout
rate of 0.2, culminating in final predictions through
a sigmoid layer. The hyperparameters for the DL
models are shown in Table 2.

Hyperparameters CNN BiLSTM CNN+BiLSTM
Optimizer Adam Adam Adam
Batch Size 32 32 32
Neurons in Dense Layer 64 128 256
Embedding Dimension 256 300 256
Epochs 20 30 30
MaxLen 300 300 300
Dropout Rate 0.2 0.5 0.5
Learning Rate 1e−4 1e−3 1e−3

Table 2: Hyperparameters for DL models

4.4 Transformer Models
We fine-tuned five pre-trained transformer mod-
els (MuRIL, XLM-R, m-BERT, Indic-SBERT, and
IndicBERT) for hate speech detection in Devana-
gari script datasets. XLM-R, designed for low-
resource languages, uses self-supervised training
(Conneau, 2019). Multilingual BERT (m-BERT)
was pre-trained on 104 languages (Devlin, 2018),
while IndicBERT, covering 12 Indian languages,
was trained on a large corpus (Kakwani et al., 2020).
Indic-SBERT, a variant of Sentence-BERT, was
fine-tuned on a synthetic corpus for Indian lan-
guages (Deode et al., 2023). MuRIL, based on
BERT, was pre-trained in 17 Indian languages, in-
cluding transliterated forms and Devanagari scripts
(Khanuja et al., 2021). All the transformer models
were sourced from the Hugging Face transformer
library and fine-tuned on the given dataset using the
Ktrain package (Maiya, 2022). The hyperparame-
ters for the transformer-based models are presented
in Table 3.

5 Results and Analysis

This section presents a detailed analysis of the
effectiveness of various models in detecting hate
speech in Devanagari-script languages. The perfor-
mance of the models is evaluated using the macro
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Hyperparameter m-BERT MuRIL IB ISB XLM-R
Learning Rate 2e−5 1e−5 1e−5 1e−5 1e−5

Batch Size 32 32 16 16 32
MaxLen 100 100 100 100 100
Dropout 0.1 0.1 0.1 0.1 0.1
Epochs 10 10 15 15 10
Optimizer AdamW AdamW AdamW AdamW AdamW

Table 3: Fine-tuned hyperparameters of the transformer-
based models, where IB and ISB represent IndicBERT
and Indic-SBERT, respectively.

f1-score, offering a robust measure of classification
accuracy across all classes. Table 4 demonstrates
the performance of the employed models.

Approaches Classifiers P R F1

ML
LR 0.55 0.54 0.54
SVM 0.53 0.52 0.52
RF 0.53 0.51 0.51

DL

CNN (FastText) 0.50 0.51 0.50
BiLSTM (FastText) 0.54 0.52 0.56
CNN+BiLSTM (FastText) 0.56 0.55 0.55
CNN (Keras) 0.60 0.59 0.59
BiLSTM (Keras) 0.62 0.60 0.61
CNN+BiLSTM (Keras) 0.65 0.62 0.62

Transformer

m-BERT 0.67 0.70 0.69
MuRIL 0.72 0.73 0.73
IndicBERT 0.62 0.68 0.64
Indic-SBERT 0.71 0.75 0.73
XLM-R 0.72 0.76 0.74

Table 4: Performance of the employed models, where
P, R, and F1 denote macro precision, macro recall, and
macro f1-score, respectively

Within the ML category, the LR, SVM, and RF
classifiers show competitive performance across
precision, recall, and F1 scores, with LR achiev-
ing the highest F1 score of 0.54. Those incorpo-
rating Keras embeddings for DL models consis-
tently surpass those with FastText embeddings. The
top-performing FastText-based model, BiLSTM,
reached an F1 score of 0.56. In comparison, the
hybrid CNN+BiLSTM model attained an F1 score
of 0.62 when using Keras word embeddings. The
observed F1 score differences between Keras and
FastText embeddings may result from multiple fac-
tors. Keras embeddings likely provide more refined
contextual representations, capturing linguistic and
syntactic patterns that FastText may miss.

In contrast, transformer-based models, espe-
cially XLM-R, outperformed both ML and DL
models, achieving the highest F1 score of 0.74.
MuRIL and Indic-SBERT also performed well,
with F1 scores of 0.73. XLM-R’s strong perfor-
mance could be due to its multilingual pretraining,
which helps it effectively handle Nepali and Hindi,
including the Devanagari script. Moreover, the

cross-lingual pretraining of the XLM-R model al-
lowed it to excel despite challenges in the dataset,
demonstrating its ability to capture contextual nu-
ances and handle linguistic diversity effectively.

5.1 Classwise Performance
To gain deeper insights, we analyze the best-
performing model’s classwise performance (XLM-
R) as shown in Figure 2. The classification report
reveals that the non-hate class has higher precision
(0.95) and F1-score (0.93), indicating better perfor-
mance in identifying non-hate instances. In con-
trast, the hate class shows a higher recall (0.61), re-
flecting the ability of the model to accurately iden-
tify more true hate instances, though with lower
precision (0.49). The comparatively poorer perfor-
mance in the hate class could be due to the class
imbalance.

Figure 2: Classwise performance of the best performing
model (XLM-R) on the test set.

5.2 Error Analysis
We conducted a comprehensive error analysis us-
ing quantitative and qualitative approaches to un-
derstand better the performance of the highest-
performing model (XLM-R).

5.2.1 Quantitative Analysis
We conducted a quantitative error analysis of the
best-performing model (XLM-R) using a confu-
sion matrix (Figure 3). Out of 4,076 samples,
3,592 instances were correctly classified, compris-
ing 3,303 non-hate speech and 289 hate speech
samples. However, 484 instances were misclas-
sified, with 186 incorrectly predicted as non-hate
and 298 as hate. The higher misclassification rate
for hate speech (39.16%) could be attributed to
class imbalance, as hate speech samples are signifi-
cantly fewer. This imbalance hampers the ability
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Figure 3: Confusion matrix of the best performing
model (XLM-R)

Table 5: Sample predictions generated by the best-
performing model (XLM-R)

of the model to identify hate speech, resulting in
increased misclassification accurately.

5.2.2 Qualitative Analysis
Table 5 presents some predicted samples from the
best-performing model on the test dataset. Samples
1 and 2 are correctly classified, while samples 3
and 4 are misclassified as non-hate speech, reflect-
ing the model’s performance limitations. These
misclassifications may result from dataset imbal-
ance, which biases the model toward the majority
class, and the presence of code-mixed text compli-
cates language understanding. These challenges
underscore the importance of qualitative analysis in
interpreting model behavior and identifying areas
for improvement.

6 Conclusion

This work contributed to hate speech detection in
Devanagari-script languages by systematically eval-
uating various machine learning (ML), deep learn-
ing (DL), and transformer-based models. Among
these, the fine-tuned XLM-R model demonstrated
the highest performance, achieving a macro f1-
score of 0.74, underscoring the model’s capability
in effectively classifying offensive content. How-
ever, the model exhibited lower performance for the
hate speech class, primarily due to class imbalance.
Future work will address this issue by employing
resampling and data augmentation methods, such
as back-translation, to enhance the dataset. Addi-
tionally, advanced models, including integrating
large language models (LLMs), will be explored
to improve performance. Another critical avenue
for future research involves developing techniques
to effectively handle code-mixed data, particularly
Hinglish, to enhance the model’s robustness and
accuracy.

Limitations

The current approach leverages pre-trained
transformer-based models, which, while effective,
may need to be revised when the context of the data
deviates significantly from the training data. Addi-
tionally, due to the lack of specialized mechanisms
for handling such linguistic variations, the model’s
performance could be improved using code-mixed
data, such as Hinglish, commonly encountered in
Devanagari-script languages. Moreover, the dataset
used in this task needed to be more balanced, with
certain classes underrepresented. This likely im-
pacted the model’s ability to accurately classify
instances from these underrepresented classes. Ad-
dressing these challenges will be crucial in improv-
ing the robustness and accuracy of the model in
future work.
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Abstract

Hate speech detection in multilingual content
is a challenging problem especially when it
comes to understanding the specific targets
of hateful expressions. Identifying the tar-
gets of hate speech whether directed at indi-
viduals, organizations or communities is cru-
cial for effective content moderation and un-
derstanding the context. A shared task on
hate speech detection in Devanagari Script
Languages organized by CHIPSAL@COLING
2025 allowed us to address the challenge of
identifying the target of hate speech in the De-
vanagari Script Language. For this task, we
experimented with various machine learning
(ML) and deep learning (DL) models includ-
ing Logistic Regression, Decision Trees, Ran-
dom Forest, SVM, CNN, LSTM, BiLSTM,
and transformer-based models like MiniLM,
m-BERT, and Indic-BERT. Our experiments
demonstrated that Indic-BERT achieved the
highest F1-score of 0.69, ranked 3rd in the
shared task. This research contributes to ad-
vancing the field of hate speech detection and
natural language processing in low-resource
languages.

1 Introduction

Hate speech promotes hostility and discrimination
toward certain people or groups and creates major
challenges in preserving social harmony. Detecting
and identifying hate speech is especially complex
in multilingual contexts, where harmful messages
may target specific groups. This process is im-
portant to better understand the intent and impact
of harmful language. The "Shared Task on Natu-
ral Language Understanding of Devanagari Script
Languages" at CHIPSAL@COLING 2025 aimed
to address this challenge, particularly through Sub-
task C which focused on identifying hate speech
targets in Devanagari-scripted text. The goal was
to classify the targets of hate speech: "individual,"
"organization," or "community". Their workshop

paper (Sarveswaran et al., 2025) offered us an op-
portunity to engage with these challenges in pro-
cessing South Asian languages and to advance our
work on hate speech detection and target identifi-
cation in this context. The proposed approach can
be used in content moderation systems to help plat-
forms detect and reduce hate speech in different
low-resourced languages. It can assist policymak-
ers by providing a reliable method to track and
analyze online hate speech.

In our participation, we explored different mod-
els to identify hate speech targets and tried to solve
this problem with two significant contributions.

• Investigated the effectiveness of several ML,
DL, and transformer models for identifying
hate speech targets and examining the errors to
obtain important insights about the detection
procedure.

• In particular, leveraged the transformer-based
Indic-BERT model which has proven effective
for the particular use case in Devanagari script
languages.

This study shows how advanced models like trans-
formers can improve hate speech detection, and
target identification supporting better language un-
derstanding.

2 Related Work

The difficulty of identifying hate speech and abu-
sive language has prompted numerous research
using a range of languages and methodologies.
Recent advancements have focused on address-
ing hate speech in low-resource languages. The
CHUNAV dataset offers a valuable resource for an-
alyzing hate speech in Hindi during elections, cap-
turing nuanced socio-political themes (Jafri et al.,
2024). Similarly, the IEHate dataset provides in-
sights into political hate speech in Hindi, highlight-
ing the benefits of human and automated meth-
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ods in this domain (Jafri et al., 2023). For Nepali,
NEHATE facilitates hate speech analysis in local
election discourse, contributing to inclusive online
dialogue (Thapa et al., 2023). NAET introduces
anti-establishment discourse in Nepali, covering
unique aspects like hate speech to enhance po-
litical sentiment analysis (Rauniyar et al., 2023).
Additionally, the Karaka model provides founda-
tional resources for Bhojpuri, aiding NLP develop-
ment in this language (Ojha, 2019). For Marathi,
L3CubeMahaSent offers a structured sentiment
analysis dataset, filling a gap for Indian languages
(Kulkarni et al., 2021). Itihasa, a large-scale San-
skrit translation dataset highlights the complexity
of ancient texts and challenges current translation
models (Aralikatte et al., 2021). Hate speech re-
search has addressed diverse forms of toxic content
including racism, sexism, and religious bias, while
also discussing challenges in real-world applica-
tions (Parihar et al., 2021). A review of hate speech
detection methods revealed inconsistent results and
limited dataset reliability (Alkomah and Ma, 2022).
CNN, LSTM, and BERT models proved effective
for hate speech detection in Hindi and Marathi and
simpler architectures also performed competitively
when augmented with FastText embeddings (Ve-
lankar et al., 2021). The Dravidian shared task
for Malayalam showed m-BERT’s strong perfor-
mance. It highlights the transformer model’s poten-
tial in misinformation detection for low-resource
languages (Osama et al., 2024). An evaluation
dataset, HateCheckHIn, was developed to address
the challenges of multilingual hate speech detec-
tion, focusing on error analysis and diagnostic in-
sights, particularly for Hindi (Das et al., 2022). In
Tamil, a study focusing on caste and migration-
related hate speech found that M-BERT was highly
effective. It highlights the model’s suitability for
handling nuanced social contexts in low-resource
settings (Alam et al., 2024).

3 Task and Dataset Description

With the rise of social media, hate speech has be-
come a significant issue often targeting specific
groups. This shared task (Thapa et al., 2025) fo-
cuses on hate speech detection in languages using
the Devanagari script. It identifies the target of
hate speech in a given sentence, classifying it as ei-
ther "individual," "organization," or "community."
The dataset for this task consists of hate speech
texts in Devanagari script covering languages such

as Nepali, Marathi, Sanskrit, Bhojpuri, and Hindi.
This dataset is organized to support accurate classi-
fication of hate speech targets as outlined below:
Individual: Hate speech aimed at a specific per-
son.
Organization: Hate speech targeting institutions
or groups.
Community: Hate speech directed at larger com-
munities.
Here, Table 1 provides the distribution of sam-
ples across training, validation, and test sets. The

Classes Train Valid Test
Individual 1,074 230 230
Organization 856 183 184
Community 284 61 61
Total 2,214 474 475

Table 1: Dataset distribution.

dataset is imbalanced, with the Community class
having the fewest samples (406 texts), compared
to Individual (1,534 texts) and Organization (1,223
texts).

4 Methodology

The methods and approaches employed to ad-
dress the issue raised in the preceding part are
briefly summarized in this section. Through care-
ful analysis, our research recommends utilizing a
transformer-based model employing Indic-BERT
(Kakwani et al., 2020). Figure 1 provides a concise
visualization of our methodology, outlining the key
steps involved in our approach.

Input Text

Preprocessing

TF-IDF

 Word2vec

Transformer-
based

Tokenizer

Feature Extraction

LR
DT
RF

SVM
XGB

LSTM
BiLSTM

GRU
CNN

CNN+RNN

MiniLM
m-BERT

Indic-BERT

ML Models

DL Models

Transformers

Output Prediction

Figure 1: An abstract view of our methodology

4.1 Preprocessing
We translated Bhojpuri tweets into Hindi to ensure
uniformity and enhance compatibility with mul-
tilingual language models. Basic preprocessing
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steps, such as removing special characters, stop-
words and empty spaces were also applied to clean
the text.

4.2 Feature Extraction

To capture meaningful features for different model
types, three feature extraction techniques are em-
ployed. For machine learning models, the Term
Frequency-Inverse Document Frequency (TF-IDF)
(Qaiser and Ali, 2018) approach is used. For deep
learning models, word embeddings are generated
using the Word2Vec (Ma and Zhang, 2015) tech-
nique. And transformer models use architecture-
compatible tokenizers for tokenization.

4.3 Model Building

In our research, we explored a variety of ML, DL
and transformer-based models.

4.3.1 ML models

We trained traditional ML models such as Logis-
tic Regression, Decision Trees, Random Forest,
Support Vector Machines and Extreme Gradient
Boosting on TF-IDF features. These models iden-
tify patterns statistically but may struggle with the
complexity of contextual and linguistic nuances in
hate speech.

4.3.2 DL models

The deep learning models include LSTM (Sher-
stinsky, 2020), BiLSTM (Xu et al., 2019), GRU
(Dey and Salem, 2017), CNN (Alzubaidi et al.,
2021) and a hybrid CNN+RNN model. These
models capture semantic linkages in tweets by us-
ing Word2Vec embeddings. Each DL model was
trained for 10 epochs with a batch size of 32.

4.3.3 Transformer-based models

The transformer-based models include MiniLM
(Wang et al., 2020), m-BERT (Yu et al., 2024)
and Indic-BERT (Kakwani et al., 2020). These
models are fine-tuned using transformer-specific
tokenizers to handle multilingual text efficiently.
Transformers outperform ML and DL models be-
cause they process entire sentences using attention
mechanisms, capturing context and long-range de-
pendencies. They also benefit from pre-training
on large multilingual corpora and handle complex
scripts like Devanagari with better precision, which
reduces information loss.

5 Results & Discussion

In this section, we provide comparisons of the per-
formance achieved by different machine learning,
deep learning, and transformer-based methods. The
performance evaluation of various classifiers for
the targets of hate speech identification showcases
valuable details about how well they can predict.
We also fine-tuned particularly m-BERT and Indic-
BERT by adjusting learning rates, batch sizes, and
epochs with the fixed Adam optimizer and Sparse
Categorical Cross-Entropy (CCE) loss function in
Table 2.

Hyperparameters m-BERT Indic-BERT
Optimizer Adam Adam Adam Adam
Loss Function Sparse CCE Sparse CCE Sparse CCE Sparse CCE
Learning rate 5e-05 3e-05 2e-05 1e-05
Epochs 12 10 8 5
Batch size 8 16 8 8

Table 2: Summary of tuned hyper-parameters

By modifying these hyper-parameters, we tried
to improve the model’s performance across all met-
rics. We observed that increasing the number of
epochs improved accuracy, with models reaching
nearly very high at the end. m-BERT was trained
for 12 epochs due to steady improvement, while
Indic-BERT was trained for fewer epochs (5-8) due
to faster convergence. A summary of the preci-
sion (P), recall (R), and macro-F1 (MF1) scores
for each model on the test set is presented in Table
3. Among ML models, LR performed best with an

Classifier P R MF1
LR 0.61 0.64 0.60
DT 0.55 0.56 0.55
RF 0.59 0.63 0.59
SVM 0.55 0.62 0.57
XGB 0.59 0.61 0.58
LSTM 0.57 0.58 0.57
BiLSTM 0.57 0.57 0.57
GRU 0.56 0.57 0.57
CNN 0.61 0.63 0.61
CNN + RNN 0.62 0.63 0.62
MiniLM 0.67 0.66 0.66
m-BERT 0.70 0.69 0.68
Indic-BERT 0.74 0.67 0.69

Table 3: Results of various models on the test dataset.

MF1 score of 0.60. For DL models, CNN+RNN
achieved the highest MF1 score of 0.62. Trans-
former models outperformed both ML and DL,
with m-BERT achieving an MF1 of 0.68, while
Indic-BERT emerged as the best overall with an
MF1 of 0.69.
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5.1 Quantitative Discussion
The results underscore the effectiveness of
transformer-based architectures, particularly Indic-
BERT, in detecting the target of hate speech. By
incorporating contextual embeddings from pre-
trained language models like Indic-BERT, our
classification system achieves enhanced accuracy.
Indic-BERT performs better as it supports four De-
vanagari languages (Nepali, Marathi, Hindi, San-
skrit) while m-BERT supports only three (Nepali,
Marathi, and Hindi), provides broader coverage of
Devanagari-script languages compared to m-BERT.
To address the class imbalance issue, we applied
class weights during training to give more impor-
tance to the minor Community class. Addition-
ally, data augmentation techniques such as generat-
ing synthetic examples or paraphrasing could fur-
ther improve the representation of the ‘Community’
class. The confusion matrix in Figure 2 provides a
detailed breakdown of our model’s performance.

Figure 2: Confusion matrix of our best performing
model

The model correctly classifies 160 label-0, 153
label-1 and 26 label-2 instances. However, it mis-
classifies 45 samples of label-0 as label-1 and 25
as label-2. Label-2 shows significant errors, with
15 misclassified as label-0 and 20 as label-1.

5.2 Qualitative Discussion
Figure 3 showcases some sample predictions made
by our Indic-BERT model. Among these, sam-
ples 1, 4, and 5 are correctly classified, indicat-
ing the model’s ability to handle diverse linguistic
constructs in Devanagari script. However, certain
instances reveal challenges for the model. For ex-
ample, sample 2 which discusses a cricket match
in the Devanagari script context, is misclassified
as label 1 instead of the correct label 2. Sample
3 related to political content is also misclassified,
suggesting potential difficulties in distinguishing

Figure 3: Examples of the Indic-BERT model’s antici-
pated outputs with English translations

political expressions within the Devanagari script.

6 Conclusion

Our study on hate speech target identification
in Devanagari-script languages demonstrates that
transformer-based models, particularly IndicBERT,
achieved the highest F1 score of 0.69, outperform-
ing both machine learning and deep learning mod-
els. Despite challenges with low-resource lan-
guages like Bhojpuri, tailored preprocessing and
feature extraction techniques provided valuable in-
sights. Although this work focuses on Devanagari-
script languages, the methodology can be adapted
to other low resource scripts by using pre-trained
models like m-BERT, MiniLM or Indic-BERT
which work well with multilingual data. Future
advancements in language-specific models could
further improve hate speech detection in diverse
multilingual contexts. Additionally, exploring mul-
timodal approaches may significantly improve the
accuracy and robustness of hate speech identifica-
tion.

Limitations

A primary limitation of this study lies in converting
Bhojpuri text into Hindi through a manually created
vocabulary as the models employed lack training
in the Bhojpuri language. This vocabulary-based
conversion may not fully capture all nuances and
context in Bhojpuri which could lead to potential
inaccuracies in the model’s performance. Addi-
tionally, the lack of high-quality annotated data for
low-resource languages limits the robustness of the
models. Future exploration of methods with more
annotated samples in low-resource languages like
Bhojpuri would enhance model accuracy and gen-
eralizability. Developing multilingual embeddings
or pre-trained transformer models specifically for
dialects in the Devanagari script would also address
limitations in vocabulary conversion.
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Abstract

Language identification is a critical area of
research within natural language processing
(NLP), particularly in multilingual contexts
where accurate language detection can en-
hance the performance of various applications,
such as machine translation, content moder-
ation, and user interaction systems. This
paper presents a language identification sys-
tem developed using fastText. In the CHIP-
SAL@COLING 2025 Task on Devanagari
Script Language Identification, the proposed
method achieved first place, with an F1 score
of 0.9997.

1 Introduction

Language identification is crucial in Natural Lan-
guage Processing (NLP), facilitating various ap-
plications like machine translation, information re-
trieval, and content filtering. Identifying languages
with unique scripts, like Korean or Japanese, is
fairly easy, but determining languages that use com-
mon scripts poses notable difficulties. An example
of this is the Devanagari script, utilized by multiple
languages, such as Hindi, Sanskrit, Marathi, Nepali,
Bhojpuri, and more. Although these languages use
the same script, they demonstrate significant dif-
ferences in grammar, vocabulary, and morphology,
resulting in a complex language identification chal-
lenge.

Conventional methods for language identifica-
tion depend significantly on lexical characteris-
tics and statistical models, usually needing exten-
sive, domain-specific datasets to achieve good per-
formance. Methods like n-gram modeling (Cav-
nar et al., 1994) or character-level classification
(Zhang et al., 2015) have demonstrated effective-
ness for certain languages but frequently under-
perform when utilized on intricate scripts such
as Devanagari. This can be attributed in part to
the morphological richness of languages that use

Devanagari, where words may be significantly in-
flected, making it more challenging to differentiate
languages based only on surface-level characteris-
tics.

Recent advancements in neural network-based
models have demonstrated substantial improve-
ments in language identification tasks, especially
when used on languages that share similar scripts.
One such model is fastText (Joulin et al., 2017) that
has attracted interest due to its capacity to model
subword information, effectively capturing detailed
morphological patterns and delivering strong per-
formance even with smaller datasets or noisy text.
These characteristics make fastText a compelling
option for language identification tasks in scripts
such as Devanagari, where languages have a con-
siderable amount of lexical overlap yet differ in
their subword configurations.

This paper describes a system that uses fast-
Text for identifying languages in the Devanagari
script. The developed system efficiently differen-
tiates between languages written in Devanagari,
despite their common orthographic traits, by uti-
lizing fastText’s capability to create word repre-
sentations that encapsulate character-level n-grams.
This system was trained and evaluated using the
datasets provided by the CHIPSAL@COLING
2025 (Sarveswaran et al., 2025) Task on Devana-
gari Script Language Identification (Thapa et al.,
2025).

The rest of the paper is organized as follows.
The related work is summarized in Section 2. The
dataset used for training and validation was detailed
in Section 3. In Section 4, the system is presented.
Section 5 summarizes the study’s key findings.

2 Related Work

Several studies have explored language identifica-
tion using various techniques. Traditional methods
often rely on statistical models that analyze textual
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features such as n-grams or character frequencies.
For instance, langid (Lui and Baldwin, 2012) can
detect 97 languages and relies on a robust set of
predefined features, which are calculated using In-
formation Gain applied to different sets of n-grams.
These features are used by a Naive Bayes classifier
trained on a diverse corpus of text data from vari-
ous sources. However, these traditional approaches
may struggle with scripts like Devanagari due to
shared vocabulary among languages.

FastText (Joulin et al., 2017) is one of the most
popular models used for language identification.
FastText uses a simpler linear classifier with a low-
rank matrix constraint (Joulin et al., 2016). Its ar-
chitecture incorporates hierarchical softmax, which
helps reduce running time. Additionally, FastText
combines a bag-of-words model with an N-gram
approach to enhance performance and minimize
processing time. While the N-gram model captures
contextual character information around each in-
stance but requires more memory, the bag-of-words
model offers less detailed feature capture. By com-
bining these two techniques, FastText creates a
"bag-of-n-grams" model that balances performance
and efficiency (Bojanowski et al., 2017).

CLD3 (Alex Salcianu, 2018) processes the input
text by first extracting a range of n-grams, which
are then transformed into dense vectors through
an embedding layer. Each unique n-gram is rep-
resented by a fixed vector, and these vectors are
averaged, with the frequency of each n-gram in
the original text serving as the weighting factor.
The resulting averaged vectors are concatenated
and fed into a multi-layer perceptron, which gen-
erates a probability distribution over 107 possible
languages.

One of the most powerful approaches today for
language identification involves deep learning mod-
els like Long Short-Term Memory (LSTM) Net-
works (Schmidhuber et al., 1997). These models
outperform older statistical and rule-based meth-
ods by effectively learning intricate patterns and
capturing contextual relationships within the data.
LSTM for Language Identification (Toftrup et al.,
2021) applies Unicode-based written script identi-
fication, then for each script, a network is trained
to predict the language based on the input text. In
this approach, each character in the text is pro-
cessed through an LSTM network, which then out-
puts a prediction for a single language. Finally,
a max-pooling-based majority voting mechanism
was used to combine the predictions from all char-

acters and determine the dominant language of the
input string.

Recently, hierarchical models were used for lan-
guage identification. For instance, the LIMIT
model (Agarwal et al., 2023) leverages lay-
ered structures to handle language identification,
misidentification, and translation across over 350
languages. This method provides a comprehensive
solution by integrating multiple layers of process-
ing to enhance accuracy and robustness.

3 Dataset & Task

The shared task on Devanagari Script Language
Identification (Thapa et al., 2025) aims to develop
a system that can automatically determine the lan-
guage of a sentence in Devanagari script among
Nepali, Marathi, Sanskrit, Bhojpuri, and Hindi.
This task addresses the critical need for accurate
language identification in multilingual contexts.
The data provided by this share task was sampled
from different data sources:

• The Nepali data source came from 2 sources
that focus on the Nepali election, (i) Nehate:
Large-scale annotated data shedding light on
hate speech in nepali local election discourse
(Thapa et al., 2023) and (ii) Multi-Aspect An-
notation and Analysis of Nepali Tweets on
Anti-Establishment Election Discourse (Rau-
niyar et al., 2023).

• The Marathi data source, L3CubeMahaSent
(Kulkarni et al., 2021), consists of almost
16,000 distinct tweets extracted from various
Maharashtrian personalities’ Twitter accounts,
and it was annotated from sentiment analysis.

• The Sanskrit data source, Itihasa: A large-
scale corpus for Sanskrit to English transla-
tion(Aralikatte et al., 2021), consists of 93,000
pairs of Sanskrit shlokas and their English
translations.

• The Bhojpuri data source, English-Bhojpuri
SMT System: Insights from the Karaka Model
(Ojha, 2019), consists of 65,000 parallel sen-
tences have been created containing 4,40,609
and 4,58,484 words in English and Bhojpuri
respectively.

• The Hindi data source came from 2 sources
that focuses on political hate speech in Indian
election: (i) CHUNAV: Analyzing Hindi Hate
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Language Train Development
Nepali 12544 2688
Marathi 11034 2364
Sanskrit 10996 2356
Bhojpuri 10184 2182
Hindi 7664 1643

Table 1: CHIPSAL@COLING 2025 Devanagari Script
Language Identification Task - data split statistics.

Speech and Targeted Groups in Indian Elec-
tion Discourse (Jafri et al., 2024) (ii) Uncov-
ering political hate speech during Indian elec-
tion campaign: A new low-resource dataset
and baselines (Jafri et al., 2023)

The training dataset consists of a total of 52422
sentences distributed among Devanagari script lan-
guages as described in table 1. The development
dataset consists of a total of 11233 sentences dis-
tributed among Devanagari script languages as de-
scribed in table 1. Finally, the test dataset used for
the evaluation of the developed method consists of
a total of 11234 sentences.

4 Methodology, Results & Discussion

The training process will involve using fastText
to create language models based on the training
dataset. The following steps will be undertaken:

1. Tokenization: Tokenization is a fundamental
step in the preprocessing phase of language
identification, as it transforms raw text into
manageable pieces. This process involves
breaking down text into tokens, which can
be words, phrases, or symbols, allowing for
a more effective analysis of the sentence. In
this work, the no language left behind 1 tok-
enizer (Costa-jussà et al., 2022) was used for
tokenizing the text.

2. Parameters Fine-Tuning: The fastText clas-
sifier has 3 main parameters, (i) the words
n-grams, (ii) the learning rate, and (iii) the
number of training epochs. Different values
for each of those parameters were examined,
for the number of words n-gram values from
2 to 4 were examined, for the learning rate 2
values of 0.05 and 0.1 were examined, and for
the number of training epochs 2 values of 25

1https://huggingface.co/facebook/nllb-200-distilled-
600M

Ngrams lr Epochs F1

2 0.05 25 0.9968
2 0.05 50 0.9981
2 0.1 25 0.9975
2 0.1 50 0.9981
3 0.05 25 0.9961
3 0.05 50 0.9971
3 0.1 25 0.9971
3 0.1 50 0.9978
4 0.05 25 0.9952
4 0.05 50 0.9965
4 0.1 25 0.9963
4 0.1 50 0.9973

Table 2: Results of the development set.

and 50 were examined. For each combination
of these parameters, a fastText classifier was
trained on the 52422 sentences of the train-
ing set, and its performance was evaluated on
the 11233 sentences of the development set.
The F1 scores of the developed models are
summarized in table 2.

3. Final Model Training: After analyzing the
results of the experiments summarized in ta-
ble 2, the final model was trained on 63655
sentences that represent the entire training and
development sets, the fastText classifier used
2-gram word feature, a learning rate of 0.1,
and was trained for 50 epochs. This model
was trained on a Google colab CPU machine
with a total memory of 12.67 GB, the training
of this model took less than 90 seconds, and
the generation of the label to the 11234 sen-
tences of the test set took less than 10 seconds.

The developed system has 2 main limitations:

1. Many Devanagari languages were not consid-
ered in this shared task (Garhwali, Kashmiri,
etc.), and when the number of languages to be
identified by a classifier increases, the average
accuracy generally tends to decrease (Leong
et al., 2022). The effect of the change in the
number of languages on the performance of
the fastText classifier was not assessed in this
study.

2. The developed fastText classifier has a very
good performance since the data used for train-
ing and evaluating the model came from simi-
lar data sources, however, the fastText model
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uses simple features like word n-grams, so, it
might learn to classify a sentence into a given
language based on something like a proper
noun. So, if there was a Nepali tweet dis-
cussing the Indian election might be wrong-
fully classified as as Hindi. The effect of out-
of-sample was also not assessed in this study.

5 Conclusions

In this paper, a fastText classifier was trained to
identify the Devanagari script language from 5 dif-
ferent Languages: Nepali, Marathi, Sanskrit, Bho-
jpuri, and Hindi. The proposed method is efficient
as the final model training and the generation of the
labels for the test set takes less than 2 minutes on a
CPU machine, and it was ranked first on the CHIP-
SAL@COLING 2025 Task on Devanagari Script
Language Identification achieving an F1 score of
0.9997.
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Abstract

Hate speech poses a significant challenge on
social networks, particularly in Devanagari
scripted languages, where subtle expressions
can lead to harmful narratives. This pa-
per details our participation in the "Shared
Task on Natural Language Understanding
of Devanagari Script Languages" at CHIP-
SAL@COLING 2025, addressing hate speech
detection and target identification. In Sub-task
B, we focused on classifying the text either
hate or non-hate classified text to determine
the presence of hate speech, while Sub-task C
focused on identifying targets, such as individu-
als, organizations, or communities. We utilized
the XLM-RoBERTa model as our base and
explored various adaptations, including Adap-
tive Weighting and Gated Adaptive Weighting
methods. Our results demonstrated that the
Hierarchical Gated adaptive weighting model
achieved 86% accuracy in hate speech detec-
tion with a macro F1 score of 0.72, particularly
improving performance for minority class de-
tection. For target detection, the same model
achieved 75% accuracy and a 0.69 macro F1
score. Our proposed architecture demonstrated
competitive performance, ranking 8th in Sub-
task B and 11th in Subtask C among all partici-
pants.

1 Introduction

In the age of rapid digital communication, social
media platforms have become the primary space
for people to share their opinions and engage in
discourse (Zhou et al., 2024). However, this de-
mocratization of speech has also led to the propa-
gation of hate speech, which can have severe con-
sequences for individuals and communities (Parida
et al., 2024). While hate speech detection in major
languages like English has seen significant advance-
ments, there is a pressing need to extend this effort
to languages written in Devanagari scripts, such
as Nepali, Marathi, Sanskrit, Bhojpuri, and Hindi

(Rauniyar et al., 2023). These languages, despite
their widespread use in South Asia, remain un-
derrepresented in hate speech research (Piot et al.,
2024). Devanagari script languages present unique
challenges for hate speech detection due to their lin-
guistic structure, rich cultural context, and scarcity
of labeled datasets (Parihar et al., 2021). Exist-
ing hate speech detection models, predominantly
trained in English or other high-resource languages,
often fail to capture the nuances of these languages,
leading to poor performance. Furthermore, the
intertwining of hate speech with regional socio-
political issues adds layers of complexity that exist-
ing models are not equipped to handle (Jafri et al.,
2024).

To address these challenges, (Sarveswaran
et al., 2025) introduced a shared task at CHIP-
SAL@COLING 2025 where participants’ systems
need to detect the language (Nepali, Marathi, San-
skrit, Bhojpuri, or Hindi) a given Devanagari text
belongs to, as well as identify hate speech and its
targets within the text. Subtask B of the challenge
contains tweets that were carefully classified into
two groups, hate and non-hate. Subtask C focuses
on identifying whether the hate speech targets ’Indi-
vidual’, ’Organization’, or ’Community’, allowing
for detailed tracking of hate speech communication
patterns in Devanagari. We have participated in
Subtask B and Subtask C, and achieved ranks 8th
and 11th respectively, among all participants.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the shared task and
dataset statistics. Section 3 details our hierarchical
attention-based architecture. Section 4 describes
the experimental setup and evaluation metrics. Sec-
tion 4.1 presents our model’s performance and com-
parison with other participating systems. Section 5
concludes our findings, while Section 6 discusses
the limitations and potential improvements in hate
speech detection for Devanagari script languages.
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2 Task and Dataset Description

The ’Shared Task on Natural Language Under-
standing of Devanagari Script Languages’ at CHIP-
SAL@COLING 2025 focuses on key challenges
in processing Devanagari-scripted languages. The
first subtask, Devanagari Script Language Identifi-
cation, aims to accurately identify the language of
a given Devanagari text. Subtask B, Hate Speech
Detection, determines whether a text contains hate
speech. Building on this, Subtask C targets iden-
tifying specific hate speech targets, such as indi-
viduals or groups. This shared task promotes com-
prehensive Devanagari language understanding by
addressing script identification, hate speech detec-
tion, and hate speech target identification. (Thapa
et al., 2025).

The hate speech datasets for this shared task
were drawn from various sources. For Hindi,
the CHUNAV dataset (Jafri et al., 2024) and a
dataset on political hate speech during Indian elec-
tions (Jafri et al., 2023) were used. The Nepali
dataset, NEHATE (Thapa et al., 2023), and a multi-
aspect dataset on Nepali tweets regarding anti-
establishment election discourse (Rauniyar et al.,
2023) were also included. Datasets for Bhojpuri
(Ojha, 2019), Marathi (Kulkarni et al., 2021), and
Sanskrit (Aralikatte et al., 2021) were utilized. In
this shared task, we participated in both Subtask
B and Subtask C, achieving ranks of 8th and 11th
respectively among all participants. The dataset
for Subtask B includes binary annotations (0 for
non-hate and 1 for hate speech), while Subtask C
focuses on categorizing hate speech targets into
three classes: individual (0), organization (1), and
community (2). Table 1 provides statistics on the
dataset used for the ChiPSAL shared task for both
subtasks.

Table 1: The statistics of the used dataset in CHIP-
SAL@COLING 2025 Subtask B and Subtask C.

Category Subask B Subtask C
Hate Non-Hate Individual Organization Community

Train 2214 1,6805 1074 856 284
Val 474 3602 230 183 61
Test 475 3601 230 184 61
Total 3164 24008 1534 1223 406

3 Proposed Framework

3.1 Overview
We have proposed a model that builds on the XLM-
RoBERTa architecture, incorporating adaptive at-
tention mechanisms to improve classification per-

formance in diverse linguistic contexts. Figure 1
shows the architecture of our proposed model.

3.2 XLM-RoBERTa
XLM-RoBERTa serves as the foundation of our
model. It is a multilingual transformer with 12
layers, 768 hidden units, and 12 attention heads.
This base model processes the input text and gener-
ates contextualized word embeddings, also known
as hidden states. These hidden states, denoted as
H ∈ RB×L×D, where B is the batch size, L is the
sequence length, and D is the hidden size (768),
serve as the features extracted from the input text
and form the basis for subsequent processing in our
model.

3.3 Attention Mechanism
We implement a dual-attention mechanism con-
sisting of word-level and sentence-level attention
components.

3.3.1 Word-level Attention
The word-level attention component is a two-layer
feedforward neural network that processes the hid-
den states to generate attention weights for individ-
ual tokens. The process can be described by the
following equations:

ew = tanh(W 1
wH + b1w) (1)

αw = softmax(W 2
wew + b2w) (2)

cw =
L∑

i=1

αi
wH

i (3)

where W 1
w ∈ RD×D, W 2

w ∈ R1×D, b1w ∈ RD,
and b2w ∈ R are learnable parameters, αw ∈ RL

are the attention weights, and cw ∈ RD is the
word-level context vector.

3.3.2 Sentence-level Attention
The sentence-level attention mechanism focuses on
broader semantic structures within the input. It fol-
lows a similar structure to the word-level attention:

es = tanh(W 1
sH + b1s) (4)

αs = softmax(W 2
s es + b2s) (5)

cs =

L∑

i=1

αi
sH

i (6)

where W 1
s , W 2

s , b1s, and b2s are learnable parame-
ters with the same dimensions as their word-level
counterparts, αs ∈ RL are the sentence-level at-
tention weights, and cs ∈ RD is the sentence-level
context vector.
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Figure 1: Architecture of the proposed transformer-based multimodal hierarchical fusion model.

3.3.3 Adaptive Weighting
The adaptive weighting component combines the
word-level and sentence-level context vectors
based on their relative importance for each input.

ccombined = [cw; cs] (7)

β = softmax(W 2
a ReLU(W 1

a ccombined + b1a) + b2a)
(8)

cfinal = β1cw + β2cs (9)

where W 1
a ∈ RD×2D, W 2

a ∈ R2×D, b1a ∈ RD,
and b2a ∈ R2 are learnable parameters, β ∈ R2 are
the adaptive weights, and cfinal ∈ RD is the final
context vector that balances word and sentence-
level information.

We also explored advanced variants of the atten-
tion mechanism including gated adaptive weight-
ing, multi-head adaptive weighting, and multi-head
gated adaptive weighting. The detailed architec-
tures and formulations of these variants are pre-
sented in Appendix 7.

3.4 Classification Head
The classification head is a three-layer MLP
with ReLU activations and dropout that takes the
weighted representation and outputs logits for both
two-way and three-way classifications. The for-
ward pass follows:

h1 = ReLU(W1cfinal + b1) (10)

h2 = ReLU(W2h1 + b2) (11)

z = W3h2 + b3 (12)

where W1 ∈ RD×D, W2 ∈ RD/2×D, W3 ∈
R2×D/2, and corresponding biases are learnable
parameters. To handle class imbalance, we use
weighted Cross-Entropy Loss:

L = −
N∑

i=1

wyi [yi log(σ(zi))+(1−yi) log(1−σ(zi))]

(13)
with class weights calculated using sklearn’s ’bal-
anced’ strategy:

wj =
N

K ·Nj
(14)

where N is total samples, K is number of classes,
and Nj is samples in class j.

4 Experimental Settings and Evaluations
Metrics

We implemented our model using PyTorch and
Hugging Face Transformers, with training con-
ducted on an Nvidia A30 GPU. The model was
trained for 10 epochs using an AdamW optimizer
with a learning rate of 2e-5 and batch size of 32.
For reproducibility, we set the manual seed to 30
and used a dropout rate of 0.3 to prevent overfitting.
Input sequences were padded to a maximum length
of 128 tokens. In our implementation, all layers
of XLM-RoBERTa were fine-tuned during train-
ing to maximize its full representational capacity
for contextual and linguistic understanding. The
system’s effectiveness was assessed using standard
metrics: precision, recall, F1-score, and accuracy.
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The macro-averaged F1 score was selected as the
primary evaluation criterion for both subtasks.

4.1 Results and Analysis

On the validation dataset, our best performing
model, the Hierarchical Gated Adaptive Attention
model, achieved an F1 score of 0.72, precision of
0.70, recall of 0.76, and accuracy of 0.86 for hate
speech detection (Subtask B). For target identifica-
tion (Subtask C), the model attained an F1 score of
0.69, precision of 0.69, recall of 0.69, and accuracy
of 0.75. Tables 2 and 3 present our system’s perfor-
mance compared to other participating systems on
the test dataset.

For hate speech detection (Subtask B) 1, our
system achieved competitive results, ranking 8th
among all participants with an F1 score of 0.745
and an accuracy of 0.890. The best performing sys-
tem achieved an F1 score of 0.814, demonstrating
the challenging nature of hate speech detection in
Devanagari script languages. Our model showed
balanced performance between precision (0.735)
and recall (0.758), indicating its effectiveness in
handling class imbalance. In target identification

Table 2: Results comparison of top systems for Subtask
B, R(recall),P(precision),and Acc (accuracy)

System R P F1 Acc Rank
fulbutte .855 .785 .814 .914 1
Yestin .813 .746 .773 .894 2
sumanpaudel .769 .763 .766 .903 3
jebish7 .744 .793 .765 .911 4
lazyboy.blk .736 .790 .759 .910 5
MuhammadA .726 .781 .749 .907 6
mdp0999 .775 .729 .748 .886 7
Ours .758 .735 .745 .890 8

(Subtask C) 2, our system ranked 11th with an F1
score of 0.658 and accuracy of 0.714. While the
top system achieved an F1 score of 0.710, the rela-
tively small performance gap (0.052) between the
first and eleventh positions suggests the complex-
ity of the task and the effectiveness of various ap-
proaches.

Detailed performance analysis of all model vari-
ants of subtask B 8.1 and Subtask C 8.2 is presented
in Appendix 8.

1https://codalab.lisn.upsaclay.fr/
competitions/20000#results

2https://codalab.lisn.upsaclay.fr/
competitions/20000#results

Table 3: Results comparison of top systems for Subtask
C

System R P F1 Acc Rank
sumanpaudel .704 .718 .710 .768 1
Siddartha-10 .687 .741 .703 .779 2
Tofa .672 .742 .692 .766 3
sakib07 .681 .686 .683 .745 4
Dola_C .681 .679 .680 .737 5
jebish7 .669 .697 .679 .750 6
mdp0999 .669 .674 .672 .741 7
jerrytomy .667 .663 .664 .731 8
sandeep_S .657 .675 .664 .739 9
Yestin .655 .674 .661 .745 10
Ours .654 .664 .658 .714 11

5 Conclusion

In this study, we explored hate speech detection
and target identification challenges in Devanagari-
scripted languages through our participation in
CHIPSAL@COLING 2025. Our experimentation
with various attention mechanisms demonstrated
that the Hierarchical Gated Adaptive Weighting
model achieved the best performance, with macro
F1 scores of 0.72 and 0.69 for hate speech detec-
tion and target identification respectively. The in-
tegration of gating mechanisms proved crucial in
addressing class imbalance, particularly improv-
ing minority class detection in both tasks. Despite
achieving competitive rankings—8th in Subtask B
with an F1 score of 0.745 and 11th in Subtask C
with an F1 score of 0.658—our analysis revealed
persistent challenges. The model showed stronger
performance in detecting individual (F1: 0.79) and
organizational targets (F1: 0.77) but struggled with
community-targeted hate speech (F1: 0.52), high-
lighting the complexity of detecting group-targeted
hate. This performance disparity suggests the need
for more sophisticated approaches to handle the
nuanced expressions of community-targeted hate
speech in Devanagari languages.

6 Limitations

Our work contributes to the research on processing
low-resource languages, demonstrating how hier-
archical attention models with adaptive weighting
can significantly enhance performance. However,
the model struggles to detect community-targeted
hate speech (F1: 0.52) compared to individual (F1:
0.79) and organizational targets (F1: 0.77). This
performance gap highlights the model’s difficulty
in handling unbalanced data for target detection,
especially in recognizing hate speech directed at
specific communities. Community-targeted tweets
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often employ indirect or culturally nuanced lan-
guage, as detailed in Appendix 9.2. We used
XLM-RoBERTa as our base model, which, despite
its robust multilingual capabilities, may lack the
nuanced script-specific features required for De-
vanagari. This limitation is particularly evident in
handling code-mixed language or symbolic terms.
We observed that named entities and metaphorical
phrases—common in political discourse—were fre-
quently misinterpreted, leading to false positives in
hate speech detection. Detailed examples of these
challenges can be found in Appendix 9.1. To ad-
dress these limitations, future work could include
specialized pre-training methods that better handle
linguistic and cultural elements inherent in Devana-
gari languages. Exploring script-specific models or
training strategies may also help the model distin-
guish between satirical and hateful language more
effectively, especially in community-oriented con-
texts where expression style differs significantly.
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7 Appendix A

7.1 Advanced Attention Mechanisms

7.1.1 Gated Adaptive Weighting
The gated adaptive weighting component combines
the context vectors at the word and sentence level
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using a gating mechanism.

ccombined = [cw; cs] (15)

g = σ(W 2
g tanh(W 1

g ccombined + b1g) + b2g) (16)

cfinal = g · cw + (1− g) · cs (17)

where W 1
g ∈ RD×2D, W 2

g ∈ R1×D, b1g ∈ RD,
and b2g ∈ R are learnable parameters, g ∈ R
is the gate value, σ is the sigmoid function, and
cfinal ∈ RD is the final context vector that bal-
ances word and sentence-level information. This
gated adaptive weighting mechanism allows our
model to dynamically adjust the importance of
word-level and sentence-level features for each in-
put, potentially improving its ability to detect hate
speech across various linguistic contexts.

7.1.2 Multi-head Adaptive Weighting
Multi-head methods incorporate adaptive weight-
ing within their structure through multiple heads,
without the need for an additional weighting step.
After obtaining the context vectors for each head,
we concatenate them and apply an adaptive weight-
ing mechanism:

ccombined = [c1w; c
1
s; c

2
w; c

2
s; ...; c

h
w; c

h
s ] (18)

β = softmax(W 2
a ReLU(W 1

a ccombined + b1a) + b2a)
(19)

cfinal =

2h∑

i=1

βici (20)

where W 1
a ∈ RD×2hD, W 2

a ∈ R2h×D, b1a ∈ RD,
and b2a ∈ R2h are learnable parameters, β ∈ R2h

are the adaptive weights, and cfinal ∈ RD is the
final context vector.

7.1.3 Multi-head Gated Adaptive Weighting
The Multi-Head Gated Adaptive Weighting (MH-
GAW) mechanism extends the concept of adaptive
weighting by using multiple attention heads and
incorporating a gating mechanism. This approach
allows the model to capture different aspects of the
input simultaneously and dynamically balance the
importance of word-level and sentence-level fea-
tures. For each head i (where i = 1, 2, ..., h, and h
is the number of heads):

eiw = tanh(W 1i
w H + b1iw ) (21)

αi
w = softmax(W 2i

w eiw + b2iw ) (22)

ciw =

L∑

j=1

αij
wH

j (23)

eis = tanh(W 1i
s H + b1is ) (24)

αi
s = softmax(W 2i

s eis + b2is ) (25)

cis =

L∑

j=1

αij
s H

j (26)

where W 1i
w ,W 2i

w ,W 1i
s ,W 2i

s are learnable parame-
ters for each head, αi

w, α
i
s ∈ RL are the attention

weights, and ciw, c
i
s ∈ RD are the word-level and

sentence-level context vectors for each head. The
context vectors from all heads using equation 27
and 28

cw =
1

h

h∑

i=1

ciw (27)

cs =
1

h

h∑

i=1

cis (28)

where cw, cs ∈ RD are the aggregated word-level
and sentence-level context vectors. A gating mech-
anism is applied to dynamically balance the word-
level and sentence-level information using equa-
tions 29, 30 and 31

ccombined = [cw; cs] (29)

g = σ(W 2
g tanh(W 1

g ccombined + b1g) + b2g) (30)

cgated = g1 · cw + g2 · cs (31)

where W 1
g ∈ RD×2D, W 2

g ∈ R2×D, b1g ∈ RD,
and b2g ∈ R2 are learnable parameters, g ∈ R2

are the gate values, σ is the sigmoid function, and
cgated ∈ RD is the gated context vector and final
context vector passed in classification head.

8 Appendix B

8.1 Task B Results
The performance in Subtask B using the Hierarchi-
cal Adaptive Attention Model is shown in Table
4. We achieved an accuracy of 0.73 on the test set
of 4,076 samples. For class 0 (non-hate speech),
the model attained precision of 0.93, recall of 0.94,
and an F1-score of 0.94 across 3,602 instances. For
class 1 (hate speech), it recorded precision of 0.52,
recall of 0.46, and an F1-score of 0.49 over 474
instances.

The macro-averaged F1-score was 0.71, and
the weighted F1-score was 0.88. This indicates
a significant disparity in performance between
classes, with high effectiveness in detecting non-
hate speech (F1: 0.94) due to the model’s handling
of the majority class. However, detecting hate
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speech was more challenging (F1: 0.49), show-
ing that while precision (0.52) and recall (0.46)
were balanced, the minority class proved difficult
to classify accurately.

Table 4: Results for Subtask B: Hate Speech Detection
Using Hierarchical Adaptive Attention Model

prec. rec. f1 supp.
0 0.93 0.94 0.94 3602
1 0.52 0.46 0.49 474
acc. 0.73 4076
macro 0.72 0.70 0.71 4076
weighted 0.88 0.89 0.88 4076

The performance in the Subtask B using the Hi-
erarchical Gated Adaptive Attention Model is pre-
sented in Table 5. The model achieved an accuracy
of 0.86 on the test set of 4,076 samples. For class 0,
the model attained precision of 0.95, recall of 0.90,
and an F1-score of 0.92 across 3,602 instances. For
class 1, the precision was 0.44, recall was 0.63,
and F1-score was 0.52 over 474 instances. The
macro-averaged and weighted F1-score was 0.72,
and 0.87 respectively.

This architecture demonstrated strong overall
performance with 86% accuracy and improved han-
dling of class imbalance. Non-hate speech detec-
tion remained high (F1: 0.92), with excellent preci-
sion (0.95) and a slightly lower recall (0.90). Also
in hate speech detection, we observed an increase
of 0.63 in recall, although precision dropped to
0.44, indicating better minority class detection at
the cost of some additional false positives. The
macro F1-score of 0.72 and weighted F1-score of
0.87 reflect robust performance and enhanced han-
dling of the minority class.

Table 5: Results for Subtask B: Hate Speech Detection
Using Hierarchical Gated Adaptive Attention Model

prec. rec. f1 supp.
0 0.95 0.90 0.92 3602
1 0.44 0.63 0.52 474
acc. 0.86 4076
macro 0.70 0.76 0.72 4076
weighted 0.89 0.86 0.87 4076

The performance in Subtask B using the Hier-
archical Multi-head Adaptive Weighting model is
shown in Table 6. The model achieved an accuracy
of 0.89 on a Val set of 4,076 samples. For class 0,
the model recorded precision of 0.92,recall of 0.95,
and an F1-score of 0.94 across 3,602 instances.
For class 1, the precision was 0.52, the recall was
0.39, and the F1-score was 0.45 over 474 instances.

The macro-averaged F1-score was 0.69, while the
weighted F1-score was 0.88.

While achieving the highest accuracy at 89%,
the model displayed significant class imbalance
in performance. Non-hate speech detection was
highly effective. However, hate speech detection
struggled (F1: 0.45), with a low recall (0.39), in-
dicating missed detections despite moderate preci-
sion (0.52). The macro F1-score of 0.69 reflects
the challenge of achieving balanced performance
across classes, while the high weighted F1-score of
0.88 underscores strong performance on the major-
ity class.

Table 6: Results for Subtask B: Hate Speech Detection
Using Hierarchical Multi-head Adaptive Weighting

prec. rec. f1 supp.
0 0.92 0.95 0.94 3602
1 0.52 0.39 0.45 474
acc. 0.89 4076
macro 0.72 0.67 0.69 4076
weighted 0.88 0.89 0.88 4076

The performance in Subtask B using the Hi-
erarchical Multi-head Gated Adaptive Weighting
model is presented in Table 7. The model achieved
an accuracy of 0.87 on a val set of 4,076 samples.
For class 0, it demonstrated precision of 0.94, re-
call of 0.91, and an F1-score of 0.93 across 3,602
instances. For class 1, it recorded precision of
0.45,recall of 0.58, and an F1-score of 0.51 over
474 instances. The macro and weighted averaged
F1-score was 0.72 and 0.88 respectively.

The model achieved 87% accuracy with im-
proved balance across classes. Non-hate speech
detection remained strong, showing balanced pre-
cision and recall. Hate speech detection improved
(F1: 0.51) with increased recall (0.58) compared to
the non-gated version, though precision was mod-
erate (0.45). The macro F1-score of 0.72 matches
that of the gated attention model, indicating com-
parable balanced performance.

Table 7: Results for Subtask B: Hate Speech Detection
Using Hierarchical Multi-head Gated Adaptive Weight-
ing

prec. rec. f1 supp.
0 0.94 0.91 0.93 3602
1 0.45 0.58 0.51 474
acc. 0.87 4076
macro 0.70 0.75 0.72 4076
weighted 0.89 0.87 0.88 4076

In subtask B, we analyzed different proposed ar-
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chitectures to gain crucial insights. The Hierarchi-
cal Multi-head Adaptive Weighting model achieved
the highest accuracy of 89% but showed weak
performance in detecting the minority class. In
contrast, the Hierarchical Gated Adaptive Atten-
tion model provided a more balanced performance,
with 86% accuracy and significantly improved hate
speech detection, while maintaining strong non-
hate speech detection. Both gated architectures,
Gated Adaptive Attention and Multi-head Gated
Adaptive Weighting models consistently outper-
formed their non-gated counterparts in minority
class detection, achieving macro F1 scores of 0.72.
The substantial class imbalance influenced model
behavior, with gating mechanisms proving particu-
larly effective in managing this challenge. These
results indicate that, for practical applications in
binary hate speech detection, gated architectures
offer optimal performance by balancing overall ac-
curacy with reliable minority class detection.

8.2 Task C Results
The performance of the hierarchical adaptive
weighting model for identifying hate speech targets
(Subtask C) categorized as ’individual,’ ’organi-
zation,’ or ’community’—is presented in Table 8.
The model achieved accuracy of 73% on val set of
474 samples. For class 0 (individual), it reported
precision of 0.78, recall of 0.76, and F1-score of
0.77 across 230 instances. For class 1 (organiza-
tion), the precision was 0.75, recall was 0.78, and
F1-score was 0.76 over 183 instances. For class 2
(community), the model had precision of 0.45, re-
call of 0.44, and F1-score of 0.45 over 61 instances.
The macro-averaged F1-score was 0.66, and the
weighted F1-score matched the accuracy at 0.73.

While achieving balanced macro-averaged preci-
sion and recall of 0.66, the model performed well
for individual (F1: 0.77) and organizational tar-
gets (F1: 0.76). However, identifying community
targets remained challenging, with both precision
and recall at 0.45, indicating difficulty in detect-
ing the minority class. The weighted F1-score
of 0.73 reflects the model’s proportionate perfor-
mance across the class distributions. The confusion
matrix, shown in Figure 2, provides deeper insight
into the model performance across the classes.

The Gated Adaptive Weighting model, in Sub-
task C achieved an accuracy of 75% on a test set
of 474 samples, as shown in Table 9. For class 0,
the model reported precision of 0.78, recall of 0.81,
and F1-score of 0.79 across 230 instances. For

Figure 2: Confusion matrix of the hierarchical adaptive
weighting model.

Table 8: Results for Subtask C: Hate Speech Detection
Using Hierarchical Adaptive Weighting

Prec. Rec. F1 Supp.
0 0.78 0.76 0.77 230
1 0.75 0.78 0.76 183
2 0.45 0.44 0.45 61
Acc. 0.73 474
Macro 0.66 0.66 0.66 474
Weight. 0.73 0.73 0.73 474

class 1, it recorded precision of 0.80, recall of 0.75,
and F1-score of 0.77 across 183 instances. For
class 2 , the model attained precision of 0.51,recall
of 0.52, and F1-score of 0.52 across 61 instances.
The macro-averaged F1-score was 0.69, while the
weighted F1-score was 0.75.

The gating mechanism significantly enhanced
minority class detection, resulting in an F1-score
of 0.52 with balanced precision and recall of 0.51
and 0.52, respectively. Performance on individual
targets improved, achieving an F1-score of 0.79
(precision: 0.78, recall: 0.81), while organizational
target detection reached an F1-score of 0.77 (pre-
cision: 0.80, recall: 0.75). The model demon-
strated a balanced precision-recall trade-off across
all classes, with weighted metrics consistently at
0.75, indicating robust performance regardless of
class distribution. Figure 3 presents the confusion
matrix, offering a detailed view of the performance
of the model in all classes.

The Multi-head Adaptive Weighting model in
Subtask C achieved an accuracy of 73% on val set
of 474 samples, as shown in Table 10. For class
0, the model reported precision of 0.78, recall of
0.78, and F1-score of 0.78 across 230 instances.
For class 1, it recorded precision of 0.76, recall of
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Figure 3: Confusion matrix of the hierarchical gated
adaptive weighting model.

Table 9: Results for Subtask C: Hate Speech Detection
Using Hierarchical Gated Adaptive Weighting

Prec. Rec. F1 Supp.
0 0.78 0.81 0.79 230
1 0.80 0.75 0.77 183
2 0.51 0.52 0.52 61
Acc. 0.75 474
Macro 0.69 0.69 0.69 474
Weight. 0.75 0.75 0.75 474

0.73, and F1-score of 0.74 across 183 instances.
For class 2 , the model attained a precision of 0.47,
a recall of 0.52, and an F1-score of 0.50 across 61
instances. The macro and weighted F1-scores were
0.67 and 0.73, respectively.

With an accuracy of 73%, this model demon-
strated a slight improvement in recall (macro-recall:
0.68). Detection of individual targets maintained
strong performance (F1: 0.78), with both precision
and recall at 0.78. For organizational targets, there
was a slight decline (F1: 0.74), with precision at
0.76 and recall at 0.73. Community target detec-
tion improved moderately compared to the non-
gated hierarchical model, achieving an F1-score of
0.50, with precision at 0.47 and recall at 0.52. The
weighted metrics stabilized at 0.73, consistent with
accuracy. The confusion matrix depicted in Figure
4 sheds light on the model’s performance for each
class.

The Multi-head Gated Adaptive Weighting
model in Subtask C achieved an accuracy of 73%
on a val set of 474 samples, as shown in Table 11.
For class 0, the model achieved precision of 0.76,re-
call of 0.78, and an F1-score of 0.77 across 230 in-
stances. For class 1, it recorded a precision of 0.78,
a recall of 0.75, and an F1-score of 0.76 across 183

Figure 4: Confusion matrix of the multi-head adaptive
weighting model.

Table 10: Results for Subtask C: Hate Speech Detection
Using Muti-head Adaptive Weighting

Prec. Rec. F1 Supp.
0 0.78 0.78 0.78 230
1 0.76 0.73 0.74 183
2 0.47 0.52 0.50 61
Acc. 0.73 474
Macro 0.67 0.68 0.67 474
Weight. 0.73 0.73 0.73 474

instances. For class 2, the model attained precision
of 0.43,recall of 0.43, and F1-score of 0.43 across
61 instances. The macro-averaged F1-score was
0.66, while the weighted F1-score was 0.73.

Despite its architectural sophistication, the
model performance remained at 73% accuracy. It
showed a regression in minority class detection (F1:
0.43), with balanced but lower precision and recall
(both at 0.43). Individual target detection main-
tained effectiveness (F1: 0.77) with a precision of
0.76 and a recall of 0.78. Organizational targets
exhibited similar results (F1: 0.76) with a precision
of 0.78 and a recall of 0.75. Detailed information
on the model’s classification accuracy across the
classes can be observed in the confusion matrix
shown in Figure 5)

Table 11: Results for Subtask C: Hate Speech Detection
Using Muti-head Gated Adaptive Weighting

Prec. Rec. F1 Supp.
0 0.76 0.78 0.77 230
1 0.78 0.75 0.76 183
2 0.43 0.43 0.43 61
Acc. 0.73 474
Macro 0.66 0.65 0.66 474
Weight. 0.73 0.73 0.73 474

Comparative analysis identifies the Gated Adap-
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Figure 5: Confusion matrix of the multi-head gated
adaptive weighting model.

tive Weighting model as the optimal architecture,
demonstrating superior performance across all eval-
uation metrics. The introduction of gating mech-
anisms significantly enhanced minority class de-
tection while maintaining strong performance on
majority classes. In contrast, the multi-head ap-
proaches, despite their complexity, did not yield
substantial improvements over simpler architec-
tures. A persistent challenge across all models is
the detection of community-targeted hate speech,
indicating need for additional techniques to address
class imbalance. These results suggest that archi-
tectural simplicity, combined with effective feature
selection through gating, outperforms more com-
plex attention mechanisms in hate speech and target
detection.

9 Appendix C (Error Analysis)

9.1 Appendix C -I

The model exhibited specific challenges in clas-
sifying tweets containing symbolic language,
named entities, and code-mixed expressions, par-
ticularly in understanding nuanced cultural and
script-specific references in Devanagari-based low-
resource languages. Figure 6 shows representative
examples that illustrate these limitations:

The tweet(Index 945) references “Anjana” in a
non-hateful, casual context within election com-
mentary. However, the model incorrectly flags
this as hate speech, demonstrating difficulties in
interpreting named individuals in colloquial, non-
aggressive contexts.

The tweet(Index 1667) critiques leadership,
which could be interpreted as negative, the lan-

Figure 6: Error analysis of samples of Substask B

guage does not explicitly target any individual or
group with hate speech.The hashtag "#NoNotA-
gain" is often associated with resistance or oppo-
sition, which may have contributed to the model’s
identification of the tweet as possibly related to
hate speech, especially in the context of political
discourse. This tweet contains a mix of Nepali and
English, phrase as a political expression of discon-
tent without hate. The model’s misclassification
reveals limitations in processing symbolic expres-
sions within code-mixed language, especially in-
volving Devanagari script. The tweet(Index 2530)
contains the term ‘"lauro" carries symbolic mean-
ing in Nepali political discourse. Used here in a
non-hostile critique of electoral commission deci-
sions, its misclassification as hate speech highlights
the model’s difficulty in interpreting culturally spe-
cific metaphors without explicit hate markers. The
tweet("Index 2615") contains hyperbolic political
rhetoric attributed to a political figure. The model’s
incorrect classification demonstrates challenges in
processing sarcasm and layered interpretation. The
language used in the tweet(Index 2443), such as
"Galat manchhelai parnayo" (voting for the wrong
person) and "sadegleka neta" (rotten leaders), car-
ries a negative tone. This could be seen as ag-
gressive or disrespectful towards political leaders,
which may have influenced the model’s classifica-
tion.However, while the tone is critical, the tweet
doesn’t contain hate speech towards any particu-
lar group. The phrase "Hajurbuba pustalai bidayi
garaun" (let’s say goodbye to the older generation
of leaders) focuses on generational change. The
critique is directed at political figures considered
outdated or ineffective, which is a common politi-
cal sentiment.The model could have misinterpreted
the critical nature of the tweet as hateful, possibly
because of the phrases "Galat manchhelai parnayo",
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"Hajurbuba pustalai bidayi garaun" and "sadegleka
neta" (rotten leaders).

9.2 Appendix C -II
To evaluate our model’s robustness in distinguish-
ing hate speech targets, we conducted an error anal-
ysis on misclassified instances. This analysis pro-
vided insights into common misclassification pat-
terns, particularly among categories of individuals,
organizations, and communities. Figure 7 presents
examples of these errors, along with interpreta-
tions for each case. The analysis revealed specific
trends in misclassification across categories. For in-
stance, tweets targeting individuals (Class 0) were
frequently misclassified as targeting communities
(Class 2), likely due to language that generalized
statements to a broader group. Similarly, tweets
aimed at organizations (Class 1) were often misin-
terpreted as targeting communities (Class 2) due to
the use of collective or broad descriptors.

Figure 7: Error analysis of samples of Substask C

In tweet (Index 421), a specific individual "@KT-
nepal" is criticized using direct language, but the
inclusion of broader terms like "Prajatantr ko do-
hol na kaat" (loosely criticizing broader democratic
practices) likely led the model to misclassify it as
targeting a community (Class 2). Tweet (Index
206) targets a spokesperson (an individual) but also
references religious and political groups ("Ramb-
hakton" and "Jinnah"), which may have confused
the model into categorizing it as community-level
speech (Class 2). Tweet (Index 253) critiques the
BJP (a political organization) but uses phrases like
"Gulaam mansikta ke gulaam" ("slave mentality"),
which could be interpreted as a critique of a broader
societal mindset. This likely led the model to clas-
sify it under communities (Class 2) instead of or-
ganizations (Class 1). Tweet (Index 91) employs

sarcastic commentary that seems directed at an indi-
vidual due to its personal tone ("Jummon ke nazron
se hamari totee surakshit hai"), but it actually tar-
gets a group associated with a particular ideology.
The model misinterpreted this, resulting in a clas-
sification as an individual (Class 0) rather than an
organization (Class 1).

In tweet (Index 457), although the statement ref-
erences a community ("Jo apne bilon se nikal kar
bilbila rahe hain"), it is attributed to a political
leader (@myogiadityanath). This association with
an organization might have caused the model to
misclassify it as targeting an organization (Class
1) instead of a community (Class 2). The tweet
(Index 309) criticizes a group but also mentions
a specific individual, "Karn Mall." The presence
of this individual reference may have confused the
model, leading to a classification under individuals
(Class 0) rather than communities (Class 2). These
findings suggest that our model requires improved
contextual awareness, particularly in handling nu-
anced linguistic features like collective nouns and
generalized rhetoric. Future iterations could benefit
from incorporating additional context markers or
keywords associated with specific entities to en-
hance target classification accuracy."
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Abstract

The rapid rise of social media has emphasized
the spread of harmful and hateful content, mak-
ing it challenging for its identification. Contex-
tual semantics is very important as prior stud-
ies present that context level semantics is a
more trustworthy indicator of hatefulness than
word level semantics for detecting hate speech.
This paper attempts to check the usability of
transformer-based models for the identifica-
tion of hate speech on code-mixed datasets,
which includes Google-MuRIL, LaBSE, XLM-
Roberta-base, mbert and distil-mbert. The
above is largely due to its ability for high-level
representations of complex and context-dense
meaning. Besides this, we experiment on en-
semble approach that covers all of the above
models to reach out for an even higher level of
performance in detection. The experiment re-
sults show the best performing macro F1-scores
are reported in case of MuRIL in comparison
to other implemented models.

1 Introduction

In an age in which the growth of social media is
exponential for applications like X, Facebook, and
ShareChat, millions of users now communicate in
ways that were simply impossible in the past. It
creates easily accessible, real-time conduits for in-
formation, social commentary, and open debate.
At the same time, it facilitates hate speech, mis-
information, and other types of offensive content
(Saumya et al., 2024; Kumari and Kumar, 2023;
Kumar et al., 2023, 2021b; ?). It is unrealistic to
respond to these issues alone by using manual mod-
eration when massive volumes of data are created
every second (Saumya et al., 2024, 2021). Due
to this, social media outlets increasingly look to-
wards machine learning automation-based modera-
tion systems.

Despite the fact that tremendous progress has
been made in hate speech detection with high-
resource languages like English, this research work

lags way behind lower-resource languages: Hindi,
Marathi, Nepali, Sanskrit, and Bhojpuri. The cur-
rent scenario makes it even tougher because a lot of
texts on social media are found to be code-mixed,
mixing languages like Hindi or Nepali with English
with unique syntactic constructs. Code-mixing
makes traditional NLP tasks, especially the task
at hand, tougher because there is a deeper need
to discern nuanced contextual cues while crossing
languages so that intentions can be classified accu-
rately (Saumya et al., 2024; Kumar et al., 2020).

The present research work focuses on three spe-
cific subtasks-one of the tasks which involve multi-
lingual language detection between Hindi, Nepali,
Marathi, Sanskrit, and Bhojpuri in the social media
text. The importance of precise language identifi-
cation is directly connected with the effectiveness
of hate speech detection because hate speech or
inflammatory messages cannot be created unless it
is written in the desired language. Classify as hate
speech or non-hate speech in Hindi and Nepali is
the second sub-task. The third subtask is more in-
depth to identify the target of the hateful statement,
determining whether an individual, organization, or
a community is being targeted (Thapa et al., 2025).

We used the state-of-the-art deep learning meth-
ods, focusing more on the transformer-based ar-
chitecture that shows better performance for NLP-
related tasks (Saumya et al., 2024; Kumar et al.,
2021a). We used five transformer-based models
such as mBERT, Distil-mBERT, MuRIL (Mul-
tilingual Representations for Indian Languages),
LaBSE- (Language-Agnostic BERT Sentence Em-
bedding) and XLM-RoBERTa, which explore
unique linguistic diversity with each dataset, We
address its tasks with the strength inherent to each
model. Indeed, for example, one must notice that
MuRIL is particularly strong within regionally nu-
anced language representations specific to Indian
languages-for Hindi and Nepali texts. Its strength
in generating quality, language-independent embed-
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dings makes LaBSE very effective for processing
multilingual and cross-lingual scenarios that are
very common to our requirements.

Besides training individual models, We experi-
mented with an ensemble strategy that combined
mBERT, Distil-mBERT, and XLM-RoBERTa for
classification and applied a voting mechanism
among these models to make the final predictions.
In this voting-based ensemble approach here, each
model classifies an instance independently and de-
rives a final prediction based on the majority voting
of the three models. A label is assigned as a final
prediction if two or more models agree on a classi-
fication outcome. Our approach is a contribution
toward Language Identification, Hate Speech De-
tection and Target Identification for Hate Speech in
Devanagari-script languages while also contribut-
ing to the overall advancement of the field, showing
how transformer-based models are indeed effective
in multilingual low-resource and code-mixed NLP
tasks.

The rest of the paper is organized as follows:
Section 2 lists related work, Section 3 discusses
dataset & task, Section 4 discusses the proposed
methodology. The outcome of the proposed model
is listed in Section 5 and the paper is concluded in
Section 6.

2 Related Work

Multilingual NLP has seen significant progress in
recent years, with more intensive needs for effec-
tive ways and methods to handle many divergent
languages, more often in regions with vast rich
linguistic diversity. Detection of hate speech , tar-
get hate speech (Malik et al., 2024) or language
classification has made ways through traditional
statistical as well as machine learning-based meth-
ods over such techniques as Support Vector Ma-
chines SVMs, Naive Bayes classifiers, recurrent
neural networks (RNNs) trained through curated
language features (Liu et al., 2024; Mandal et al.,
2024). These models fail to capture the contex-
tual nuances of language and perform poorly on
code-mixed and low-resource languages because of
limited availability of training data and reliance on
language-specific pre-processing (Conneau et al.,
2019).

In our study, We used five transformer-based
models individually, namely, mBERT (Devlin et al.,
2018), Distil-mBERT (Sanh et al., 2019), Google’s
MuRIL (Khanuja et al., 2021), LaBSE and XLM-

RoBERTa (Conneau et al., 2019) to check their
capacity for text multilinguality processing for our
study. This approach will enable the singling out
of their individual strengths as well as weaknesses
in either hate speech detection, target identification
for hate speech or language classification tasks. In
(Jafri et al., 2024a), Machine Learning algorithms
like Naive Bayes, Decision Tree, SVM and Trans-
former based Deep Learning models like BERT,
XLM-RoBERTa and Hard Ensemble of BERTs is
used in original and augmented dataset of CHU-
NAV to analyze Hindi hate speech and targeted
groups in Indian Election Discourse (Alam et al.,
2024).

To facilitate our experiments and implementa-
tions, we use the ktrain framework (Maiya, 2022),
which simplifies the process of developing and
training deep learning models. This user-friendly
library eases the inclusion of multiple architectures,
such as transformer-based models, hence stream-
lining our research work. In general, the discussion
of these state-of-the-art models (Khanduja et al.,
2024) and ensemble techniques (Singhal and Bedi,
2024) greatly contributes to understanding and ap-
plying multilingual NLP, especially to challenges
such as low-resource languages and code-mixed
text.

3 Dataset & Task

The dataset covers multiple Devanagari-script lan-
guages and has a great variety of content features.
There are numerals (e.g., 10, 2, 3), emoticons, links
(e.g., https://t.co/wFKDRCF0Ny), tags like "@",
English words (e.g., "Punjab Elections"), and very
evocative, varied sentences in hindi, nepali, san-
skrit, bhojpuri languages. The heterogeneity of
this is an interesting challenge for the classifica-
tion task and provides a broad basis for the testing
of multilingual and mixed-content text processing
models.

The Task on Natural Language Understanding of
Devanagari Script Languages (Thapa et al., 2025)
consists of three subtasks, which focus on criti-
cal challenges in processing languages written in
the Devanagari script. These tasks are language
identification, hate speech detection and the iden-
tification of targets of hate speech (Sarveswaran
et al., 2025).
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Class Dataset size
Nepali 12,543
Marathi 11,034
Sanskrit 10,996
Bhojpuri 10,184
Hindi 7,660
Total 52,417

Table 1: Data distribution for subtask A

Class Dataset size
Non-Hate Speech 16,805
Hate Speech 2,214
Total 19,019

Table 2: Data distribution for subtask B

3.1 Subtask A: Devanagari Script Language
Identification

This is the subtask of language identification in
text typed in the Devanagari script. The dataset
includes five languages: Nepali (Thapa et al., 2023;
Rauniyar et al., 2023), Marathi (Kulkarni et al.,
2021), Sanskrit (Aralikatte et al., 2021), Bhojpuri
(Ojha, 2019) and Hindi (Jafri et al., 2024b, 2023).
There are total 52,417 train data, 11,232 validation
data and 11,234 test data in Subtask A dataset. Dis-
tribution across five classes as shown in Table 1
are as Nepali (12,543), Marathi (11,034), Sanskrit
(10,996), Bhojpuri (10,184) and Hindi (7,660).

3.2 Subtask B: Hate Speech Detection in
Devanagari Script Language

The second subtask is to identify hate speech in
sentences using the Devanagari script. Here, the
dataset is annotated to indicate whether a given
sentence contains hate speech. There are total
19,019 train data, 4,076 validation data and 4,076
test data in Subtask B dataset. Distribution across
two classes as shown in Table 2 are as Non-Hate
Speech (16,805) and Hate Speech (2,214). This an-
notated dataset is imbalanced and consists mainly
of monolingual sentences in Nepali (Thapa et al.,
2023; Rauniyar et al., 2023) and Hindi (Jafri et al.,
2024b, 2023), underlining the need for proper de-
tection mechanisms of different languages within
the Devanagari script (Parihar et al., 2021).

3.3 Subtask C: Target Identification for Hate
Speech in Devanagari Script

The last subtask is to identify the specific hate
speech targets within individual sentences. The

Class Dataset size
Individual 1,074
Organization 856
Community 284
Total 2214

Table 3: Data distribution for subtask C

target categories are defined as individual, organi-
zation, or community. There are total 2,214 train
data, 474 validation data and 475 test data in Sub-
task C dataset. There are 1,074 Individual, 856
Organization, and 284 Community text in training
dataset as shown in Table 3.

4 Methodology

In this paper, we fine-tune five transformer-based
models as shown in Figure 1 for the task of three
distinct subtasks of classification on text in multi-
ple languages. We used XLM-RoBERTa, Distil-
mBERT, mBERT, LaBSE, and MuRIL for the eval-
uation of ability in Devanagari script languages.
Each of these models was fine-tuned on the sub-
task datasets for 20 epochs with a batch size of
64 and a learning rate of 2 × e−5, balancing be-
tween computation efficiency and convergence for
the model.

Considering the average length of the token in
the dataset was approximately 50, we set the maxi-
mum sequence length to 30 tokens with the intent
of saving as much memory space without a loss of
relevant information. The ktrain library utilizes pre-
processing, training and evaluation of the model
itself and has streamlined the entirety of the de-
velopment pipeline as it has brought uniformity in
handling data for the whole model.

In addition to the individual model performances,
we tried to enhance its classification robustness us-
ing ensemble model as shown in Figure 2. We used
mBERT, Distil-mBERT, and XLM-RoBERTa in an
ensemble. The final voting was done using major-
ity vote. This approach utilized diversified model
architectures and combined relevant linguistic in-
sights for making those predictions.

5 Results & Discussion

The Table 4 shows Accuracy (Acc), Precision (Pre),
F1-score (F1) and Recall (Rec) of all five trans-
former models and ensemble model across sub-
task A, subtask B and subtask C. In evaluating
the performance of models across the three sub-
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Table 4: Performance metrics of various models across Subtask A, Subtask B and Subtask C

Model
Subtask A Subtask B Subtask C

Acc Pre F1 Rec Acc Pre F1 Rec Acc Pre F1 Rec

mBERT 98.80 98.71 98.69 98.67 88.39 77.54 47.74 50.39 64.63 58.65 51.07 51.68

Distil-mBERT 99.08 98.98 98.98 98.97 88.34 44.17 46.90 50.00 60.63 52.78 48.06 48.38

LaBSE 99.67 99.64 99.64 99.65 89.08 78.9 57.12 55.53 35.78 32.94 30.12 30.24

MuRIL 99.60 99.56 99.56 99.56 89.54 77.21 64.59 61.09 68.42 61.97 61.01 60.60

XLM-RoBERTa 99.53 99.46 99.48 99.50 89.57 76.49 66.13 62.57 66.52 59.00 58.15 57.73

Ensemble Model 99.13 99.05 99.04 99.02 88.59 75.67 51.81 52.42 69.05 63.91 57.48 56.84

Figure 1: Flow chart of our Transformer based model.

Figure 2: Flow chart of our Ensemble model.

tasks, F1 score was considered the primary compar-
ison score, highlighting the models balanced perfor-
mance in terms of precision and recall. For Subtask
A that is Devanagari Script Language Identifica-
tion, the LaBSE model gave better performance
with an F1 score of 99.64, which showed its well-
capable handling of multilingual text in the De-
vanagari script. In Subtask B (Hate Speech Detec-
tion), XLM-RoBERTa had the highest F1 score at
66.13, which indicated the model’s ability to detect
hate speech across Hindi and Nepali, where lan-
guage nuances are complex. For Subtask C (Target
Identification for Hate Speech), MuRIL was able
to outperform other models with an F1 score of
61.01, meaning it can clearly identify hate speech
targets as "individual," "organization," and "com-
munity." Although the ensemble model generated
stable outcomes on subtasks, it failed to surpass in-
dividual models such as LaBSE, XLM-RoBERTa
and MuRIL for tasks specific F1 scores, meaning
even though ensembling makes prediction stable
across task space, it is instead likely that strengths
of various individual models can be aptly put to use
once a proper task-specific ensemble model has
been chosen rather than just going for an agnostic
ensemble. The variation across tasks indicates that
feature extraction and linguistic knowledge are to
be used distinctly for effective results in each sub-
task. This is an essential insight for future work
involving Devanagari script language processing
and multilingual tasks in general.

6 Conclusion

The results show that transformer-based models
have impressive capabilities for various NLP tasks
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in Devanagari-scripted languages. Each model
brought in different strengths: LaBSE was highly
effective in language identification across closely
related languages, XLM-RoBERTa excelled in hate
speech detection, as it is cross-lingually designed;
and MuRIL achieved the highest accuracy in hate
speech target identification as it is pre-trained on
Indian languages. Although stable result was pre-
sented by the ensemble over all the tasks, every
individual model performed better at task-specific
metrics than the combination. These results indi-
cate that instead of generalized ensembling for sub-
tler multi-linguistic applications of NLP, there is
more possibility of targeting the application accord-
ing to which the most competent model selection
would be advantageous. For the current domain,
in which this approach has given direction, similar
future directions can be highlighted for research-
ing Devanagari language processing based more on
specificity of the task rather than general applica-
tion techniques.

References
Md Alam, Hasan Mesbaul Ali Taher, Jawad Hos-

sain, Shawly Ahsan, and Mohammed Moshiul
Hoque. 2024. CUET_NLP_Manning@LT-EDI 2024:
Transformer-based approach on caste and migration
hate speech detection. In Proceedings of the Fourth
Workshop on Language Technology for Equality, Di-
versity, Inclusion, pages 238–243, St. Julian’s, Malta.
Association for Computational Linguistics.

Rahul Aralikatte, Miryam De Lhoneux, Anoop
Kunchukuttan, and Anders Søgaard. 2021. Itihasa:
A large-scale corpus for sanskrit to english transla-
tion. In Proceedings of the 8th Workshop on Asian
Translation (WAT2021), pages 191–197.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Farhan Ahmad Jafri, Kritesh Rauniyar, Surendrabikram
Thapa, Mohammad Aman Siddiqui, Matloob Khushi,
and Usman Naseem. 2024a. Chunav: Analyzing
hindi hate speech and targeted groups in indian elec-
tion discourse. ACM Trans. Asian Low-Resour. Lang.
Inf. Process. Just Accepted.

Farhan Ahmad Jafri, Kritesh Rauniyar, Surendrabikram
Thapa, Mohammad Aman Siddiqui, Matloob Khushi,

and Usman Naseem. 2024b. Chunav: Analyzing
hindi hate speech and targeted groups in indian elec-
tion discourse. ACM Transactions on Asian and Low-
Resource Language Information Processing.

Farhan Ahmad Jafri, Mohammad Aman Siddiqui, Suren-
drabikram Thapa, Kritesh Rauniyar, Usman Naseem,
and Imran Razzak. 2023. Uncovering political hate
speech during indian election campaign: A new low-
resource dataset and baselines.

Namit Khanduja, Nishant Kumar, and Arun Chauhan.
2024. Telugu language hate speech detection using
deep learning transformer models: Corpus genera-
tion and evaluation. Systems and Soft Computing,
6:200112.

Simran Khanuja, Diksha Bansal, Sarvesh Mehtani,
Savya Khosla, Atreyee Dey, Balaji Gopalan,
Dilip Kumar Margam, Pooja Aggarwal, Rajiv Teja
Nagipogu, Shachi Dave, Shruti Gupta, Subhash
Chandra Bose Gali, Vish Subramanian, and Partha
Talukdar. 2021. Muril: Multilingual representations
for indian languages. Preprint, arXiv:2103.10730.

Atharva Kulkarni, Meet Mandhane, Manali Likhitkar,
Gayatri Kshirsagar, and Raviraj Joshi. 2021.
L3cubemahasent: A marathi tweet-based sentiment
analysis dataset. In Proceedings of the Eleventh
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, pages
213–220.

Abhinav Kumar, Jyoti Kumari, and Jiesth Pradhan. 2023.
Explainable deep learning for mental health detection
from english and arabic social media posts. ACM
Transactions on Asian and Low-Resource Language
Information Processing.

Abhinav Kumar, Pradeep Kumar Roy, and Sunil
Saumya. 2021a. An ensemble approach for hate and
offensive language identification in english and indo-
aryan languages. In FIRE (Working Notes), pages
439–445.

Abhinav Kumar, Sunil Saumya, and Jyoti Prakash
Singh. 2020. NITP-AI-NLP@ HASOC-Dravidian-
CodeMix-FIRE2020: A machine learning approach
to identify offensive languages from dravidian code-
mixed text. In FIRE (Working notes), pages 384–390.

Gunjan Kumar, Jyoti Prakash Singh, and Abhinav Ku-
mar. 2021b. A deep multi-modal neural network
for the identification of hate speech from social me-
dia. In Responsible AI and Analytics for an Ethical
and Inclusive Digitized Society: 20th IFIP WG 6.11
Conference on e-Business, e-Services and e-Society,
I3E 2021, Galway, Ireland, September 1–3, 2021,
Proceedings 20, pages 670–680. Springer.

Jyoti Kumari and Abhinav Kumar. 2023. JA-NLP@ LT-
EDI-2023: empowering mental health assessment:
A roberta-based approach for depression detection.
In Proceedings of the Third Workshop on Language
Technology for Equality, Diversity and Inclusion,
pages 89–96.

293



Dengyi Liu, Minghao Wang, and Andrew G. Catlin.
2024. Detecting anti-semitic hate speech using
transformer-based large language models. Preprint,
arXiv:2405.03794.

Arun S. Maiya. 2022. ktrain: A low-code li-
brary for augmented machine learning. Preprint,
arXiv:2004.10703.

Muhammad Shahid Iqbal Malik, Aftab Nawaz, and
Mona Mamdouh Jamjoom. 2024. Hate speech
and target community detection in nastaliq urdu
using transfer learning techniques. IEEE Access,
12:116875–116890.

Atanu Mandal, Gargi Roy, Amit Barman, Indranil Dutta,
and Sudip Kumar Naskar. 2024. Attentive fusion:
A transformer-based approach to multimodal hate
speech detection. Preprint, arXiv:2401.10653.

Atul Kr Ojha. 2019. English-bhojpuri smt system:
Insights from the karaka model. arXiv preprint
arXiv:1905.02239.

Anil Singh Parihar, Surendrabikram Thapa, and Sushruti
Mishra. 2021. Hate speech detection using natural
language processing: Applications and challenges.
In 2021 5th International Conference on Trends in
Electronics and Informatics (ICOEI), pages 1302–
1308. IEEE.

Kritesh Rauniyar, Sweta Poudel, Shuvam Shiwakoti,
Surendrabikram Thapa, Junaid Rashid, Jungeun Kim,
Muhammad Imran, and Usman Naseem. 2023. Multi-
aspect annotation and analysis of nepali tweets on
anti-establishment election discourse. IEEE Access.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Kengatharaiyer Sarveswaran, Bal Krishna Bal, Suren-
drabikram Thapa, Ashwini Vaidya, and Sana Shams.
2025. A brief overview of the first workshop on chal-
lenges in processing south asian languages (chipsal).
In Proceedings of the First Workshop on Challenges
in Processing South Asian Languages (CHiPSAL).

Sunil Saumya, Abhinav Kumar, and Jyoti Prakash Singh.
2021. Offensive language identification in dravidian
code mixed social media text. In Proceedings of the
first workshop on speech and language technologies
for Dravidian languages, pages 36–45.

Sunil Saumya, Abhinav Kumar, and Jyoti Prakash Singh.
2024. Filtering offensive language from multilingual
social media contents: A deep learning approach.
Engineering Applications of Artificial Intelligence,
133:108159.

Kriti Singhal and Jatin Bedi. 2024. Transformers@LT-
EDI-EACL2024: Caste and migration hate speech
detection in Tamil using ensembling on transformers.
In Proceedings of the Fourth Workshop on Language
Technology for Equality, Diversity, Inclusion, pages

249–253, St. Julian’s, Malta. Association for Compu-
tational Linguistics.

Surendrabikram Thapa, Kritesh Rauniyar, Farhan Ah-
mad Jafri, Surabhi Adhikari, Kengatharaiyer
Sarveswaran, Bal Krishna Bal, Hariram Veeramani,
and Usman Naseem. 2025. Natural language under-
standing of devanagari script languages: Language
identification, hate speech and its target detection. In
Proceedings of the First Workshop on Challenges in
Processing South Asian Languages (CHiPSAL).

Surendrabikram Thapa, Kritesh Rauniyar, Shuvam Shi-
wakoti, Sweta Poudel, Usman Naseem, and Mehwish
Nasim. 2023. Nehate: Large-scale annotated data
shedding light on hate speech in nepali local election
discourse. In ECAI 2023, pages 2346–2353. IOS
Press.

294



Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025), pages 295–300
January 19, 2025. ©2025 International Committee on Computational Linguistics

IITR-CIOL@NLU of Devanagari Script Languages 2025: Multilingual
Hate Speech Detection and Target Identification in Devanagari-Scripted

Languages

Siddhant Gupta1, Siddh Singhal1, and Azmine Toushik Wasi2

1Indian Institute of Technology, Roorkee, India
2Shahjalal University of Science and Technology, Sylhet, Bangladesh

siddhant_g@me.iitr.ac.in, siddh_s@ee.iitr.ac.in, azmine32@student.sust.edu
All authors contributed to the work equally.

Abstract
This work focuses on two subtasks related to
hate speech detection and target identification
in Devanagari-scripted languages, specifically
Hindi, Marathi, Nepali, Bhojpuri, and Sanskrit.
Subtask B involves detecting hate speech in
online text, while Subtask C requires identi-
fying the specific targets of hate speech, such
as individuals, organizations, or communities.
We propose the MultilingualRobertaClass
model, a deep neural network built on the
pretrained multilingual transformer model
ia-multilingual-transliterated-roberta,
optimized for classification tasks in multilin-
gual and transliterated contexts. The model
leverages contextualized embeddings to handle
linguistic diversity, with a classifier head for
binary classification. We received 88.40%
accuracy in Subtask B and 66.11% accuracy in
Subtask C, in the test set.

1 Introduction

South Asia—comprising Afghanistan, Bangladesh,
Bhutan, India, Maldives, Nepal, Pakistan, and Sri
Lanka—is one of the world’s most populous re-
gions, with around 1.97 billion people (Alexeeva
et al., 2024). This region is incredibly rich in cul-
ture and language, with over 700 languages and
about 25 major scripts in use. More than 50 million
South Asians also live abroad, further spreading
this linguistic diversity (Rajan and Lal, 2007).

Despite this, South Asian languages are under-
represented in language technology. Many recent
large language models (LLMs) have very limited
data from South Asia, which is partly due to the
numerous challenges in processing these languages
(Nguyen et al., 2024). Encoding issues are an
early hurdle; although most South Asian scripts
are Unicode-compliant, many applications struggle
to render them correctly due to complex orthogra-
phies, and language input remains a challenge. The
region’s languages also have intricate linguistic fea-
tures, multiple writing systems, and long-standing

RoBERTa Tokenizer

Model
(ia-multilingual-transliterated-roberta)

tokens

Data

Final Prediction

MLP Pre Classifier

Dropout layer

MLP Classifier

Figure 1: Model architecture, containing tokenizer, pre-
trained model, classifier and other components

literary traditions that make natural language pro-
cessing (NLP) difficult (Joshi, 2022).

Dialectal and cultural variations, as well as close
linguistic ties across languages, further complicate
NLP for South Asian languages. This workshop
will explore these challenges, focusing on issues
around linguistic and cultural diversity, encoding
and orthographic challenges, and the resource limi-
tations that slow down technological advancement.
By addressing these hurdles, we hope to move
closer to improving NLP tools for South Asian
languages, helping to preserve their linguistic and
cultural heritage.

We decided to participate in Subtask B, Hate
Speech Detection, which focuses on identifying the
presence of hate speech in Devanagari-scripted lan-
guages, and Subtask C, Target Identification, which
aims to pinpoint specific targets of hate speech,
such as individuals, organizations, or communities.
These tasks align closely with broader challenges
in South Asian language processing, where com-
plex sociolinguistic contexts, dialect diversity, and
multilingualism often complicate language under-
standing, especially in identifying and managing
harmful content online. By advancing these areas,
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we contribute to addressing critical gaps in natural
language understanding for South Asian languages.

2 System Description

2.1 Problem and Dataset

Subtask B: Hate Speech Detection. Hate speech
on online platforms can lead to social harm, re-
inforce biases, and promote hostility within com-
munities (Parihar et al., 2021; Wasi, 2024). For
Devanagari-scripted languages such as Hindi (Jafri
et al., 2024, 2023), Marathi (Kulkarni et al., 2021),
Nepali (Rauniyar et al., 2023; Thapa et al., 2023),
Bhojpuri (Ojha, 2019), and Sanskrit (Aralikatte
et al., 2021), hate speech detection is particularly
challenging due to limited resources, diverse di-
alects, and complex linguistic structures. In this
task, participants must develop a model to detect
hate speech within text data written in Devanagari
script. Given a dataset with binary annotations in-
dicating the presence or absence of hate speech,
the objective is to accurately classify each text in-
stance to either "contains hate speech" or "does not
contain hate speech." Success in this task will en-
hance the ability to monitor and mitigate harmful
online content in Devanagari-scripted languages,
fostering safer digital environments. The dataset
includes 19,019 training tweets, 4,076 validation
tweets, and 4,076 test tweets (Thapa et al., 2025;
Sarveswaran et al., 2025).
Subtask C: Target Identification for Hate
Speech Understanding hate speech in Devanagari-
scripted languages extends beyond detection to
identifying specific targets, which can include indi-
viduals, organizations, or communities. Targeted
hate speech poses unique threats by directly influ-
encing public perception of vulnerable groups. In
this task, participants are required to classify hate
speech instances by identifying the intended target
category—whether it is an "individual," "organiza-
tion," or "community." This task aims to provide a
deeper understanding of hate speech dynamics in
South Asian languages, supporting more nuanced,
targeted content moderation efforts across multi-
lingual online platforms. The dataset for this task
comprises 2,214 training tweets, 474 validation
tweets, and 475 test tweets.

2.2 Model Design and Development

We designed a MultilingualRobertaClass
model, which is a deep neural network ar-
chitecture designed to address classification

task in multilingual contexts, with a specific
focus on Devanagari-scripted and translit-
erated languages. At its core, the model
leverages the pretrained transformer model
ia-multilingual-transliterated-roberta1

(Dhamecha et al., 2021; Liu et al., 2019) from
IBM as its primary language representation
layer. This layer, denoted by self.l1, captures
contextualized embeddings of multilingual
text, drawing on shared syntactic and semantic
structures that span multiple languages. By
leveraging a transformer model pretrained on
multilingual data, the architecture is especially
adept at handling languages with similar linguistic
roots or transliterated forms, which are common in
South Asian languages.

The model’s classification head comprises a se-
quence of linear and non-linear transformations
designed to adapt RoBERTa’s output (Dhamecha
et al., 2021; Liu et al., 2019) for binary classifica-
tion. The output of the transformer’s CLS token,
which serves as a global representation of the input
text, is first passed through a fully connected layer,
self.pre_classifier, which maintains the 768-
dimensional space. A ReLU activation function is
then applied to introduce non-linearity, enhancing
the model’s ability to capture complex language
patterns. To reduce overfitting, a dropout layer
with a 0.3 rate is included, which stochastically ze-
roes out 30% of the neurons during training. This
sequence of transformations allows the model to
distill important semantic features from the multi-
lingual embeddings while preserving relevant lin-
guistic nuances for classification.

Finally, the classification layer,
self.classifier, maps the 768-dimensional
representation to a single scalar output, which
undergoes a sigmoid activation to yield a probabil-
ity score between 0 and 1. This score represents
the model’s confidence in assigning the input
to a specific binary class, suitable for tasks
such as hate speech detection. By combining
a pretrained multilingual transformer with a
lightweight, fully connected classifier head, the
MultilingualRobertaClass model balances gen-
eralizable language representation with efficient
binary classification. This design is particularly
beneficial in applications involving languages with
high dialectal diversity and transliterated scripts,

1https://huggingface.co/ibm/ia-multilingual-
transliterated-roberta
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where robust language understanding and precise
classification are paramount.

2.3 Implementation Details

Our implementation begins by loading and prepro-
cessing the dataset using pandas (pandas develop-
ment team, 2020) for data handling, and tokenizing
input text with a transformer-compatible tokenizer
from the transformers library (Wolf et al., 2020),
setting the maximum sequence length to 256 to-
kens. The data is split into training, validation, and
test sets. For the model, a pre-trained transformer
model (such as BERT (Devlin et al., 2019)) from
the transformers library is employed as the base,
with a linear layer added for classification. Key hy-
perparameters include a learning rate of 2× 10−5,
batch sizes of 16 for training and 64 for evalua-
tion, and a training duration of 2 to 5 epochs. The
optimizer used is AdamW, chosen specifically for
its suitability in fine-tuning transformers, along-
side a linear learning rate scheduler with warm-up
steps to adjust the learning rate dynamically during
training.

The training process uses cross-entropy loss,
suitable for classification, and evaluates perfor-
mance with accuracy, precision, recall, and F1-
score at the end of each epoch to monitor improve-
ment. Additionally, gradient clipping is likely em-
ployed to stabilize the training process, although
exact values are not specified. In the evaluation
phase, the model generates predictions on valida-
tion and test sets, calculating final metrics to gauge
model effectiveness. Predicted labels are derived
from the logits generated by the model, and re-
sults, including performance metrics, are saved or
displayed for analysis. This systematic approach
ensures model performance is accurately tracked
and evaluated throughout the training process.

3 Experiments

3.1 Validation Set Results

The validation results show that Subtask B consis-
tently outperforms Subtask C across all metrics.
Subtask B has higher accuracy (0.8221 vs 0.7321),
precision (0.7984 vs 0.7394), recall (0.8221 vs
0.7321), and F1 score (0.8097 vs 0.7326). Both
tasks have the same micro precision and recall val-
ues, indicating that Subtask B’s model performs
better in all aspects related to classification and er-
ror reduction. The substantial difference in scores
suggests that Subtask B might be a simpler or more

suitable task for the model, whereas Subtask C may
involve more complexity or challenging data.

3.2 Ablation Studies

Subtask B. Table 1 presents the ablation study re-
sults for Subtask B. It shows that, reducing the
sequence length to 128 tokens causes a slight drop
in accuracy (from 0.8221 to 0.8050), suggesting
that Subtask B benefits from longer sequences to
capture more context. Lowering the learning rate
to 10−5 also results in a small decrease in perfor-
mance across all metrics, with accuracy dropping to
0.8150, indicating that the model’s convergence is
slower but still effective. Decreasing the batch size
to 8 leads to a modest reduction in performance,
with accuracy at 0.8180, implying that smaller
batch sizes might affect the model’s ability to es-
timate gradients effectively. Overall, the changes
in hyperparameters have a moderate impact, with
sequence length being the most influential, while
the learning rate and batch size exhibit relatively
smaller effects on Subtask B’s performance.
Subtask C. Table 2 presents the ablation study re-
sults for Subtask C. It shows that,. Reducing the
sequence length to 128 tokens leads to a noticeable
decrease in all metrics, particularly accuracy, which
drops from 0.7321 to 0.7150. This suggests that
Subtask C relies heavily on longer sequences to cap-
ture important context, and reducing the sequence
length limits its ability to make accurate predic-
tions. Lowering the learning rate to 10−5causes
a slight decrease in performance across the board,
with accuracy falling to 0.7250. This shows that
a lower learning rate, while stabilizing training,
may slow down convergence slightly. Reducing
the batch size to 8 results in minimal changes in
accuracy and other metrics, suggesting that Sub-
task C is relatively stable with smaller batch sizes.
Overall, sequence length has the most significant
impact on Subtask C’s performance, with the learn-
ing rate and batch size having relatively smaller,
but still noticeable, effects.

4 Evaluation

The test results for Subtask B and Subtask C, pre-
sented in Table 3, highlight significant differences
in performance. In Subtask B, our model per-
forms exceptionally well, achieving an accuracy
of 0.8840, precision of 0.7106, recall of 0.6547,
and an F1 score of 0.6762. These results indicate
that the model is highly effective at detecting hate
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Table 1: Ablation Study Results for Subtask B

Metric Original Sequence Length (128) Learning Rate (10−5) Batch Size (8)
Accuracy 0.8221 0.8050 0.8150 0.8180
Weighted Precision 0.7984 0.7800 0.7900 0.7950
Weighted Recall 0.8221 0.8100 0.8180 0.8200
Weighted F1 Score 0.8097 0.7940 0.8040 0.8070
Micro Precision 0.8221 0.8050 0.8150 0.8180
Micro Recall 0.8221 0.8100 0.8180 0.8200

Table 2: Ablation Study Results for Subtask C

Metric Original Sequence Length (128) Learning Rate (10−5) Batch Size (8)
Accuracy 0.7321 0.7150 0.7250 0.7300
Weighted Precision 0.7394 0.7250 0.7350 0.7380
Weighted Recall 0.7321 0.7200 0.7300 0.7310
Weighted F1 Score 0.7326 0.7180 0.7280 0.7300
Micro Precision 0.7321 0.7150 0.7250 0.7300
Micro Recall 0.7321 0.7200 0.7300 0.7310

Table 3: Test Results for Subtask B and Subtask C

Metric Subtask B Subtask C
Recall 0.6547 0.5839
Precision 0.7106 0.5910
F1 Score 0.6762 0.5816
Accuracy 0.8840 0.6611

speech, with strong accuracy and a good balance
between precision and recall, minimizing both false
positives and false negatives. In contrast, Subtask
C shows lower performance across all metrics, with
an accuracy of 0.6611, precision of 0.5910, recall
of 0.5839, and an F1 score of 0.5816. This sug-
gests that identifying the specific targets of hate
speech is a more challenging task, likely due to the
increased complexity of categorizing targets like
individuals, organizations, or communities. The
lower results in Subtask C highlight the need for
further model optimization or additional data to
improve its performance in target identification.

5 Discussion

We believe, this research has a profound societal
impact, fostering safer and more inclusive online
spaces by advancing hate speech detection and tar-
get identification in South Asian languages. By
addressing the challenges posed by the region’s
linguistic diversity and sociocultural nuances, it
empowers platforms to better manage harmful con-
tent and protect vulnerable individuals and commu-
nities. Identifying specific targets of hate speech

enables targeted interventions, offering support to
marginalized groups while improving content mod-
eration strategies. Beyond regional significance,
the methodologies developed can inform global
efforts to tackle online toxicity in multilingual con-
texts, promoting equitable digital environments,
amplifying underrepresented voices, and contribut-
ing to social harmony and justice..

6 Conclusion

This paper presents a comprehensive approach
to tackling two key subtasks in the domain of
hate speech detection and target identification in
Devanagari-scripted languages. We work, lever-
aging a pretrained multilingual transformer archi-
tecture to handle the complexities of hate speech
detection in diverse South Asian languages. Our
model demonstrated strong performance in Sub-
task B (Hate Speech Detection), with high accu-
racy and balanced precision and recall, effectively
identifying hate speech instances. However, in Sub-
task C (Target Identification), the performance was
lower, highlighting the additional challenges associ-
ated with identifying specific targets of hate speech.
These results suggest that while hate speech de-
tection can be effectively addressed with current
approaches, more work is needed for robust target
identification, which requires deeper understanding
and handling of the nuanced sociolinguistic context
in South Asian languages.
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Limitations

From an implementation perspective, one limita-
tion of our work is the reliance on a pretrained
multilingual transformer model, which may not
fully capture the nuances of Devanagari-scripted
languages and transliterated forms. Additionally,
the model’s architecture could benefit from further
optimization, such as incorporating more special-
ized layers or attention mechanisms, to enhance its
ability to handle complex linguistic structures and
improve performance in Task C (Target Identifica-
tion).
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Abstract

The detection of hate speech has become
increasingly important in combating online
hostility and its real-world consequences.
Despite recent advancements, there is limited
research addressing hate speech detection
in Devanagari-scripted languages, where
resources and tools are scarce. While large lan-
guage models (LLMs) have shown promise in
language-related tasks, traditional fine-tuning
approaches are often infeasible given the size
of the models. In this paper, we propose
a Parameter Efficient Fine tuning (PEFT)
based solution for hate speech detection and
target identification. We evaluate multiple
LLMs on the Devanagari dataset provided
by Thapa et al. (2025), which contains
annotated instances in 2 languages - Hindi and
Nepali. The results demonstrate the efficacy
of our approach in handling Devanagari-
scripted content. Our code is available
at https://github.com/Rushendra10/Hate-
Speech-Detection-and-Target-Identification-
in-Devanagari-Languages.

1 Introduction

In recent years, the rise in online hate speech has
led to severe social consequences, often escalating
into real-world violence and disproportionately af-
fecting vulnerable communities (Laub, 2019). This
issue is especially challenging for low-resource lan-
guages, where the lack of technological tools limits
effective monitoring and mitigation of harmful con-
tent (Shen et al., 2024; Court and Elsner, 2024).
Addressing hate speech in these languages is im-
portant to minimize societal harm and foster safer
online environments.

Large Language Models (LLMs) have shown
significant potential in handling various language-
related tasks, including hate speech detection. How-

*Work does not relate to position at Amazon.

ever, techniques such as in-context learning (ICL)
are increase the cost and latency of LLMs with
the increase in data (Liu et al., 2022b). While
fine-tuning can improve performance, it remains
resource-intensive, given the billions of parameters
of LLMs. To address these challenges, Parameter-
Efficient Fine-Tuning (PEFT) has emerged as a
more adaptable and cost-effective solution, making
it a compelling choice for this application (Patwa
et al., 2024).

In this paper, we present our system for detection
hate-speech in Devanagari-scripted languages. Our
key contributions are:

• We introduce a PEFT-based system for de-
tecting hate speech and identifying targeted
individuals or groups.

• We evaluate the effectiveness of various LLMs
in this context.

• We focus on Devanagari-scripted languages,
but our system can be potentially applied to
other languages as well.

2 Related Work

Detecting hate speech online has become a criti-
cal issue due to the potential for real-world conse-
quences. Traditional research in this area focused
primarily on high-resource languages like English,
where robust datasets and NLP tools facilitated ef-
fective models (Davidson et al., 2017; Fortuna and
Nunes, 2018). However, applying these methods
to low-resource languages remains a significant
challenge due to limited annotated datasets and
language-specific resources. For instance, recent
research on hate speech detection in Hindi, a low-
resource language despite its global prevalence, has
highlighted the importance of building dedicated
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datasets and methodologies tailored to these lin-
guistic contexts (Kapil et al., 2023).

Efforts to address these challenges have led to
new datasets such as IEHate (Jafri et al., 2023),
which specifically captures hate speech in the po-
litical discourse of the Indian Assembly Elections.
This dataset provides valuable insights and bench-
marks for hate speech in low-resource languages,
underscoring the need for refined algorithms and
hybrid human-machine approaches. Similarly, the
HHSD (Kapil et al., 2023) dataset offers a multi-
layer annotated dataset for hate speech detection in
Hindi, structured hierarchically to categorize hate
speech into explicit and implicit forms and target
attributes. This dataset demonstrates how multi-
task learning (MTL) frameworks, which combine
similar tasks across related languages, can improve
performance, further advancing hate speech detec-
tion in resource-limited languages.

Researchers have attempted hate-speech detec-
tion in low resources languages using various deep
learning techniques. Some of the languages ex-
plored include Bengali (Safi Samghabadi et al.,
2020; Das et al., 2022), Hindi (Patwa et al., 2021b;
Shukla et al., 2022; Velankar et al., 2021; Patwa
et al., 2021a), Dravidian languages (Tula et al.,
2021; Sreelakshmi et al., 2024; Tula et al., 2022)
etc. Some researchers have also explored multi-
modal low resource hate-speech detection (Mishra
et al., 2023b,a; Guo et al., 2023). For a detailed
discussion, please refer to (Parihar et al., 2021).

Large Language Models (LLMs) have improved
detection capabilities but require considerable re-
sources for fine-tuning. Parameter-Efficient Fine-
Tuning (PEFT) techniques allow for efficient adap-
tation by tuning only a subset of model parameters,
making them practical for low-resource settings (Li
and Liang, 2021; Lester et al., 2021). Language-
agnostic models, leveraging machine translation
to standardize inputs, also show promise in multi-
lingual hate speech detection (Khan and Phillips,
2021).

In-context learning (ICL) has been explored for
adapting LLMs without full retraining, though it
incurs higher inference costs as examples scale
(Brown et al., 2020). In contrast, PEFT methods
offer scalable adaptation (Liu et al., 2022a; Patwa
et al., 2024), supporting efficient hate speech detec-
tion across languages with fewer resources. In our
work, we explore LoRA (Hu et al., 2021) for hate
speech detection in Devanagari languages Hindi
and Nepali.

3 Data

We use the dataset released as a part of the shared
task (Thapa et al., 2025) in the CHiPSAL work-
shop (Sarveswaran et al., 2025). It contains two
tasks - hate speech detection and hate speech target
identification in two Devanagari scripted languages:
Hindi (Jafri et al., 2024, 2023) and Nepali (Thapa
et al., 2023; Rauniyar et al., 2023).

3.1 Hate Speech Detection

For hate speech detection, the data consists of
devanagari-scripted text annotated into 2 classes
- hate speech and not hate speech. The texts are
diverse and collected from various sources includ-
ing social media posts, news articles, and forums,
reflecting a wide range of topics and styles. Table
1 shows the data distribution. We can see that there
is a significant class imbalance towards the non-
hate class. This imbalance poses a challenge for
training the models, as they may tend to favor the
majority class.

Class Train Valid Test

Not Hate 16805 3602 3601
Hate 2214 474 475

Total 19019 4076 4076

Table 1: Data distribution of the hate speech detection
dataset.

3.2 Hate Speech Target Identification

The second subtask focuses on identifying the tar-
gets of hate speech in Devanagari-scripted text. The
goal is to classify whether hate speech is directed
towards an individual, an organization, or a com-
munity. The dataset for this task contains text sam-
ples annotated with target labels. The distribution
of targets, as indicated in Table 2, shows a more
balanced representation for individual and organi-
zational targets, with approximately equal numbers
of samples for both classes. However, there is a
notable scarcity of samples where the target is a
community, resulting in a skewed distribution to-
wards individual and organizational targets. This
data limitation introduces a potential challenge in
accurately predicting hate speech directed at com-
munities.
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Class Train Valid Test

Individual 1074 230 230
Organizational 856 183 184
Community 284 61 61

Total 2214 474 475

Table 2: Data distribution of the hate speech target iden-
tification dataset.

4 Methodology

LLMs leverage the transformer (Vaswani et al.,
2023) architecture to model linguistic patterns
across vast corpora, utilizing multi-head self-
attention mechanisms to capture both local and
global dependencies in text. LLMs have billions of
parameters and are pretrained on extensive general-
purpose corpora. As a result they demonstrate great
zero shot capabilities on many natural language
tasks (Kojima et al., 2022). However, they struggle
on low resource languages (Cassano et al., 2024).

ICL is a way to improve performance of LLMs.
It refers to providing few labeled examples in the
prompt to guide the LLM. However, as the num-
ber of examples increase, the cost and lantency of
inference increases (Liu et al., 2022b).

Fully fine tuning (FFT) an LLM with billions of
parameters is infeasible because of the costs and
computational resources needed (Xu et al., 2023).

Parameter Efficient Fine Tuning (PEFT) is a
method in which we only finetune a small num-
ber of parameters as compared to the size of the
LLM. It is more effective than ICL while being
more efficient than FFT (Xu et al., 2023).

For our system we use a PEFT method called
Low Rank Adaptation (LoRA) (Hu et al., 2021).
LoRA reduces the number of trainable parameters
by decomposing weight updates into low-rank ma-
trices, which are inserted into the model’s attention
layers. Specifically, for a weight matrix W , LoRA
approximates the update as:

W ′ = W +∆W = W +ABT (1)

where A and B are low-rank matrices. By freez-
ing the core parameters of the pretrained model and
only updating the low-rank matrices during train-
ing, LoRA significantly decreases computational
and memory requirement for training while being
as effective as FFT (Hu et al., 2021). Furthermore,
LoRA does not add to the inference latency, as after

training, the weight update ABT is added to the
model weights, hence the total number of model
weights remains the same.

5 Experiments

We conduct experiments on 4 different LLMs
to address challenges in processing Devanagari-
scripted languages. The considered models include
the LLama-3.1-8B (Dubey et al., 2024), Nemo-
Instruct-2407 (AI and NVIDIA, 2023), Qwen2.5-
7B-Instruct (Yang et al., 2024), and Phi3-medium-
4k-Instruct (Abdin et al., 2024). Each model is fine-
tuned using task-specific datasets. Quantization of
the models to 4-bit precision was employed to re-
duce memory consumption and to speed up training
and inference. All fine-tuning models used LoRA
with rank = 16, alpha = 16 and no dropout.

All fine-tuning experiments are performed
using a 16GB NVIDIA T4 GPU. For the hate
speech detection task, all models were fine-tuned
for 2 epochs. For the target identification
task, models were fine-tuned for 4 epochs in
order to accommodate a relatively small train-
ing set. The code is implemented using the
Unsloth (Daniel Han and team, 2023) library,
which helps accelerate training. Our code is
available at https://github.com/Rushendra10/Hate-
Speech-Detection-and-Target-Identification-in-
Devanagari-Languages.

6 Results and Analysis

The test performance of the models for the hate
speech detection and target identification tasks are
provided in Tables 3 and 4 respectively. We can
see that for both the tasks Nemo has the best per-
formance (F1 scores 90.05% and 71.47% respec-
tively). Notably, Nemo performs better than Llama
despite having smaller size. Furthermore, we can
see that the overall performance is better on hate
speech detection as compared to target identifica-
tion. This is because the latter task has 3 classes
whereas the former task has only 2 classes.

6.1 Class-wise Analysis

Table 5 shows the class-wise results of Nemo for
hate speech detection task. The F1 score on the
hate class is much lower than on the non-hate class.
The Confusion Matrix (Figure 1) shows that the
instances of hate class are often mis-predicted as
Non Hate. These observations can be attributed to
the class imbalance in the training dataset.
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Model Size Acc. F1

Llama-3.1 8.03B 88.71% 88.02%
Phi-3-medium 7.36B 90.06% 88.91%

Qwen2.5 4.46B 88.62% 87.90%
Nemo 6.97B 90.75% 90.05%

Table 3: Performance of various models for hate speech
detection task on the test set, along with the quantized
model size. Acc. refers to accuracy. F1 refers to
weighted average F1 score.

Model Size Acc. F1

Lama-3.1 8.03B 67.37% 66.58%
Phi-3-medium 7.36B 68.21% 67.80%

Qwen2.5 4.46B 70.32% 70.41%
Nemo 6.97B 72.00% 71.47%

Table 4: Performance of various models for target iden-
tification task on the test set along with the quantized
model size. Acc. refers to accuracy. F1 refers to
weighted average F1 score.

Table 6 shows the class-wise results of Nemo for
hate target identification task. The F1 on Individual
class is comparable to that in Organization class,
whereas it is significantly lower for the Commu-
nity class. From the Confusion Matrix (Figure 2),
we can see that instances of hate directed towards
community are frequenty mis-predicted into one
of the other 2 classes. Similar to the hate speech
detection task, these observation are also a result
of the imbalanced training dataset.

P R F1

Non Hate 93.10% 96.70% 94.86%
Hate 64.58% 45.68% 53.51%

Table 5: Class-wise performance of Nemo on test set of
the hate speech detection task. P = Precision, R= Recall,
F1 = F1 score.

P R F1

Individual 76.57% 79.56% 78.04%
Organization 72.49% 74.46% 73.46%
Community 46.81% 36.07% 40.74%

Table 6: Class-wise performance of Nemo on test set of
the target identification task. P = Precision, R= Recall,
F1 = F1 score.

Figure 1: Confusion matrix of Nemo on the test set for
hate speech detection.

Figure 2: Confusion matrix of Nemo on the test set for
hate speech target identification.

7 Conclusion and Future Work

In this study, we present our approach for hate
speech detection in Devanagari-scripted languages
using LLMs fine-tuned with LoRA. Our methodol-
ogy demonstrates good performance, as evidenced
by accuracy and F1 score metrics. By leveraging
the CHiPSal dataset, we effectively address the
challenges posed by low-resource languages. We
notice that the performance is lower on the the
classes with fewer data instances.

Future research could involved enhancing the
model’s capabilities by developing data generation
techniques to address class imbalance, ensuring
robust performance across all classes. Additionally,
investigating the integration of more sophisticated
techniques, such as ensemble methods, can further
boost detection accuracy and robustness.
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8 Limitation

We assume the existence of a decently sized train
dataset to fine-tune our model. Further, we assume
that the LLMs will have some knowledge of de-
vanagari languages for PEFT to work.

9 Ethical Statement

Hate speech detection is a sensitive topic and can
be subjective. LLMs are known to have inherent bi-
ases. Any censoring decisions based on the LLMs
predictions should involve comprehensive human
reviews.
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Abstract

In multilingual contexts, an automated sys-
tem for accurate language identification, fol-
lowed by hate speech detection and target
identification, plays a critical role in process-
ing low-resource hate speech data and mit-
igating its negative impact. This paper presents
our approach to the three subtasks in the
Shared Task on Natural Language Understand-
ing of Devanagari Script Languages at CHiP-
SAL@COLING 2025: (i) Language Identifi-
cation, (ii) Hate Speech Detection, and (iii)
Target Identification. Both classical machine
learning and multilingual transformer models
were explored, where MuRIL Large, trained
on undersampled data for subtasks A and B
outperformed the classical models. For sub-
task C, the hybrid model trained on augmented
data achieved superior performance over clas-
sical and transformer-based approaches. The
top-performing models, named MURTweet for
subtasks A and B and NERMURTweet for
subtask C, secured sixth, third, and first rank
respectively, in the competition. The code
is publicly available at https://github.com/tha-
paliya123/CHIPSAL-COLING-2025.

1 Introduction

Social media platforms like Twitter (currently
called X) are filled with various types of hate
speech, including racism, sexism, hate speech re-
lated to religion, and more (Parihar et al., 2021).
Advances in large languagemodels for regional lan-
guages, like Nepali, help detect hate speech and an-
alyze sentiment on social media platforms (Puda-
saini et al., 2024). Political leaders also use Twit-
ter to spread their political agendas by sharing news
and information with a broad audience and partici-
pating in discussions, either supporting or criticiz-
ing political actions (Lai et al., 2023). Politicians
and their followers may use phrases, expressions,

∗*These authors contributed equally to this work.

and words of hate to gain an advantage and belittle
other parties (Wang et al., 2022).
The shared work on Natural Language Under-

standing of Devanagari Script Languages, orga-
nized as part of the First Workshop on Challenges
in Processing South Asian Languages (CHiPSAL)
(Sarveswaran et al., 2025), allows participants to in-
vestigate approaches for recognizing low-resource
South Asian languages, moving beyond the widely
used English language, even with domain-specific
models (Mali et al., 2024). It also focuses on detect-
ing hate speech and identifying its targets, which
are often political individuals, organizations, or
specific community groups (Thapa et al., 2025).
The MuRIL Large model1, a specialized BERT

large (24-layer) architecture (Khanuja et al., 2021),
has been chosen as a solution to the shared task
because of its strong multilingual capabilities, par-
ticularly for Devanagari languages. In this method,
fine-tuning was applied across all model parame-
ters to calibrate the MuRIL architecture for tasks
at hand, including language identification, hate
speech detection, and target identification.
The undersampling technique was used to re-

duce training time for subtask A and to address
class imbalance in subtask B. For subtask C, data
augmentation techniques were applied to address a
class imbalance problem. A synonym replacement
technique was used to generate synthetic samples
from validation data, resulting in improved model
performance. A rule-based Named Entity Recog-
nition (NER) approach was also used to classify
individual tokens associated with individuals, orga-
nizations, or community groups in tweets, with the
goal of identifying hate speech targets for subtask
C. F1 score was chosen as the primary metric, as
leaderboard rankings were based on the F1 score
and also the data were imbalanced. This study pro-
vides an overview of the solution’s results, high-

1https://huggingface.co/google/muril-large-cased
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lighting a sixth-place ranking in subtask A, third
in subtask B, and first place in subtask C.

2 Subtasks and Datasets

2.1 Subtask A: Language Identification
This work examines five Devanagari-script lan-
guages: Nepali, Marathi, Sanskrit, Bhojpuri, and
Hindi. To achieve accurate language identification
and recognition across these languages, the follow-
ing datasets are used:

1) Nepali (Thapa et al., 2023; Rauniyar et al.,
2023), 2) Marathi (Kulkarni et al., 2021), 3) San-
skrit (Aralikatte et al., 2021), 4) Bhojpuri (Ojha,
2019), 5) Hindi (Jafri et al., 2024, 2023).

2.2 Subtask B: Hate Speech Detection
Subtask B aims to detect hate speech in Nepali
and Hindi tweets. The task aims to identify hate
speech in Nepali and Hindi tweets, where partici-
pants must classify each tweet as either containing
hateful statements or not.

2.3 Subtask C: Target Identification
Subtask C aims to identify the targets of hate
speech in a given tweet. The dataset for this sub-
task is annotated for ”individual”, ”organization”,
and ”community” targets.

2.4 Datasets
An open-source version of the dataset for all three
subtasks is available on the competition’s webpage
2. The distribution of each class within the dataset
for each subtask is provided in Table 1.

Table 1: Dataset distribution for each class across Train,
Validation, and Test sets for subtasks A, B, and C.

Task Class Train Validation Test

A

Nepali 12544 2688 2688
Marathi 11034 2364 2365
Sanskrit 10996 2356 2356
Bhojpuri 10184 2182 2183
Hindi 7664 1643 1642

B Hate 2214 474 475
Non-Hate 16805 3602 3601

C
Individual 1074 230 230

Organization 856 183 184
Community 284 61 61

3 Methodology

The strategy includes three major solutions. Ini-
tially, a classical machine learning strategy was

2https://sites.google.com/view/chipsal/
shared-tasks

used, with typical models trained on the dataset.
Then, transformer-based models were investigated,
encompassing both encoder models such as varia-
tions of BERT (Devlin, 2018), and decoder models
such as GPT (Achiam et al., 2023). Finally, a hy-
brid strategy was used, in which NER tags were
applied to the data using a rule-based tagger, fol-
lowed by inference on the NER-tagged data using
the trained model. Figure 1 shows the block dia-
gram of the proposed model’s training and infer-
ence pipeline.

3.1 Augmentation and Undersampling

Both augmentation and undersampling procedures
were used to solve class imbalance issues and to re-
duce training time (Pimpalkhute et al., 2021). Sub-
tasks A and B were undersampled, while subtask
C was augmented with synthetic data. In subtask
A, due to the large number of training samples,
the model was trained only on 50% of the over-
all data to reduce the training and hyperparame-
ter tuning time. In subtask B, the majority class
was undersampled, with a focus on samples from
the non-hate class to reduce class imbalance. For
subtask C, the minority class, representing com-
munity targets, was augmented. This approach
was chosen because the limited number of com-
munity target samplesmade undersampling thema-
jority class impractical and potentially harmful to
performance on the test set. For the community
class in subtask C, a synonym substitution tech-
nique and GPT-4 in-context learning were used,
along with validation samples and prompting, to
generate synthetic tweets with identical sentiments
(Zhang et al., 2024). Table 2 shows the distribution
of training samples before and after applying un-
dersampling or data augmentation techniques. The
prompt used to generate synthetic samples through
the synonym replacement technique is provided in
Figure 2 in Appendix Section A.

3.2 Classical Approach

A classical approach was employed, where fea-
tures were extracted from textual data using
Term Frequency-Inverse Document Frequency
(TF-IDF), and multiple machine learning algo-
rithms such as Logistic Regression (LR), Support
VectorMachines (SVM), RandomForest (RF), and
XGBoost (XGB) were trained to establish a base-
line for experiments.
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Table 2: Train data distribution across subtasks A, B,
and C: Undersampling for subtasks A, B and data aug-
mentation for subtask C

Task Class Before Sampling After Sampling
/Augmentation /Augmentation

A

Nepali 12544 6231
Marathi 11034 5535
Sanskrit 10996 5447
Bhojpuri 10184 5156
Hindi 7664 3842

B Hate 2214 2214
Non-Hate 16805 8437

C
Individual 1074 1074
Organization 856 856
Community 284 330

3.3 Transformer Based Approach

Experiments were carried out employing Trans-
former architectures (Vaswani, 2017), with a focus
on two variants: encoder-only models and decoder-
only models.

3.3.1 Encoder Models
Encoder-only models, such as BERT variants (De-
vlin, 2018), utilize Transformer architectures’ en-
coder layers. The encoder models listed below
have been tested in all subtasks and optimized for
low-resource Devanagari languages.

mBERT: BERT (Bidirectional Encoder Repre-
sentation fromTransformers) (Devlin, 2018) is self-
trained using Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP) on BookCor-
pus and Wikipedia. The multilingual extension of
BERT, mBERT, is trained in 104 languages and
is offered in two versions: BERT-base and BERT-
large.

XLM-RoBERTa: XLM-RoBERTa(Conneau,
2019) is a Transformer-based masked language
model trained on over two terabytes of fil-
tered CommonCrawl data from 100 languages.
XLM-RoBERTa is specifically developed for low-
resource languages.

Varta - A Large-Scale Headline-Generation
Dataset for Indic Languages (Aralikatte et al.,
2023): Varta-BERT is a model pre-trained on the
entire Varta dataset, which includes 14 Indic lan-
guages along with English. The model is trained
with the masked language modeling (MLM) objec-
tive.

MuRIL: Multilingual Representations for In-
dian Languages (Khanuja et al., 2021) is a
BERT-based architecture that was pre-trained from
scratch using data from Wikipedia, Common
Crawl, PMINDIA, and Dakshina corpora in 17

Indian languages. There are two variants of the
model available: base and large, with pre-trained
weights available on Hugging Face.

3.3.2 Decoder Models
Prompt Engineering and Few-Shot Learning have
become prominent methods for detecting hate
speech on Twitter (Dehghan and Yanikoglu, 2024).
This work utilizes decoder-only models developed
by OpenAI (gpt-4-2024-05-13)3, which excel at
multilingual tasks (Achiam et al., 2023). Since
OpenAI models are not open-source, they were
accessed via API endpoints. Due to competition
time constraints, experiments were conducted only
with OpenAI models for subtask C. Validation
splits were used for prompt tuning, while few-shot
learning employed samples from the training splits.
To achieve consistent JSON outputs, the temper-
ature parameter was set to zero, reducing the non-
deterministic responses typical of large language
models. After tuning, the final prompt is provided
in Figure 3 in Appendix Section B.

3.3.3 Hybrid Models
Word knowledge has been obtained by extracting
entity information from Wikipedia and feeding
it into the model alongside hate speech text(Lin,
2022). (Kaya et al., 2024) has employed a hybrid
approach that combines: (1) reclassifying samples
with low confidence scores using open-source large
languagemodels via prompting, and (2) integrating
named entity information into features generated
by BERT models, with the final output produced
through tree-based models.
A hybrid approach has been used for subtask

C, starting with error analysis on low-confidence
samples (probability < 0.6) and re-evaluating them
after adding entity tags. A rule-based entity
tagger applied four tags व्य��त(person), संगठन(or-
ganization), चुनाव �चन्ह (election symbol), and
समूह(group) around relevant phrases, using prede-
fined entity lists for each category. These tags
were selected after extensive experimentation to
closely align with the given hate speech targets.
Since the dataset was more directly tied to polit-
ical news, election symbols were included in the
tag pool because they resemble political organi-
zations. The tagged samples were then passed
through the trained MURTweet model, resulting in
an enhanced version named NERMURTweet (see

3https://platform.openai.com/docs/models/o1#
gpt-4o
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Figure 1), which significantly improved classifica-
tion metrics. Examples of samples before and after
entity tagging are shown in Figure 4 in Appendix
section C.

The suggested approach used a batch size of 32
for subtaskA and 8 for subtasks B andC. The learn-
ing rate was set to 2e-5 with the AdamW optimizer,
weight decay of 0.001, and trained for 10 epochs.

Figure 1: Block Diagram For training and inference
pipeline

3.4 Results And Discussions

The table 3 displays the leaderboard results for
all subtasks in the experiment. Precision, recall,
F1 score, and accuracy metrics are presented, and
models are ordered according to the F1 score speci-
fied by the organizers. For each challenge, themod-
els with the highest F1 score are shown in bold.

In subtask A, the proposed model, trained on
50% of the total data, has secured sixth position in
the final ranking. In subtask B, the proposedmodel,
trained using undersampled data, secured the third
position in the final scoreboard. For subtask C,
the hybrid model (MURTweet + NER Tagging) se-
cured first position in the final ranking. Due to the
large volume of data, subtask A has been trained
with only half of the dataset. MURTweet has
the highest F1 score of 0.9962, surpassing Vartha,
XLM-RoBERTa, and mBERT. In subtask B, un-
dersampling the majority class in the training data
enhanced model performance. The MURTweet
model trained on undersampled data outperforms
the model trained on the entire dataset. For sub-
task C, a hybrid model combiningMURTweet with
rule-based NER tagging topped the leaderboard,
along with error analysis-driven data augmentation
approaches (such as synonym matching and para-
phrasing) improving performance. Attempts to em-
ploy GPT-4 for target identification in subtask C
produced an F1 score of 0.66, which was not higher

than the hybrid-based approach.

Table 3: Performance metrics across subtasks A, B, and
C.

Task Model Prec Rec F1 Acc

A

TFIDF + LR 0.9528 0.9521 0.9526 0.9542
TFIDF + SVM 0.9627 0.9626 0.9636 0.9662
TFIDF + RF 0.9799 0.9776 0.9786 0.9806
TFIDF + XGB 0.9439 0.9446 0.9442 0.9475
mBERT 0.9930 0.9930 0.9930 0.9936
XLM-R-Base 0.9918 0.9927 0.9922 0.9931
XLM-R-Large 0.9940 0.9942 0.9941 0.9947
Varta-BERT 0.9952 0.9957 0.9954 0.9959
MuRIL-Base 0.9948 0.9953 0.9950 0.9955
MURTweet 0.9967 0.9968 0.9968 0.9972

B

TFIDF + LR 0.5759 0.6843 0.5020 0.5746
TFIDF + SVM 0.5700 0.6699 0.4894 0.5589
TFIDF + RF 0.5597 0.5108 0.4987 0.8734
TFIDF + XGB 0.6721 0.5345 0.5377 0.8815
mBERT 0.6336 0.7136 0.6542 0.8121
XLM-R-Base 0.6685 0.7147 0.6867 0.8528
XLM-R-Large 0.7068 0.7542 0.7264 0.8741
Varta-BERT 0.6179 0.7037 0.6344 0.7897
MuRIL-Base 0.6803 0.7715 0.7089 0.8481
MURTweet 0.7638 0.7687 0.7662 0.9028

C

TFIDF + LR 0.5169 0.5223 0.5147 0.5811
TFIDF + SVM 0.4103 0.4107 0.4101 0.5705
TFIDF + RF 0.4287 0.4414 0.4315 0.5747
TFIDF + XGB 0.4641 0.4641 0.4641 0.5579
mBERT 0.6022 0.6059 0.6036 0.6780
XLM-R-Base 0.6319 0.6365 0.6339 0.7034
XLM-R-Large 0.7095 0.6891 0.6975 0.7648
Varta-BERT 0.6751 0.6410 0.6514 0.7331
MuRIL-Base 0.6450 0.6576 0.6500 0.70763
MURTweet 0.7073 0.6867 0.6951 0.7621
NERMURTweet 0.7175 0.7038 0.7098 0.7684

4 Limitations

For subtasks A and B, undersampled data has been
used for training, so the full potential of the com-
plete dataset has not been fully utilized. In sub-
task C, the rule-based NER tagger assigned tags
to phrases that do not represent real-world entities,
which could have affected the final prediction.

5 Conclusion

In conclusion, data augmentation and undersam-
pling techniques have shown impressive results in
addressing class imbalance problems through this
research. Encoder-only models trained on under-
sampled data have outperformed traditional meth-
ods in language recognition and hate speech detec-
tion tasks. For target identification, results have
shown that hybrid models, which used the best-
performing models on NER-tagged data, outper-
formed encoder-only and generative models, high-
lighting the importance of NER information in suc-
cessfully identifying hate speech targets. Future
research should explore ML-based NER tagging
approaches, as well as alternative class imbalance
techniques like weighted cross-entropy loss and fo-
cal loss, to further enhance model performance in
these tasks.
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Abstract

The Devanagari script, an Indic script used
by a diverse range of South Asian languages,
presents a significant challenge in Natural Lan-
guage Processing (NLP) research. The di-
alect and language variation, complex script
features, and limited language-specific tools
make development difficult. This shared task
aims to address this challenge by bringing to-
gether researchers and practitioners to solve
three key problems: Language identification,
Hate speech detection, and Targets of Hate
speech identification. The selected languages-
Hindi, Nepali, Marathi, Sanskrit, and Bhojpuri-
are widely used in South Asia and represent
distinct linguistic structures. In this work,
we explore the effectiveness of both machine-
learning models and transformer-based models
on all three sub-tasks. Our results demonstrate
strong performance of the multilingual trans-
former model, particularly one pre-trained on
domain-specific social media data, across all
three tasks. The multilingual RoBERTa model,
trained on the Twitter dataset, achieved a re-
markable accuracy and F1-score of 99.5% on
language identification (Task A), 88.3% and
72.5% on Hate Speech detection (Task B), and
68.6% and 61.8% on Hate Speech Target Clas-
sification (Task C).

1 Introduction

With the advent of the internet and its application in
recent years, user-generated content has increased
exponentially, with much of it in different regional
languages. Devanagari, one of South Asia’s most
extensively used scripts, is adopted by languages
like Hindi, Marathi, Nepali, Bhojpuri, and Sanskrit
(Ajmire et al., 2015). The rising presence of De-
vanagari content online has called for hate speech
detection and content moderation.
The challenges in detecting hate speech are due
to phonetically similar text across scripts and the
complex evolution of Indo-Aryan languages which
makes it difficult(Sharma et al., 2018; Kumar et al.,

2018). As languages like Hindi, Nepali, Marathi,
Sanskrit, Bhojpuri, etc. uses the Devanagari script,
better Language identification is important for any
downstream application such as machine transla-
tion and hate speech detection.
This issue highlights the need for accurate Devana-
gari language recognition to combat hate speech
and support online diversity. While significant stud-
ies have been done towards the automatic detection
of hate speech in resource-rich languages like En-
glish (Gitari et al., 2015; Burnap and Williams,
2016; Davidson et al., 2017; Gambäck and Sikdar,
2017) and Germany (Schneider et al., 2018; Wiede-
mann et al., 2018; Corazza et al., 2018), there is
limited research on hate detection in Devanagari
scripts. So, there is an increasing necessity for
more robust cross-linguistic models that can bet-
ter generalize hate speech even when the language
changes to provide a safer online environment for
these communities.

For hate speech analysis, identifying the specific
target is essential for addressing and mitigating
harm (Parihar et al., 2021). This shared task (Thapa
et al., 2025; Sarveswaran et al., 2025) aims to iden-
tify the different Davanagari languages, detect hate
speech, and classify it by target type (individual,
organization, or community).
Our work makes the following key contributions:

• We evaluate a range of transformer-based
models, including general-purpose baselines,
language-specific, and domain-adapted ap-
proaches.

• We demonstrate the importance of using mul-
tilingual and domain-specific pertaining by
showing the superior performance of the
Twitter-trained multilingual RoBERTa model
across all subtasks.
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2 Literature Review

Significant research has been conducted in the field
of script identification.(Indhuja et al., 2014) used
the character and word n-grams model to identify
languages: Hindi, Sanskrit, Marathi, Nepali, and
Bhojpuri. (Kumar et al., 2018) utilized a Linear
SVM classifier for identifying five closely related
Indo-Aryan languages of India. It used 5-fold cross-
validation, with the C hyper-parameter tuned via
Grid Search to optimize the model. Character 5-
grams achieved the best result with an impressive
96% accuracy over 13,744 sentences.

Hate speech identification plays a pivotal role
in providing an inclusive environment by identify-
ing and moderating the use of harmful language
A notable study on Sanskrit and Bhojpuri utilized
a dataset of 7,248 records and employed a Ran-
dom Forest classifier, yielding F1 scores of 0.87 for
Non-Offensive, 0.71 for Other Offensive, 0.45 for
Racist, and a low 0.01 for Sexist content (Niraula
et al., 2021). In Hindi and Marathi, the RoBERTa
Hindi base model outperformed other models on
the HASOC 2021 dataset, achieving the best results
in identifying offensive content (Velankar et al.,
2021).

Target classification in hate speech has been
the new emerging interest for many researchers.
(Surendrabikram Thapa, 2023) utilized a large-
scale dataset of 13,505 Nepali tweets related to
Nepal’s local elections for hate speech and its target
identification. In their experiment, they explored
classical machine learning (ML) algorithms and
transformer-based models like NepBERTa (Tim-
ilsina et al., 2022) and RoBERTa (Liu et al., 2019a)
in which NepBERTa secured the highest F1-score
of 0.68. Similarly, (Sharma et al., 2024) used
11,549 Hindi comments to classify the target in
hate speech where the classes were Islam, Hin-
duism, Christianity, and None. They benchmarked
with deep learning (DL) models, including CNN
(Dai, 2021), BERT (Devlin, 2018), and MulRIL
(Khanuja et al., 2021). Among all models, MulRIL
performed the best with an F1 score of 0.72.

3 Dataset and Task

The shared task includes three different subtasks:
Sub-Task A, intent on Devanagari Script Language
Identification, Sub-Task B concentrates on hate
speech detection, and Sub-Task C focuses on target
identification of hate speech. For the shared task,
the dataset was collected from different sources:

Hindi (Jafri et al., 2024, 2023), Nepali (Surendra-
bikram Thapa, 2023; Rauniyar et al., 2023), Bho-
jpuri (Ojha, 2019), Marathi (Kulkarni et al., 2021),
and Sanskrit(Aralikatte et al., 2021).

3.1 Sub-Task A

This Subtask involves multi-class classification
for identifying the particular languages (Nepali,
Marathi, Sanskrit, Bhojpuri, and Hindi). The
dataset includes 52,422 training samples, 11,233
evaluation samples, and 11,234 test samples.

3.2 Sub-Task B

Sub-task B includes binary classification with two
annotated labels: “hate” or “non-hate”. The asso-
ciated dataset comprises 19,019 training samples,
4,076 evaluation samples, and 4,076 test samples
for this task.

3.3 Sub-Task C

The last Sub-task focuses on identifying the targets
of hate speech among “individual”, “organization”,
and “community”. For this task, 2,214 training
samples, 474 evaluation samples, and 475 test sam-
ples of datasets were provided.

4 Methodology

4.1 Dataset preparation

Our pre-processing pipeline consisted of three key
steps. First, we replaced the Twitter username with
a generic "@" token to maintain structural infor-
mation. All hyperlinks were removed to focus on
textual content. We also removed emojis using
unicode ranges including emoticons, symbols, and
special characters. Before these steps, entries with
missing values were removed.

4.2 Feature engineering and Embeddings

For text representation, we experimented with mul-
tiple embedding approaches. We used the TF-IDF
vectorization as our baseline representation for ML
models. However, given the shared tasks’s focus on
Devanagari languages, we recognized the need for
embedding that better captures the semantic rela-
tionship in these languages. Word2Vec and GloVe
embeddings that were specifically trained on the
Nepali corpus were included (Koirala and Niraula,
2021).
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Sub-Task Classes Train Eval Test Train (Augmented)

Detection of Devanagari
Script

Nepali
Marathi
Sanskrit
Bhojpuri

Hindi

12,544
11,034
10,996
10,184
7,664

2,688
2,364
2,356
2,182
1,643

2,688
2,365
2,356
2,183
1,642

-

Hate Speech Identification
Non-hate

Hate
16,805
2,214

3,602
474

3,601
475

16,805
10,000

Hate Speech Targets Iden-
tification

Individual
Organization
Community

1,074
856
284

230
183
61

230
184
61

2,185
2,228
1,010

Table 1: Original and Augmented Dataset distribution

4.3 Dataset Oversampling and Synthesis
No augmentation was performed on Sub-Task A
as the original distribution had slightly underrepre-
sented Hindi sampled. However, in Sub-Task B we
address the significant disparity between hate and
non-hate speech instances (2,214 vs 16,805 sam-
ples) by applying random oversampling to increase
the minority class to 10,000 instances.

For Sub-Task C, due to the limited sample
size, we used the multilingual Aya Expanse 8-B
model(Cohere For AI, 2024) to generate target clas-
sifications using the hate speech instances from
Sub-Task B. The augmented dataset distribution is
shown in Table 1.

4.4 Hyperparameter Search
We use Bayesian optimization to find the optimal
hyperparameters for the transformer models. The
search space was defined based on the model archi-
tecture requirements and computational constraints.
The number of epochs was task-specific, consider-
ing the dataset characteristics, computational effi-
ciency, and early results. Each model then under-
went 20 Bayesian optimization runs.

The search space is presented in the Table 4:

4.5 Machine Learning Models
We experimented with a diverse set of traditional
machine learning models for the three sub-tasks.
Logistic Regression was used as our baseline linear
model, Decision Tree as a baseline for tree-based
methods, and Support Vector Machines (SVM) for
handling high dimensional feature space. Our en-
semble method included Random Forest, XGBoost,
and AdaBoost classifiers. For comparison, each
model was trained on the same feature sets (TF-
IDF, Word2Vec, and GloVe embeddings). The hy-

perparameters used for each model are presented
in Table 5.

4.6 Deep Learning Models
Our selection of models was motivated by the
need to establish a strong baseline with general-
purpose models like BERT (Devlin et al., 2018),
DistilBERT(Sanh et al., 2019), and RoBERTa(Liu
et al., 2019b). The Devanagari-specific models
(Nepali DistilBERT (Shrestha, 2021), and Nepali
RoBERTa(Chaudhary, 2021))were chosen for their
potential to better capture the linguistic nuances in
Devanagari text. And, the Twitter-dataset trained
XLM-RoBERTa (Barbieri et al., 2020) was in-
cluded to evaluate the impact of domain adaptation
on hate speech and Target identification of hate
speech (Sub-Task B and C).

5 Result and Discussion

This section presents the results of the three sub-
tasks along with an in-depth analysis and interpre-
tations of the findings.

5.1 Machine Learning Models
We trained our models using various embeddings,
including TF-IDF, GloVe, and Word2Vec. In sub-
task A, SVM with Word2Vec achieved the highest
accuracy and f1 score (97.9% and 97.7%). Logistic
Regression with TF-IDF achieved the highest ac-
curacy of 88.6% and XGBoost with Word2Vec has
the highest f1 score of 53.7% on Task B. Random
forest performed better on sub-task C, achieving
62.9% accuracy and 50.4% F1-score. On the aug-
mented dataset on sub-task B, the f1 score obtained
by XGBoost with Word2Vec was 63.9%, which
was a 10% increase, and accuracy reached 88.8%
by Random Forest with Word2vec, .2% increase
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Embedding Model Original Dataset Augmented Dataset
Task A Task B Task C Task B Task C

acc f1 acc f1 acc f1 acc f1 acc f1

TF-IDF

LR
RF
DT

SVM
XGBoost
AdaBoost

0.957
0.942
0.618
0.959
0.935
0.798

0.954
0.938
0.647
0.956
0.931
0.787

0.886
0.883
0.877
0.808
0.881
0.881

0.537
0.498
0.567
0.571
0.558
0.549

0.606
0.629
0.532
0.610
0.576
0.553

0.437
0.456
0.383
0.427
0.453
0.445

0.859
0.882
0.856
0.799
0.873
0.846

0.637
0.505
0.560
0.578
0.619
0.604

0.612
0.610
0.505
0.614
0.587
0.562

0.517
0.445
0.421
0.430
0.460
0.470

GloVe

LR
RF
DT

SVM
XGBoost
AdaBoost

0.960
0.938
0.830
0.971
0.963
0.788

0.958
0.935
0.823
0.969
0.962
0.749

0.879
0.883
0.811
0.696
0.881
0.878

0.520
0.483
0.548
0.568
0.567
0.516

0.578
0.593
0.486
0.623
0.574
0.534

0.504
0.414
0.409
0.449
0.431
0.446

0.788
0.886
0.754
0.710
0.871
0.774

0.620
0.549
0.577
0.570
0.609
0.618

0.572
0.591
0.448
0.578
0.587
0.530

0.501
0.441
0.374
0.445
0.476
0.450

Word2Vec

LR
RF
DT

SVM
XGBoost
AdaBoost

0.969
0.953
0.827
0.979
0.973
0.808

0.967
0.950
0.820
0.977
0.971
0.782

0.877
0.883
0.816
0.713
0.885
0.881

0.534
0.481
0.549
0.568
0.593
0.569

0.576
0.597
0.440
0.610
0.587
0.501

0.497
0.420
0.377
0.441
0.442
0.369

0.796
0.888
0.777
0.661
0.882
0.772

0.636
0.548
0.572
0.544
0.639
0.612

0.578
0.587
0.480
0.602
0.602
0.543

0.513
0.447
0.421
0.472
0.483
0.432

Table 2: Performance of Machine Learning models

Model Original Dataset Augmented Dataset
Task A Task B Task C Task B Task C

acc f1 acc f1 acc f1 acc f1 acc f1
BERT-base
RoBERTa

Distil-BERT
Nepali RoBERTa

Nepali DistilBERT
Twitter XLM-RoBERTa

0.991
0.991
0.990
0.994
0.994
0.995

0.990
0.990
0.989
0.993
0.994
0.995

0.763
0.872
0.867
0.830
0.851
0.883

0.613
0.593
0.620
0.675
0.700
0.725

0.597
0.595
0.574
0.656
0.658
0.686

0.425
0.516
0.483
0.544
0.561
0.618

0.781
0.806
0.763
0.874
0.840
0.872

0.623
0.626
0.612
0.672
0.677
0.720

0.602
0.595
0.576
0.629
0.642
0.612

0.520
0.499
0.506
0.548
0.548
0.545

Table 3: Performance of Deep Learning Models

compared to the original dataset. In sub-task C,
Logistics regression with TF-IDF achieved an F1-
score of 51.7%, which was 1% higher than the orig-
inal dataset. The accuracy achieved was similarly
higher, at 61.2%.

5.2 Deep Learning Models
Transformer-based models showed a superior per-
formance across three tasks. Furthermore, the
performance of the language-specific and domain-
adapted model was higher over the general-purpose
baseline. The multilingual RoBERTa model, which
was specifically trained on the Twitter dataset, con-
sistently outperformed other architectures across
all three tasks.

For task A, the Twitter dataset trained multilin-
gual RoBERTa achieved superior performance with
both accuracy and F1-score reaching 99.5%. Task
B and Task C were both best handled by the Twitter-
trained multilingual RoBERTa, achieving scores of
88.3% accuracy, 72.5% F1-score, and 68.6% accu-
racy, 61.8% F1-score respectively.

6 Conclusion

In this research, we used a variety of machine learn-
ing and deep learning models for collaborative ac-
tivities. Deep learning models outperformed ma-
chine learning models on all tasks. Twitter XLM-

RoBERTa achieved greater F1 scores across all
challenges. The highest f1-scores for Sub-Tasks
A, B, and C are 99.5%, 72.5%, and 61.8%, respec-
tively. We also investigated data augmentation for
sub-tasks B and C because the dataset contained
fewer instances, which allowed us to improve per-
formance.

7 Limitations

Our study demonstrated strong results across all
tasks, particularly with Twitter-trained multilingual
RoBERTa. However, some limitations exist.

Our search space could be considered con-
strained due to limited optimization runs. Which,
while computationally practical, may not have been
sufficient to properly explore the search space.

Our work tested Nepali-based transformer mod-
els, future work could expand by exploring other
Devanagari language models, like those trained in
Hindi language.
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A Appendix

A.1 Hyperparameter Search space

Parameter Search Space Distribution
Batch size [16,32] Discrete
Learning Rate [1e-6, 5e-5] Log-uniform
Weight Decay [1e-6, 0.1] Log-uniform
Beta 1 [0.9, 0.99] Uniform
Beta 2 [0.999, 0.9999] Uniform
Epochs (Task A) [2-3] Discrete
Epochs (Task B) [2-8] Discrete
Epochs (Task C) [2-15] Discrete

Table 4: Search space for Transformer models

A.2 Hyperparameters of ML models

Model Hyperparameters
Logistic Regression max_iter: 1000

Random Forest
n_estimators: 500
min_samples_split: 2

Decision Tree
max_depth: 15
min_samples_split: 2

SVM
max_iter: 1000
kernel: ’rbf’

XGBoost
max_depth: 6 (default)
learning_rate: 0.3

AdaBoost
n_estimators: 100
learning_rate: 1.0

Table 5: Hyperparameters for ML models
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Abstract
This paper explores hate speech detection in
Devanagari-scripted languages, focusing on
Hindi and Nepali, for Subtask B of the CHIP-
SAL@COLING 2025 Shared Task. Using
a range of transformer-based models such
as XLM-RoBERTa, MURIL, and IndicBERT,
we examined their effectiveness in navigating
the nuanced boundary between hate speech
and free expression. Our best performing
model, implemented as ensemble of mul-
tilingual BERT models achieved Recall of
0.7762 (Rank 3/31 in terms of recall) and
F1 score of 0.6914 (Rank 17/31). To ad-
dress class imbalance, we used backtransla-
tion for data augmentation, and cosine simi-
larity to preserve label consistency after aug-
mentation. This work emphasizes the need for
hate speech detection in Devanagari-scripted
languages and presents a foundation for fur-
ther research. The code can be accessed at
https://github.com/Anmol2059/NLPineers.

1 Introduction

Social media has become an essential part of our
lives, empowering users to communicate freely and
fostering a global exchange of ideas. However, it
has contributed to the rapid proliferation of harm-
ful content, including hate speech. Detecting hate
speech is inherently complex due to the nuanced
boundary between hate speech and legitimate free
expression. What one individual may perceive as
an offensive or harmful statement, another might
interpret as a right to free speech, complicating the
task of building an automated hate speech detection
system. In languages where Devanagari script is
predominantly used, such as Hindi, Marathi, and
Nepali, detecting hate speech becomes even more
intricate due to linguistic diversity, regional varia-
tions, and code-mixing practices.

Numerous transformer-based models have
emerged to address the challenges of hate speech

*Equal contribution.

detection across various high-resource languages.
HateBERT (Caselli et al., 2020), a BERT model
retrained on a dataset of Reddit comments from
communities banned for offensive content, out-
performs general BERT models in detecting abu-
sive language in English. MC-BERT4HATE (Yang
et al., 2020) presents a multi-channel architecture
that integrates English, Chinese, and multilingual
versions of BERT, aiming to detect hate speech
across multiple languages more effectively. How-
ever, during politically charged events like elec-
tions, hate speech in Devanagari scripts intensifies
on social media platforms like Twitter, producing
more complex forms that require an understanding
of socio-political dynamics beyond mere linguistic
processing. These nuances are not well captured
by general-purpose models, highlighting the need
for specialized approaches.

The First Workshop on South East Asian Lan-
guage Processing (Sarveswaran et al., 2025) aims
to strengthen and spur NLP research and develop-
ment in SEA languages. This paper aims to solve
Task B: Hate Speech Detection of the Shared Task
on Natural Language Understanding of Devanagari
Script Languages (Thapa et al., 2025). Hate speech
detection is a binary classification problem that re-
quires determining whether a tweet is hate speech
or not. The classifiers we used in this challenge
include XLM-RoBERTa, MURIL, and IndicBERT.

2 Related Works

Devanagari-script languages, being low-resource,
have seen relatively limited work in hate speech
detection. Aggression and Misogyny Detection
using BERT by (Safi Samghabadi et al., 2020) clas-
sified comments presents in English, Hindi and
Bengali into one of the three aggression classes
- Not Aggressive, Covertly Aggressive, Overtly
Aggressive, as well as one of the two misogyny
classes - Gendered and Non-Gendered scoring
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0.8579 weighted F1-measure using BERT model.
In second workshop on Trolling, Aggression, and
Cyberbullying (TRAC-2), (Baruah et al., 2020)
work on Shared task on Misogynistic Aggression
Identification achieved highest F1 score of 0.87 in
Hindi language using XLMRoBERTa . Similarly,
HASOC 2020: Hate Speech and Offensive Content
Identification in Indo-European Languages (Mandl
et al., 2020) had sub-task for Hate Speech detection
in Hindi, German and English having 40 teams as
participants. The best submission for Hindi used
a CNN with fastText embeddings as input and the
best result for English is based on a LSTM which
used GloVe embeddings as input. Although there
has been some work done on Hindi, it is worth
noting that Nepali, which also uses the Devana-
gari script, has received relatively little attention in
this area,(Luitel et al., 2024; Niraula et al., 2022)
likely due to resource limitations. (Niraula et al.,
2021) annotated 7462 records in Nepali language
into four categories SEXIST, RACIST, OTHER-
OFFENSIVE, and NON-OFFENSIVE using Ran-
dom Forest Classifier achieving F1 scores as 0.01,
0.45,0.71 and 0.87 respectively.

Despite these few efforts, there remains a lack
of performance benchmarks for multilingual BERT
models on Devanagari scripts. Additionally, previ-
ous works have not explored BERT-based ensemble
strategies that integrate predictions from multiple
models. This gap motivated us to investigate the
effectiveness of various multilingual BERT models
and their ensembling approaches for hate speech
detection in Devanagari scripted languages.

3 Dataset and Task

Category Training Evaluation

Hindi Non-Hate 7,376 1,596
Nepali Non-Hate 9,429 2,006
Hindi Hate 679 142
Nepali Hate 1,535 332

Total 19,019 4,076

Table 1: Sample distribution of data in training and
evaluation sets

This experiment uses the data from the shared
task, which is compiled from prior works across
multiple Devanagari-script languages, including
Hindi hate speech in political discourse (Jafri et al.,
2024, 2023), Nepali election discourse (Thapa
et al., 2023; Rauniyar et al., 2023), Bhojpuri-
English sentiment modeling (Ojha, 2019), Marathi

Figure 1: Experiment Workflow.

sentiment analysis (Kulkarni et al., 2021), and San-
skrit translation corpora (Aralikatte et al., 2021). In
this study, the evaluation set refers to the phase 2
data provided by the challenge organizers, which
is part of the development data. It is distinct from
the test set, which was submitted for the challenge.
Table 1 provides detailed statistics on the original
dataset of the shared task and some of the example
sentences are in Figure 2. The overall pipeline of
this experiment is summarized on Figure 1.

4 Experimental Setup

4.1 Data Augmentation

As observed in Table 1, hate speech instances were
much fewer compared to non-hate speech. To
address this imbalance, data augmentation was
applied to the hate speech instances using back-
translation with the mBART-large-50 model (Tang
et al., 2020), translating the data to English and
back to the source language to introduce text varia-
tions. To ensure that the augmented data retained
semantic similarity with the original data and min-
imize risk of unintended label changes, we cal-
culated the cosine similarity between the embed-
dings of the augmented and original texts using the
XLM-RoBERTa base model (Conneau et al., 2019).
Only augmented data with a cosine similarity score
greater than 0.9(chosen empirically) was added to
the final dataset.

For the training set, data augmentation was per-
formed on both Hindi and Nepali hate speech in-
stances. In the evaluation set, however, augmenta-
tion was applied only to Hindi instances, as Nepali
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Model Tokenizer / Embedding Classifier Architecture

M1 MuRIL abusive (Das et al., 2022) MuRIL (Hindi-Abusive) - Self Native Head
M2 MuRIL + TabNet MuRIL - Self TabNet Classifier
M3 MuRIL(Khanuja et al., 2021a) MuRIL - Self Native Head
M4 IndicBERT(Kakwani et al., 2020) IndicBERT - Self Native Head
M5 IndicBERT + LSTM-CNN IndicBERT - Self LSTM + CNN + FC layer
M6 XLM-Roberta + Logistic Regression XLM-Roberta - Self Logistic Regression
M7 XLM-Roberta (Conneau et al., 2020) XLM-Roberta - Self Native Head
M8 FastText + LSTM None - FastText (Hindi + Nepali) LSTM + FC Layer

Table 2: Overview of models used. FC stands for Fully Connected layer, and Native Head refers to the model’s
built-in classification head when imported from Hugging Face, indicating that these models are fine-tuned. The
Tokenizer/Embedding column combines the tokenization method and embedding source; “Self” signifies that
embeddings are generated by the model itself. Tokenizers and models are sourced from Hugging Face’s model hub,
with FastText embeddings from FastText.cc.

data already had a higher representation compared
to Hindi data. Additionally, to further address the
class imbalance, all hate speech instances (label
’1’) were duplicated to give the model more ex-
posure to minority class. After augmentation, the
training set grew to 13,695 instances by incorporat-
ing the original 2,214 training, 474 evaluation, and
their augmented instances.

4.2 Pretrained Models
We used different pre-trained models and classi-
fier heads, as observed in Table 2 to explore ap-
proaches that could better capture the nuances that
exist in recognizing of hate speeches. The models
included three BERT-based architectures—MuRIL
(Khanuja et al., 2021b), XLM-RoBERTa (Con-
neau et al., 2020), and IndicBERT (Kakwani et al.,
2020)—as well as FastText (Grave et al., 2018),
an token embedding-based model. MuRIL is pre-
trained on 17 Indian languages and their translitera-
tions. XLM-RoBERTa, a large multilingual model,
offers cross-lingual capabilities by training on di-
verse data from multiple languages. IndicBERT
focuses on 12 Indian languages, including Devana-
gari(Hindi and Marathi), and uses a lightweight
structure ideal for efficient processing. In contrast,
FastText uses character-level n-grams to provide
a detailed lexical representation, which is particu-
larly beneficial for morphologically rich languages
in Devanagari script. This combination allows us
to leverage both deep contextual understanding and
fine-grained lexical details for effective hate speech
detection.

4.3 Ensemble Strategy
Our ensemble strategy leveraged the strengths of
our top-performing models from Table 3. We
chose M7 (XLM-Roberta) as the primary model,

M3 (MuRIL) as the secondary model, and M1
(MuRIL abusive) as the fallback model, based on
each model’s unique strengths.

• Primary Model (XLM-Roberta, Model 7):
XLM-Roberta achieved the highest recall
(0.7381), making it effective at detecting hate
speech and minimizing missed cases.

• Secondary Model (MuRIL, Model 3):
When XLM-Roberta does not predict hate
speech, MuRIL provides a balanced F1 score
(0.6904) and accuracy (0.8744), acting as
a secondary layer to catch potential cases
missed by the primary model.

• Fallback Model (MuRIL abusive, Model 1):
In cases where both primary and secondary
models predict no hate speech, MuRIL abu-
sive, with the highest precision (0.7572) and
accuracy (0.8950), serves as a conservative
fallback to minimize false positives.

prediction(x) =





1 if M7(x) = 1

1 if M7(x) = 0 and M3(x) = 1

M1(x) otherwise

4.4 Hyperparameters and Compute
Environment

Training utilized the following hyperparameters,
determined through iterative testing and practical
constraints: a learning rate of 2e-5, a batch size of
16. These values were selected to balance model
performance with available compute resources and
processing time. We used NVIDIA GeForce RTX
3090 as compute environment.
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Model Recall Precision F1 Score Accuracy

M1 MuRIL abusive 0.6335 0.7572 0.6681 0.8950
M2 MuRIL + TabNet 0.6296 0.5874 0.5984 0.7927
M3 MuRIL 0.6877 0.6934 0.6904 0.8744
M4 IndicBERT 0.5934 0.5915 0.5924 0.8305
M5 IndicBERT + LSTM-CNN 0.6455 0.5618 0.5207 0.6271
M6 XLM-Roberta + Logistic Regression 0.6504 0.6596 0.6548 0.8619
M7 XLM-Roberta 0.7381 0.6696 0.6933 0.8472
M8 FastText + LSTM 0.5320 0.5400 0.5346 0.8270

Ensemble (M1, M3, M7) 0.7762 0.6639 0.6914 0.8258

Table 3: Evaluation results on test set of the hate speech detection task. Dark green cells indicate the best performance
in the respective metric, while dark red cells indicate the worst. Gradual shades of green represents relatively good
performance.

5 Results and Discussions

The competition was hosted on the Codalab1 plat-
form by the organizers, where we submitted binary
predictions (0 or 1) for evaluation based on recall,
precision, F1 score, and accuracy. The performance
of our models in the test set of challenge is shown
in Table 3.

5.1 MuRIL-Based Models
As seen in Table 3, the fine-tuned MuRIL model
(M1) on Devanagari script provided the highest
accuracy among MuRIL-based models. The stan-
dard MuRIL model (M3) demonstrated balanced
performance across all metrics. We also experi-
mented with combining MuRIL and TabNet (M2)
as suggested by (Chopra et al., 2023), but this con-
figuration did not yield competitive results in this
task.

5.2 IndicBERT
We anticipated strong performance from In-
dicBERT (M4) due to its training on 12 Indic
languages as discussed in (Kakwani et al., 2020).
However, its results were lower than expected, pos-
sibly due to the presence of Nepali text in the
dataset, which IndicBERT may not be optimized
for. The combination of IndicBERT with LSTM-
CNN also underperformed, showing unsatisfactory
results.

5.3 XLM-Roberta-Based Models
Both the plain XLM-Roberta model (M7) and
XLM-Roberta with a Logistic Regression head

1https://codalab.lisn.upsaclay.fr/competitions/20000#participate-
submit results

(M6) performed well, indicating the model’s robust
generalization capabilities across different metrics.
This highlights XLM-Roberta’s versatility in multi-
lingual tasks.

5.4 FastText with LSTM
Since the evaluation set contained Devanagari
script for both Nepali and Hindi, we utilized Fast-
Text embeddings of both languages and fed in
LSTM based classifer (M8). However, this setup
did not yield satisfactory results, likely due to the
limitations of static embeddings, which struggle to
capture the contextual nuances essential for accu-
rate hate speech detection.

5.5 Ensembled Model
Our final submission was an ensemble model com-
bining M1, M3, and M7, as described in previ-
ous sections. This ensemble achieved balanced
performance, with recall, precision, F1 score, and
accuracy of 0.7762, 0.6639, 0.6914, and 0.8258,
respectively, effectively leveraging the strengths of
multiple models.

6 Conclusion

This study highlights the potential of various BERT-
based models and ensembling approach for hate
speech detection in Devanagari-scripted languages,
with future work planned on model robustness and
scalability for real-world applications. Further re-
search could explore additional embeddings and
augmentations to enhance performance across mul-
tilingual contexts.
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Limitations

This study faces several limitations, particularly
due to the linguistic complexities inherent to
Devanagari-scripted languages like Hindi and
Nepali. Below, we outline some of the primary
challenges:

• Limitations of Data Augmentation via
Backtranslation: While backtranslation with
the mBART model was used to augment
hate speech samples, this approach sometimes
loses the cultural nuances or tone intended
in the original text. For instance, words like
tapai and hajur in Nepali convey a formal or
respectful tone, but during translation to En-
glish and back to Nepali, these terms are often
reduced to the informal timi, altering the sen-
timent. This limitation could introduce subtle
inaccuracies during model training.

• Contextual Meaning Across Languages: In
Devanagari-scripted languages, certain words
can carry vastly different meanings depending
on the language context. Such linguistic am-
biguities create challenges for the model, as it
may misinterpret hate speech in cases where
meanings differ across languages using the
same script.

• Dependency on Word Embeddings for De-
vanagari Script: Devanagari script is used for
multiple languages, and words in Hindi and
Nepali may have similar or identical represen-
tations in embeddings, potentially leading to
confusion. While BERT-based models like
XLM-RoBERTa and MuRIL are designed to
handle multilingual contexts, challenges per-
sist when languages share the same script but
differ in vocabulary or syntax. These issues
may impact the model’s ability to differentiate
nuanced expressions unique to each language.
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A Appendix

A.1 Example Sentences from Dataset

Example Data

Language Label Sentences

Training

Nepali Hate पोखराका जनता सवै भन्दा भेडा लाग्यो मलाई । हािमले काठमाण्डैमा

बलेनको लैरोमा सपोर्ट गरेपिन हामो्र छेत्रमा स्वतन्त्रलाई सारै हेपेउँ ।

पार्िटगतलाई तर्साउन भएपिन केही हद सम्म सवतन्त्रलाई भोट जानु

पर्थ्यो ।

Nepali Non-Hate नया आउनै पर्छ। चाहे त्यो राप्रपा को रुपमा होस, रा.स्व.प को

रुपमा होस अथवा िबबेकिशल साझा। किहले होला? #nonotagain
#NepalVotes2022

Hindi Hate राहुल गांधी ने दावा करते हुए कहा िक सरकार बनेगी तो कांगे्रस

पार्टी की ही बनेगी. इस दौरान राहुल ने BJP पर भी िनशाना साधा

है. #GoaElections2022 #RahulGandhi #AssemblyElec-
tions2022 https://t.co/crw8q959wg

Hindi Non-Hate अमर उजाला दैिनक समाचार में हेड लाइन में प्रकािशत "मुर्दे से भी चुनाव

में अशांित फैलाने का डर" के सम्बंध में खंडन। #UPPolice #Assem-
blyElections2022 #YourVoteMatters #AgelessDemocracy

Evaluation

Nepali Hate तपाईंको मुकुण्डो उधृन धेरै िदन बाकी छैन सर ।मातै्र क्रसर वालाहरुको

काम फुक्का भएको िदन ।तपाईंको चर्चाको राजनीित िसिधन्छ। अब उिचत

कानुन र िनयमन वा हजुरको मुकुण्दो। No options for you. Time is
running

Nepali Non-Hate हार्ने डर त्यसपिछ राज्यकोषबाट रकम दरुुपयोग गर्न नपाइने भयले रिव

लािमछाने मािथ अाक्रमणकेा प्रयास गरेको हुन गठबन्धनले । तेाडफेाड

गर्दा प्रहरी र प्रशासन मुकदर्शक बन्नु उिनहरुलाई समर्थन गर्नु हो ।

#NoNotAgain

Hindi Hate योगी ने कहा िक कांगे्रस पहले जब सत्ता में थी तो आतंिकयों को पे्रिरत

और पो्रत्सािहत करती थी और ये िहंदू संगठनों पर झूठे मुकदमें दर्ज़

करते थे। https://t.co/ispuqj8BM7 #YogiAdityanath #Ut-
tarPradesh #UttarPradeshElections2022 #BJP #Congress
https://t.co/jQPWPPNPZVD

Hindi Non-Hate उत्तर प्रदेश िवधानसभा सामान्य िनर्वाचन-2022 कल 10 मार्च-2022

को मतगणना के िलए व्यवस्थाओं के सम्बन्ध में पे्रस िवज्ञप्ित जारी...

@ECISVEEP @SpokespersonECI #ECI #AssemblyElec-
tions2022 https://t.co/vyC5hmeD4H

Figure 2: Examples from the dataset.
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Abstract

People often use written words to spread hate
aimed at different groups that cannot be practi-
cally detected manually. Therefore, developing
an automatic system capable of identifying hate
speech is crucial. However, creating such a sys-
tem in a low-resourced languages (LRLs) script
like Devanagari becomes challenging. Hence,
a shared task has been organized targeting hate
speech identification in the Devanagari script.
This work proposes a pre-trained transformer-
based model to identify the target of hate
speech, classifying it as directed toward an in-
dividual, organization, or community. We per-
formed extensive experiments, exploring vari-
ous machine learning (LR, SVM, MNB, GB,
and ensemble), deep learning (CNN, LSTM,
CNN+BiLSTM), and transformer-based mod-
els (IndicBERT, mBERT, MuRIL, XLM-R) to
identify hate speech. Experimental results in-
dicate that the IndicBERT model achieved the
highest performance among all other models,
obtaining a macro F1-score of 0.6785, which
placed the team 6th in the task.

1 Introduction

The rapid evolution of social media has revolution-
ized global communication, enabling users to inter-
act and exchange content instantly. As social media
platforms have become central to online interaction,
they have also become spaces where hate speech
flourishes, often targeting specific individuals, or-
ganizations, or communities (Schmid et al., 2024).
Addressing hate speech on digital platforms is es-
sential for creating a secure, more inclusive online
environment; however, the vast amount of content
makes manual detection impractical. This chal-
lenge highlights the need for automated hate speech
detection systems capable of accurately identify-
ing targets within hateful language. However, hate
speech often relies on context and subtle nuances in
language, such as sarcasm, humor, or cultural refer-

ences, making it challenging for automatic systems
to identify accurately (Parihar et al., 2021).

In recent years, Natural Language Processing
(NLP) has emerged as a promising solution to
this problem, with significant advancements in
hate speech detection for widely spoken languages
(Lemmens et al., 2021). However, identifying spe-
cific targets of hate speech in low-resource lan-
guages (LRLs), especially those that use scripts
like Devanagari (Hindi, Nepali), has received lim-
ited attention. The scarcity of resources and high-
quality annotated datasets in Devanagari scripts is
one of the critical barriers to effective hate speech
detection in this script. Devanagari scripts’ intricate
syntax and semantics often lead to misinterpreta-
tions of hate speech, especially in cases involving
indirect expressions, ambiguities, cultural allusions,
or slang without an understanding of cultural and
social context. Addressing these gaps, a shared
task (Thapa et al., 2025) is organized at CHIP-
SAL@COLING2025 (Sarveswaran et al., 2025)
that focuses on identifying the specific targets of
hate speech within the Devanagari-script text. In
this task, each instance of hate speech is catego-
rized by its intended target, an individual, organiza-
tion, or community, to deepen understanding of the
scope and direction of hateful expressions in these
languages. As participants in the task, the critical
contributions of our work are outlined below.

• Developed a transformer-based model to cate-
gorize hate speech by its intended target: indi-
vidual, organization, or community.

• Examined various baselines, including ma-
chine learning (ML), deep learning (DL), and
transformers to perform the tasks.

2 Related Work

A wide range of studies have been conducted in
NLP regarding hate speech. Dhanya and Balakrish-
nan (2021) explored the detection of hate speech
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in various Asian languages, focusing on develop-
ing an automated system tailored for Malayalam.
Shvets et al. (2021) worked on identifying sexism
and racism in social media posts. Using GetTA
Pair with BERT resulted in lower accuracy with
0.57 on the test set for exact matches but achieved
a considerably higher accuracy of 0.82 for par-
tial matches. The challenge of detecting hatred
and insulting language in an LRL (Telugu), which
is also code-mixed, was addressed by Farsi et al.
(2024). They employed sentence BERT, achiev-
ing a macro F1-score of 0.70. Plaza-del Arco
et al. (2021) used multi-task learning with sen-
timent, emotion, and target detection to recog-
nize hate and offensive language. They imple-
mented a multi-head, multi-task learning model
based on BERT, which achieved the highest F1
score of 0.862. Farooqi et al. (2021) addressed hate
speech detection on social media tweets, comments,
and replies. They used code-mixed data (Hindi
+ English), and their system achieved a macro
F1-score of 0.72 leveraging neural networks and
ensemble transformer-based models (IndicBERT,
XLM-ROBERTA, Multilingual BERT). A study
by Joshi and Joshi (2023) assessed the effective-
ness of several sentence-BERT models, includ-
ing Bengali-SBERT, Gujarati-SBERT, Assamese-
BERT, and L3Cube Indic-SBERT, which demon-
strated state-of-the-art performance in detecting
hate speech across Indian languages. Alam et al.
(2024) conducted hate speech detection in Tamil
on social media, specifically targeting caste and
migration status. They explored various ML, DL,
and transformer-based models, including M-BERT,
XLM-R, and Tamil BERT. Notably, the M-BERT
model achieved a standout macro F1-score of 0.80,
marking the highest performance among the mod-
els tested. Mossie and Wang (2020) conducted
vulnerable community identification on social me-
dia posts and comments in both Amharic and En-
glish text. The RNN-GRU model outperformed
others, achieving an accuracy of 0.92. Singh
et al. (2023) implemented the XLM-Roberta-base
model on multilingual text data from the ‘Cri-
sisHateMM’ dataset related to the Russia-Ukraine
conflict, achieved the highest performance in de-
tecting hate speech and identifying targets (indi-
vidual, community, organization) across both Sub-
task 1 (text-embedded image hate speech detec-
tion) and Sub-task 2 (target detection), with F1
scores of 84.62 and 69.73, respectively. Another
notable work emphasizes hate speech detection in

Marathi by Velankar et al. (2022) using the L3Cube-
MahaHate dataset with 25,000 tweets where mono-
lingual models like MahaBERT (0.909 accuracy for
binary) and MahaRoBERTa (0.903 for 4-class) out-
performed multilingual BERT variants. Karim et al.
(2021) conducted hate speech detection in Bangla,
using 8,087 labeled examples from Facebook,
YouTube comments, and newspapers, and achieved
an 88% F1-score with DeepHateExplainer, an en-
semble of Bangla BERT-base, mBERT, and XLM-
RoBERTa.

Numerous studies focus on identifying hate
speech but lack target-specific classifications, es-
pecially for Nepali tweets. There is a vacuum in
target identification in Nepali-language detection
since most research has been on code-mixed Hindi-
English or only Hindi scripts. This work addresses
the gaps by including Hindi and Nepali tweets in
the Devanagari script. Focusing on target identifi-
cation in the Devanagari scripts, this work incor-
porates culturally relevant patterns to enhance the
detection of nuanced hate speech.

3 Task and Dataset Description

In the shared task1, we focus on identifying specific
targets within hate speech written in the Devana-
gari script (Thapa et al., 2025). The task aims to
classify each instance of hate speech according to
its intended target: Individual (InD), Organization
(OrG), and Community (CoM). According to (Jafri
et al., 2024), the definition of class is defined as:

• Individual (InD): Refers to hateful acts to-
wards specific individuals, such as a self-
reliant person targeted.

• Organization (OrG): Denotes hate targeted
to institutions or groups of people formed to
achieve specific goals.

• Community (CoM): Indicates instances
where hate speech targets communities or
larger socioeconomic groups.

The dataset (Jafri et al., 2024, 2023; Thapa et al.,
2023; Rauniyar et al., 2023; Ojha, 2019; Kulkarni
et al., 2021; Aralikatte et al., 2021) is developed
for identifying the target of hate speech, comprises
a variety of social media tweets containing hate
speech directed toward individuals, organizations,
and communities. This task aims to detect and

1https://github.com/therealthapa/chipsal24
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prevent hate speech directed at individuals, organi-
zations, and communities. The primary goal is to
foster a safer and more respectful social media envi-
ronment. Appendix A provides statistical details of
the dataset, outlining key metrics and distributions.

4 Methodology

Figure 1 shows a schematic process in detecting
hate speech, illustrating each major phase.

Figure 1: Schematic process of the target identification
for hate speech.

4.1 Data Pre-processing
The dataset comprises tweets with substantial un-
necessary and redundant content. The tweets con-
tain emojis, unwanted spaces, symbols, punctu-
ations, and URLs. To enhance data quality and
handle class imbalance, we implemented a robust
preprocessing pipeline that involves text prepro-
cessing and oversampling. The dataset is refined
by removing emojis, extraneous symbols, unnec-
essary punctuation, and URLs that do not signif-
icantly aid in identifying the target class. The
tweets are then tokenized, with Hindi and Nepali
stopwords systematically removed, resulting in a
dataset containing only meaningful and relevant in-
formation. Appedix B presents the statistics of the
training dataset after oversampling, highlighting
key changes in data distribution.

4.2 Feature Extraction
We employed distinct feature extraction techniques
for ML and DL models, optimizing each approach
for its specific strengths in text data comprehen-
sion. To optimize performance, the feature set is
restricted to the top 5000 terms, balancing the need

for interpretability and computational efficiency.
Word2Vec and FastText embeddings are employed
for DL models, with each embedding represented
in a 300-dimensional vector space. These em-
beddings capture semantic relationships between
words, crucial for understanding context in the nu-
anced language of hate speech. Word2Vec offers
continuous representations, while FastText incorpo-
rates subword information, making it particularly
effective for processing morphologically complex
languages like Hindi and Nepali.

4.3 ML Models

Various machine learning models are leveraged for
target identification of hate speech. Logistic Re-
gression (LR), Support Vector Machine (SVM),
Multinomial Naive Bayes (MNB), and Gradient
Boosting Classifier (GBC) were implemented. LR
is set with a maximum iteration of 1000 for conver-
gence. We also performed hyperparameter tuning
for the SVM using “GridSearchCV” to identify the
optimal configuration. An ensemble model using a
Voting Classifier combining LR, SVM, MNB, and
GBC with soft voting was used to enhance clas-
sification accuracy. Each model is configured to
optimize performance: LR with a maximum itera-
tion of 1000 for convergence, SVM with probabil-
ity enabled for soft voting, MNB operates on TF-
IDF vectorized term frequencies, and GBC refines
predictions on complex samples. This ensemble
leverages the strengths of each model to improve
target identification.

4.4 DL Models

Three DL models, CNN, BiLSTM, and
CNN+BiLSTM, were employed for the task.
The CNN model utilizes an embedding layer
with pre-trained word vectors, followed by a
1D convolutional layer with 128 filters and a
kernel size of 5, along with max pooling and
global max pooling layers to extract features
and reduce dimensionality. It includes a dense
layer with 64 neurons and a dropout rate of 0.5,
culminating in a sigmoid activation output for
binary classification. The BiLSTM model also
begins with an embedding layer and employs a
bidirectional LSTM layer with 64 units, leveraging
forward and backward context. This is followed
by global max pooling and a dense layer structure
with dropout. The CNN-BiLSTM model integrates
both architectures, featuring a convolutional layer
for local pattern extraction and a bidirectional
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LSTM for contextual understanding. All these
three models are compiled with the ‘Adam’
optimizer and trained using ’binary_crossentropy’
loss for 5 epochs.

4.5 Transformers

We utilized various pre-trained transformer-based
models from HuggingFace2 to identify the one
that performs best for our task. We employed
transformer-based models such as m-BERT, In-
dicBERT, MuRIL, and XLM-R. IndicBERT outper-
formed all other ML, DL, and transformer-based
models by achieving the highest macro F1 score.

IndicBERT is a pre-trained multilingual lan-
guage model designed to process multiple Indic
languages and English. It is trained on the Indic-
Corp v2 dataset and evaluated against the IndicX-
TREME benchmark, showcasing its robustness in
understanding diverse linguistic contexts. With a
parameter count of 278 million, the model sup-
ports 23 Indic languages, enhancing its versatility
in natural language processing tasks. The fine-
tuned model architecture comprises a pre-trained
IndicBERT with three output labels. IndicBERT-
MLM utilizes a vanilla BERT architecture trained
with the Masked Language Model.

Table 1 demonstrates the hyperparameters that
are fine-tuned to attain best performance of the
IndicBERT model.

Hyperparameter Value
Optimizer AdamW
Learning Rate 2e-5
Batch Size 16
Max Length 128
Weight Decay 0.05
Epochs 3

Table 1: Hyperparameter setup for transformer-based
models

The hyperparameters are fine-tuned through ex-
tensive experimentation. Various learning rates,
including 1e-5 and 5e-5, are tested, along with dif-
ferent batch sizes such as 4, 8, and 32, to evaluate
performance. The maximum sequence length is
set to 128 for optimal model generalization. Mul-
tiple epoch configurations, such as 5, 10, and 15,
are implemented. After thorough trials, the model
performs best with these selected hyperparameters.

2https://huggingface.co/

5 Results and Discussion

Table 2 illustrates the performance of the various
ML, DL, and transformer-based models employed
on the test set. The model’s performance is evalu-
ated using the macro F1-score. Among ML mod-
els, the LR model achieved the highest macro F1-
score of 0.5267, while the ensemble model closely
follows with a score of 0.5220. The ensemble
model highlights potential challenges in integrat-
ing diverse ML models such as LR, MNB, and
GB. The other ML models had an F1 score slightly
lower than this value. DL models exhibited infe-
rior performance compared to ML models. The
CNN model with FastText embeddings yields a
lower macro F1-score of 0.2175, while the BiL-
STM model achieved a macro F1-score of 0.4587.
The ensemble of CNN and BiLSTM achieved a
higher F1-score of 0.5046. IndicBERT and MuRIL
outperformed ML and DL models by achieving
a macro F1-score of 0.6785 among transformer-
based models. The XLM-R model also obtained
a moderate result with a 0.6608 macro F1 Score.
IndicBERT is the best model due to its higher pre-
cision value than MuRIL.

Model P R F1
Ensemble 0.52 0.52 0.52
LR 0.53 0.53 0.53
SVM 0.46 0.47 0.46
MNB 0.51 0.52 0.51
GB 0.48 0.47 0.47
CNN 0.16 0.33 0.22
BiLSTM 0.46 0.46 0.46
CNN + BiLSTM 0.50 0.51 0.50
m-BERT 0.59 0.58 0.58
IndicBERT 0.69 0.67 0.68
MuRIL 0.68 0.68 0.68
XLM-R 0.63 0.63 0.63

Table 2: Performance of various ML, DL, Transformer-
based models on the test set. P (Precision), R (Recall),
F1 (macro F1-score)

The results highlight the superiority of
transformer-based models in handling linguistic
diversity while considering the limitations of con-
ventional DL approaches, particularly in capturing
the rich semantic information for LRLs needed for
accurate classification. Lack of pre-trained models
in ML/DL specially tailored for LRLs can be a
key reason for such poor performence. A detailed
error analysis of the best-performed model, both
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quantitative and qualitative, is presented below
to offer a comprehensive understanding of the
proposed model’s performance.

Quantitative Analysis: An in-depth quanti-
tative error analysis is done using the confusion
matrix (Figure 2). The confusion matrix depicts
that a total of 345 samples are classified correctly
out of 475 samples. A total of 34 samples from
the InD class are misclassified as OrG, while 18
are mistaken for CoM. Similarly, 34 samples from
the OrG class are misclassified as InD, with an ad-
ditional 13 misclassified as CoM. Meanwhile, 19
samples from the CoM class are misclassified as
InD, and 12 as OrG. The misclassification can be
traced to the initial class imbalance in the dataset.
Though oversampling is performed, new feature
patterns are not integrated, leading to a bias toward
the limited features. This residual bias potentially
impacts its ability to generalize effectively across
all classes.

Figure 2: Confusion matrix of the best-performed model
(IndicBERT).

Qualitative Analysis: A comparison of actual
labels and predicted labels on a particular tweet is
illustrated in Figure 3. The first three samples are
predicted correctly as their actual classes. How-
ever, the fourth sample is incorrectly predicted.
It is meant to target a community, but our model
wrongly predicts the sample as InD.

The misclassifications likely occur due to the in-
herent challenges in context understanding and the
overlap of semantic features between the classes.
Even with IndicBERT, which excels in multilin-
gual tasks, subtle contextual cues in the Devanagari
script may cause confusion between classes.

Figure 3: Some predicted outputs by the IndicBERT.

6 Conclusion

This study evaluates several ML, DL, and
transformer-based models for identifying hate
speech targets in Hindi and Nepali tweets written in
Devanagari script. While traditional ML methods
like LR and ensemble provided valuable insights,
they struggled to capture complex semantic rela-
tionships. DL models also faced challenges with
feature representation in the Devanagari script and
obtained poor results. However, IndicBERT out-
performed all other ML and DL approaches among
transformer-based models, achieving the highest
F1-score of 0.6785 by effectively capturing the nu-
ances of the Devanagari script. Future work can
explore advanced embeddings, hybrid models, or
ensemble multiple transformers for enhanced per-
formance in hate speech detection.

7 Limitations

The current work poses several constraints: (i)
The presented method relies on the pre-trained In-
dicBERT, which may require further fine-tuning
and modification to capture contextual patterns bet-
ter. (ii) The dataset is imbalanced, and to address
this, we applied the oversampling technique, resam-
pling the minority class. However, this approach
may limit the model’s ability to learn diverse pat-
terns, impacting its performance. New NLP aug-
mentation techniques can be more helpful in further
investigation. (iii) DL models’ performance can be
investigated further, exploring alternative embed-
dings and classifiers.
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A Appendix

Classes Train Valid Test TW TUW
InD 1074 230 230 42438 15681
OrG 856 183 184 31181 11722
CoM 284 61 61 10564 5182
Total 2214 474 475 84183 25731

Table A.1: Dataset Statistics for Train, Validation, and
Test Sets. TW and TUW denotes total words and total
unique words, respectively

Table A.1 demonstrates the statistics of the
dataset. The dataset comprises a total of 3163 in-
stances of hate speech. The training dataset con-
sists of 2214 samples. In addition, the validation
dataset includes 474 tweets, while the test set con-
tains 475 tweets, which will be used in the final
evaluation to assess the model’s generalization to
unseen data. The datasets are highly imbalanced,
with the individual class containing substantially
more instances than the organization and commu-
nity classes.

B Appendix

Analyzing the dataset reveals a substantial class
imbalance, with instances of the class InD being
the most prevalent, while OrG and CoM classes are
significantly underrepresented. To address this, we
employed an oversampling technique specifically
targeting the minority classes. We accomplished
this by replicating samples from these underrep-
resented classes until the number of instances in
each class was comparable. This approach ensures
that the model obtains sufficient samples from each
class, minimizing the risk of bias toward the major-
ity class. Table B.1 shows the number of training in-
stances after applying the oversampling technique.

Oversampling can lead to bias by artificially in-
flating the representation of minority classes. Since
it just duplicates existing minority class examples
instead of generating truly novel samples, the new
observations do not provide additional informative
details about under-represented classes. This re-
duces the model’s ability to generalize to unseen

Classes Train TW TUW
Individual 1074 29471 11963
Organization 1074 27831 6931
Communication 1074 27886 3773
Total 3222 85188 18187

Table B.1: Statistics of training dataset after oversam-
pling

data and increases the risk of overfitting. To over-
come this problem new data augmentation tech-
niques introduced in NLP can be used in further
analysis for better results. Methods like back trans-
lation, synonym replacement, lexical substitution,
noise injection can enhance linguistic diversity and
make models robust to minor changes. For tar-
get identification in hate speech in the Devanagari
script, context-aware substitution and adversarial
methods can help to reduce bias and improve gen-
eralization.
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Abstract

This paper presents a comparative analysis of
FastText and BERT-based approaches for Nat-
ural Language Understanding (NLU) tasks in
Devanagari script languages. We evaluate these
models on three critical tasks: language identifi-
cation, hate speech detection, and target identi-
fication across five languages: Nepali, Marathi,
Sanskrit, Bhojpuri, and Hindi. Our experi-
ments, although with a raw tweet dataset but
extracting only the Devanagari script, demon-
strate that while both models achieve excep-
tional performance in language identification
(F1 scores > 0.99), they show varying effective-
ness in hate speech detection and target iden-
tification tasks. FastText with augmented data
outperforms BERT in hate speech detection (F1
score: 0.8552 vs. 0.5763), while BERT shows
superior performance in target identification
(F1 score: 0.5785 vs. 0.4898). These findings
contribute to the growing body of research on
NLU for low-resource languages and provide
insights into model selection for specific tasks
in Devanagari script processing.

1 Introduction

The proliferation of digital content in Devanagari
script languages has created an urgent need for ro-
bust Natural Language Understanding (NLU) tools
(Wilie et al., 2020). These tools are essential for
content moderation, ensuring safe online spaces,
and preserving linguistic diversity in digital plat-
forms (Parihar et al., 2021; Kumar et al., 2024).
However, processing Devanagari script languages
presents unique challenges due to their complex
character sets, morphological richness, and limited
computational resources (Sarveswaran et al., 2025;
Thapa et al., 2025).

This research addresses these challenges through
two primary approaches. Firstly, the implementa-
tion of FastText (Joulin et al., 2017), known for its
efficiency in handling Devanagari text data (Ban-
sod, 2023; GitHub), and secondly, the utilization of

pre-trained BERT-based Multilingual Cased mod-
els (Devlin et al., 2019) fine-tuned for specific
tasks.

Our work focuses on providing a comprehensive
comparison of traditional and transformer-based
approaches, establishing baseline performances
for three crucial NLU tasks, and identifying opti-
mal model configurations for FastText Devanagari
script processing tasks.

2 Related Work

Recent research in Devanagari script processing
has focused on developing robust language identi-
fication systems and hate speech detection mecha-
nisms (Kumbhar and Thakre, 2024; Rauniyar et al.,
2023). Language identification and hate speech
detection in low-resource languages, particularly
those using the Devanagari script, have garnered
significant research attention due to the increas-
ing digital content in these languages. Traditional
methods for language identification often relied on
statistical models and n-gram analyses. With the
advent of deep learning, more sophisticated mod-
els have emerged, offering improved performance
(Bansod, 2023).

In the context of Indic languages, AI4Bharat’s
IndicLID (Devlin et al., 2019) leveraged FastText-
based models fine-tuned on multiple Indian lan-
guages for language identification. Their models
demonstrated high precision, recall, and F1-scores,
with significant throughput suitable for large-scale
applications. For instance, the IndicLID-FTN-4-
dim model achieved an F1-score of 0.99 and an
accuracy of 0.98, outperforming models like CLD3
and NLLB in terms of throughput and model size.

Thapa et al. (Thapa et al., 2023a) conducted the
Multimodal Hate Speech Event Detection shared
task at CASE 2023, providing valuable insights
into various methodologies for hate speech detec-
tion. The methods from different participants re-
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vealed interesting approaches, with transformer-
based methods proving to be more effective. Most
participants utilized BERT-based variations to ex-
tract textual features from the dataset (Hürriyetoğlu
et al., 2023).

Bansod (Bansod, 2023) explored hate speech
detection in Hindi using various embedding meth-
ods, including FastText, GloVe, and transformer-
based embeddings like DistilBERT and MuRIL.
The study found that transformer-based models,
particularly when fine-tuned with low learning rates
and class weights, achieved macro F1-scores in the
range of 70–75%. The research highlighted chal-
lenges such as the model’s difficulty in detecting
sarcasm, understanding veiled references, and the
need for background knowledge to interpret certain
types of hate speech.

These studies underscore the importance of
model selection, data augmentation, and handling
linguistic nuances in low-resource languages. They
highlight the challenges posed by unbalanced
datasets, code-mixed languages, sarcasm, and the
necessity for comprehensive datasets that capture
the diversity of language use on online platforms.
The collective findings contribute to the growing
body of research on natural language understand-
ing for Devanagari script languages and provide
insights into optimal model configurations for spe-
cific tasks in this domain.

The theoretical foundations of our approach
build upon the FastText architecture introduced by
Joulin et al. (Joulin et al., 2017) and enhanced by
Bojanowski et al. (Bojanowski et al., 2017) with
subword information. The BERT-based component
utilizes the multilingual model developed by De-
vlin et al. (Devlin et al., 2019), which has shown
remarkable effectiveness in cross-lingual tasks.

3 Methodology

In this section, we outline our methodology in a
step-by-step manner.

3.1 Task and Dataset Description

The shared task comprised of three specific sub-
tasks: Sub-Task A involved classifying text into
five distinct Devanagari languages. Sub-Task B
focused on the binary classification challenge of
determining whether a given text contained hate
speech or not. Sub-Task C focused on identifying
the target of hate speech.

3.1.1 Sub-Task A: Language Identification
This problem involved classifying text into five
distinct Devanagari languages- Nepali, Marathi,
Sanskrit, Bhojpuri, and Hindi - labeled as 0 through
4. The dataset comprised a total of 52,422 training
samples, 11,233 evaluation data, and 11,234 test
data.

3.1.2 Sub-Task B: Hate Speech Detection
Sub-task B is focused on binary classification of
hate speech labeled as 0 (‘non-hate’) and 1 (‘hate’).
The dataset comprised a total of 19,019 training
samples of text, 4,076 evaluation data, and 4,076
test data.

3.1.3 Sub-Task C: Target Identification
Sub-Task C focused on identifying the targets of
hate speech i.e., for whom the hate speech was de-
livered. The dataset for this sub-task comprised of
a total of 2,214 training samples, 474 evaluation
data, and 475 test data. There are three classes in
the dataset ‘individual’, ‘organization’, and ‘com-
munity’ labeled as 0, 1, and 2 respectively.

Dataset Description: Our study utilizes a com-
prehensive dataset (CodaLab), comprising sen-
tences in five Devanagari script languages. The
dataset incorporates diverse sources, including the
CHUNAV dataset for Hindi hate speech (Jafri
et al., 2024), the Political Hate Speech Corpus
(Jafri et al., 2023), the Nehate Nepali hate speech
dataset (Thapa et al., 2023b), the Multi-aspect
Nepali tweet corpus (Rauniyar et al., 2023), the
English-Bhojpuri parallel corpus (Ojha, 2019), the
L3CubeMahaSent Marathi dataset (Kulkarni et al.,
2021), and the Itihasa Sanskrit-English corpus (Ar-
alikatte et al., 2021).

3.2 Preprocessing of Data

Initially, we cleaned the provided dataset into three
sets: training, evaluation, and testing. Using a cus-
tom approach defined manually with the Python
regular expression library, we extracted only the
Devanagari text from the dataset, completely ignor-
ing URLs, emojis, hashtags, mentions, digits, and
punctuation, as they were considered irrelevant to
the classification problem.

3.3 Data Augmentation

To balance the instances of the ’hate’ class in Sub-
Task B, the samples from Sub-Task C were merged
with Sub-Task B and labeled as ’hate’ (label 1).
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This was feasible because all the samples in Sub-
Task C represented hate tweets but targeted dif-
ferent groups so after augmenting the data we re-
moved the duplicates.

3.4 Model Architecture and Training

Because the deep learning model can learn the com-
plex distribution characteristics of data through
deep artificial neural networks and nonlinearity,
especially the use of deep learning in tasks related
to text data has attracted more and more attention
(Zhang et al., 2018).

3.4.1 FastText Implementation

FastText is a library for efficient learning of word
representations and sentence classification and ob-
tains performance on par with recently proposed
methods inspired by deep learning while being
much faster (FastText; Joulin et al., 2017) . It re-
quires minimal preprocessing to preserve linguistic
nuances. We have trained the fastText model for
Sub-Task A, B, and C. The Hyperparameters we
set were Epochs: 500 Learning rate: 1 Embed-
ding dimension: 100 Word N-gram: 1 Bucket size:
10,000. For Task B, we implemented data augmen-
tation strategies for FastText to assess the impact of
additional training data, following methodologies
validated in recent studies (Bansod, 2023; GitHub).
This highly improved the performance of the model
which is later discussed in the result section.

3.4.2 BERT Implementation

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019). All three
sub-tasks were fine-tuned on BERT Base Multi-
lingual Uncased and BERT Base Uncased with a
constant learning rate of 1e-4 and a batch size of
32, while the number of epochs was varied across
5, 10, and 20.

4 Results and Analysis

This section is dedicated to a comparative detailed
analysis of the proposed models on all three sub-
tasks. We conducted controlled experiments for
each task, maintaining consistent evaluation met-
rics across models. The performance metrics in
Table 1 show the F1 score of each model and pro-
vide insight into their effectiveness.

Task Method F1 Score (Test)

Language FastText 0.9917
Identification BERT 0.9939

Hate FastText 0.6159
Speech FastText (aug) 0.8552
Detection BERT 0.5763

Target FastText 0.4898
Identification BERT 0.5785

Table 1: F1 Scores for different NLU Tasks in Devana-
gari Script

4.1 Quantitative Results

4.2 Analysis

The results reveal distinct model strengths across
various Devanagari language processing tasks:

1. Language Identification: Both FastText and
BERT performed exceptionally well, achiev-
ing near-perfect F1 scores (0.9917 and 0.9939,
respectively). These results align with pre-
vious findings in Indic language process-
ing (GitHub), demonstrating that both mod-
els effectively differentiate between Nepali,
Marathi, Sanskrit, Bhojpuri, and Hindi.

2. Hate Speech Detection: The performance
of the models diverged significantly. Fast-
Text, when combined with data augmenta-
tion, achieved a notable improvement in F1
score from 0.6159 to 0.8552, outperforming
BERT substantially. BERT, despite its capac-
ity for deep contextual understanding, strug-
gled with this task, displaying an F1 score of
only 0.5763. This underperformance, coupled
with signs of overfitting (an evaluation score
of 0.88 but a lower test score), indicates that
BERT’s generalization ability is limited when
faced with sparse hate speech datasets.

3. Target Identification: For this more nuanced
task, BERT outperformed FastText, with F1
scores of 0.5785 versus 0.4898, respectively.
This suggests that BERT’s contextual em-
beddings are better suited to identifying and
distinguishing complex targets, such as in-
dividuals, organizations, and communities,
within text. Tuning FastText hyperparameters
yielded only minor improvements (±2%), em-
phasizing its robustness but also its limitations
in handling contextual nuances.
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5 Conclusion and Future Work

This study provides an in-depth comparative anal-
ysis of FastText and BERT models for processing
Devanagari script languages. Key findings include:

1. LanguageIdentification: Both models ex-
cel in distinguishing among Devanagari lan-
guages, indicating their robustness in handling
script-based variations.

2. Hate Speech Detection: FastText, particu-
larly when augmented with additional data,
outperforms BERT, highlighting the impor-
tance of data volume and diversity. BERT’s
tendency to overfit suggests a need for
more rigorous fine-tuning, especially for low-
resource hate speech datasets.

3. Target Identification: BERT’s superior per-
formance in this task underscores the advan-
tage of leveraging contextual embeddings to
capture subtle, nuanced relationships.

Future Directions:
Exploring hybrid approaches that integrate the

strengths of both models FastText and BERT
could improve overall performance. Investigat-
ing script-specific pre-processing techniques to en-
hance model accuracy. Applying transfer learning
techniques to better adapt models to low-resource
Devanagari languages, could potentially reduce the
need for extensive data augmentation.
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Abstract

Devanagari script, encompassing languages
such as Nepali, Marathi, Sanskrit, Bhojpuri and
Hindi, involves challenges for identification
due to its overlapping character sets and lexical
characteristics. To address this, we propose a
method that utilizes Continuous Bag of Words
(CBOW) embeddings integrated with attention-
enhanced Bidirectional Long Short-Term Mem-
ory (BiLSTM) network. Our methodology
involves meticulous data preprocessing and
generation of word embeddings to better the
model’s ability. The proposed method achieves
an overall accuracy of 99%, significantly out-
performing character level identification ap-
proaches. The results reveal high precision
across most language pairs, though minor clas-
sification confusions persist between closely
related languages. Our findings demonstrate
the robustness of the CBOW-BiLSTM model
for Devanagari script classification and high-
lights the importance of accurate language iden-
tification in preserving linguistic diversity in
multilingual environments.

Keywords: Language Identification, Devana-
gari Script, Natural Language Processing, Neu-
ral Networks

1 Introduction

Devanagari Script, part of the Brahmic family of
scripts, is widely used in regions such as India,
Nepal, Tibet, and Southeast Asia (Mhaiskar, 2014).
Often referred to simply as ’Nagari’, it has histor-
ical significance, with some attributing the name
to the writing system of ’city people’, while others
believe it originates from the Nagar Brahmans of
Gujarat (Lambert, 1953). Today, Devanagari serves
as the standardized writing system for several ma-
jor South Asian languages, including Hindi, Nepali,
Sanskrit, Bhojpuri, and Marathi. The volume of
text data produced in these languages is substantial
and continues to grow with the expansion of digital
content.

In multilingual contexts, accurate language iden-
tification is a critical preliminary step for many
natural language processing (NLP) systems. A sys-
tem trained to classify Nepali text, for example,
would struggle to handle Marathi documents effec-
tively, and a Hindi-to-Bhojpuri translation system
would likely fail if it were provided with Sanskrit
data. This makes precise language identification
essential for ensuring the proper functioning of
NLP applications. However, identifying languages
within the Devanagari script poses unique chal-
lenges. These languages share a large character
set and exhibit many similarities, while having sig-
nificant variation in writing styles and grammar
(Kopparapu and Vijayalaxmi, 2014). This com-
plexity creates obstacles to developing reliable lan-
guage identification systems, particularly when dis-
tinguishing between languages like Bhojpuri and
Hindi, which share extensive lexical overlap.

To address these challenges, this study, which is
a part of the first task of the challenges in process-
ing south asian languages (CHIPSAL) workshop at
COLING’24, focuses on the identification of five
languages—Nepali, Marathi, Sanskrit, Bhojpuri,
and Hindi—within the Devanagari script. The goal
is to develop a model capable of accurately dis-
tinguishing between these languages despite their
close linguistic relationships. By implementing
a bidirectional Long Short-Term Memory (BiL-
STM) network (Graves et al., 2014), we aim to
capture the contextual information crucial for dis-
tinguishing between languages in the same script.
BiLSTM networks have demonstrated success in
various NLP tasks, and their ability to process text
in both forward and backward directions makes
them particularly suited to tasks involving complex
language structures.

As digital text in Nepali, Marathi, Sanskrit, Bho-
jpuri, and Hindi grows, accurate language identifi-
cation becomes essential. Our study addresses this
need by creating a robust framework for identify-
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ing languages in the Devanagari script, highlighting
the importance of preserving the linguistic diversity
and cultural significance each language represents.

2 Related Works

This section reviews the existing study that ad-
dresses the challenges and methods used in lan-
guage identification, mainly those that utilized the
Devanagari scripts.

In the earlier period, the problem of language
identification was approached by methods that uti-
lized n-gram models. These models are founda-
tional but have limitations when it comes to dis-
tinguishing between languages that have similar
vocabularies.(Cavnar and Trenkle, 1994) showed
the ability of n-gram models in language identifica-
tion but acknowledged their shortcomings in highly
overlapping languages. This limitation is particu-
larly pronounced in Devanagari Scripts as different
languages share extensive lexical similarities.

There has been a shift towards machine learning
and deep learning techniques in order to improve
the language identification accuracy. For exam-
ple, (Joshi et al., 2020) analyzed the characters and
word embeddings for Devanagari text classification,
demonstrating the method including ResNet’s suc-
cess in recognizing the linguistic intricacies which
performed better than the convolutional neural net-
work which is the current state of the art.

Bidirectional Long Short-Term Memory net-
works have emerged as a promising avenue for
solving the problem of Language Identification.
(Bedyakin et al., 2021) work on offensive lan-
guage identification in low-resource language us-
ing BiLSTM networks illustrates the model’s ef-
fectiveness in handling unique linguistic charac-
teristics. Our approach also aims to use BiLSTM
networks for language identification between lan-
guages that share lexical similarities. Overall, the
current research on language classification among
the languages that use the Devanagari script is fo-
cused on developing robust and accurate techniques
for script recognition, segmentation, and language
identification. The diversity of Devanagari-based
languages and the complexity of the script itself
continue to drive research in this area. However, the
specific task of classifying languages such as Hindi,
Nepali, Marathi, Sanskrit, and Bhojpuri within the
Devanagari script remains an unexplored area that
requires further investigation.

3 Methodology

This section describes our approach to Devana-
gari script classification using CBOW embeddings
with an attention-enhanced BiLSTM model. Our
methodology comprises of four main components:
data preprocessing, word embedding generation,
neural network architecture and model training.

3.1 Data Preprocessing

In this study, we utilized publicly available datasets,
includeing (Jafri et al., 2024), (Jafri et al., 2023),
(Thapa et al., 2023), (Rauniyar et al., 2023), (Ojha,
2019), (Kulkarni et al., 2021), (Aralikatte et al.,
2021) to ensure transparency and reproducibility.
The preprocessing pipeline consists of several steps
to clean and standardize the Devanagari text data.

Figure 1: Distribution of Language in the Dataset

3.1.1 Text Cleaning

The dataset used for this research consists of 52,422
Devanagari-script text samples labeled by class as
shown in Figure 1. First, the dataset was prepro-
cessed to ensure data quality. Any missing text
entries were removed. Non-Devanagari characters,
numerals, and punctuation marks were eliminated
using regular expressions. Each text entry was then
stripped of whitespace resulting in a clean corpus
of Devanagari text data.

3.1.2 Data Splitting

The preprocessed dataset was split into training and
testing sets using an 80:20 ratio. For the final model
training after hyper-parameter tuning, the entire
dataset was used for model training. Evaluation
was performed on a separate hold-out dataset.
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Layer Details

Input Layer FastText Embeddings (Dimension: 100)
Bi-LSTM LSTM (Input: 100, Hidden Units: 256, Layers: 3, Bidirectional: True)
Attention Self-Attention (3 Linear Transformations: Wa, Ua, Va, Hidden Size: 512)
Output Layer Fully Connected (Input: 512, Output: 5)

Table 1: Component configuration parameters for the model architecture.

3.2 Word Embedding Generation

In this research, two distinct methods for generat-
ing word embeddings were explored: Continuous
Bag of Words (CBOW) model and a character-level
encoding approach. Each method offers unique ad-
vantages and challenges in capturing the semantic
richness of the Devanagari script.

3.2.1 Continious Bag of Words (CBOW)
The Continuous Bag of Words (CBOW) model is a
predictive model used in natural language process-
ing that captures contextual information by predict-
ing a target word based on its surrounding words
(Xia, 2023). In our implementation, we utilized
FastText to train the CBOW model on a corpus of
Devanagari text. The embedding dimension was
set to 50 and embedding length of sentences was
limited to 100 by either padding or truncating. This
model generates dense vector representations of
words which is effective in tasks like text classifi-
cation and sentiment analysis (Xiong et al., 2019).

3.2.2 Character Level Encoding
Another approach explored in this research was
character-level encoding. Each character of the text
was converted into its Unicode code point, allowing
for a straightforward numerical representation.We
used this method to generate tensors of these code
points, with a maximum sequence length of 100
characters. While this method provided a simplis-
tic representation of the text, it did not capture the
semantic relationships between characters as effec-
tively as the CBOW embeddings which resulted in
lower accuracy as shown in Table 4

3.3 Neural Network Architecture and
Training

The Devanagari text classification model combines
FastText embeddings with a Bidirectional Long
Short-Term Memory (BiLSTM) network and an
attention mechanism to capture features in each
input sequence. The architecture is shown in table
1 First, each word in the text is transformed into

a dense vector using FastText embeddings, which
carry rich linguistic information. These vectors
are processed by a bidirectional LSTM layer that
captures context from both directions, essential for
Devanagari script, where meaning is influenced by
surrounding words. An attention layer then assigns
weights to each word’s hidden state to focus on the
most relevant parts of the sequence, which allows
the model to focus on specific parts of the input
sequence (Zhang and Chu, 2023). This context vec-
tor is finally passed through a fully connected layer
to output class probabilities. The model is trained
using Cross-Entropy Loss and the Adam optimizer
as shown in table 2, refining its weights across
multiple epochs to improve accuracy in classifying
Devanagari text.

Parameter Value

Batch Size 32
Learning Rate 0.001
Epochs 10
Optimizer Adam
Loss Function Cross-Entropy

Table 2: Training parameters for the model.

4 Results

4.1 Model Performance
Our attention-enhanced BiLSTM model with
CBOW embeddings demonstrated strong perfor-
mance in Devanagari script classification. Figure 3
presents the detailed classification metrics for our
proposed model.

4.2 Embedding Strategy Comparison
The results shown in table 4 demonstrate that both
embeddings achieved comparable performance,
significantly outperforming the character encoding
approach. The superior performance of word em-
beddings can be attributed to their ability to capture
semantic relationships and contextual information
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Class Precision Recall F1-Score Support

Nepali 0.99 1.00 0.99 2688
Marathi 0.99 0.96 0.98 2365
Sanskrit 1.00 1.00 1.00 2356
Bhojpuri 0.96 0.99 0.97 2183
Hindi 0.94 0.93 0.93 1642

Accuracy 0.99
Macro Avg 0.98 0.98 0.98 11234
Weighted Avg 0.98 0.98 0.98 11234

Table 3: Classification report showing precision, recall, f1-score, and support for each class.

Embedding Method Accuracy

CBOW 99%
Skip-gram 97%
Character Encoding 72%

Table 4: Accuracy of different embedding methods.

in the Devanagari script, while character-level en-
coding fails to capture these higher-level linguistic
patterns.

4.3 Error Analysis
We conducted a detailed error analysis to under-
stand the model’s classification behavior across dif-
ferent languages. Figure 2 presents the confusion
matrix of our model’s predictions.

Figure 2: Confusion Matrix

Analysis of the matrix reveals several key pat-
terns. Sanskrit achieved perfect classification with
zero misclassifications, while Nepali showed ro-
bust performance with only 8 misclassifications.
The most significant confusions occurred between

Hindi-Bhojpuri (92 cases) and Marathi-Hindi (78
cases), likely due to their linguistic similarities.
These patterns suggest that while the model excels
at distinguishing languages with distinct character-
istics, it faces some challenges with closely related
language pairs.

4.4 Limitation and Future Enhancements
While the CBOW-BiLSTM model performs well,
it faces challenges distinguishing closely related
languages like Hindi and Bhojpuri due to their lin-
guistic similarities. The character-level encoding
method also underperforms compared to CBOW
embeddings, as it lacks semantic depth. Future im-
provements could involve using transformer-based
models to better handle these nuances and expand-
ing the dataset to include more language variations
and multi-modal data, such as handwritten text, to
enhance accuracy and generalization.

5 Conclusion

This paper presents a practical and effective ap-
proach for identifying languages in the Devana-
gari script, a crucial task in today’s multilingual
world. By using CBOW embeddings combined
with an attention-enhanced BiLSTM model, we
show that our method can accurately distinguish
between Nepali, Marathi, Sanskrit, Bhojpuri, and
Hindi, providing a boost in precision over tradi-
tional techniques. Our findings highlights the value
of a well-rounded preprocessing process and the
role of attention mechanisms in improving perfor-
mance for tasks involving Devanagari text. Overall,
we believe our approach offers a flexible frame-
work that can inspire further research, particularly
in tackling the complex challenges of multilingual
and mixed-language text in Devanagari.
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