
Proceedings of the 1st Workshop on Computational Humor (CHum), pages 23–31
January 19, 2025. ©2025 Association for Computational Linguistics

23

Homophonic Pun Generation in Code Mixed Hindi English

Yash Sarrof

Saarland University

ysarrof@lst.uni-saarland.de

Abstract

In this study, we investigate Hinglish—a blend

of Hindi and English commonly found in infor

mal online communication—with a particular

focus on automated pun generation. Our work
1 examines the applicability and adaptability

of existing English pun generation pipelines

to Hinglish. We assess the pun generation ca

pabilities of Large Language Models (LLMs),

particularly GPT3.5. By employing Chain of

Thought prompting and SelfRefine techniques,

we identify crosslinguistic homophone detec

tion as a central difficulty. To address this, we

propose a novel algorithm for crosslingual ho

mophone identification and develop a Latinto

Devanagari transliteration module to leverage

the widespread use of Latinscript Hindi in on

line settings. Building on existing frameworks

for pun generation, we incorporate our homo

phone and transliteration modules to improve

output quality. Crowdsourced human evalua

tions validate the effectiveness of our approach.

1 Introduction

Codemixing has becomewidespread in written dig

ital communication, evolving from a phenomenon

primarily seen in spoken language (Winata et al.,

2022). Similarly, the blend of Hindi and English,

commonly known as Hinglish, is now prevalent

across both spoken and written mediums.

While computational humor generation receives

extensive attention in monolingual settings, espe

cially in English, existing methods often struggle in

codemixed contexts. Puns based on homographs,

for instance, tend to lose their impact when ap

plied across languages. Homophonic puns, how

ever, hold unique potential in codemixed settings,

as identical sounds can convey entirely different

meanings in different languages.

Large Language Models (LLMs), such as those

in the GPT series, demonstrate proficiency in gener

1Code: https://github.com/yashYRS/HinglishPun

ating English puns, largely due to their training on

extensive datasets like Common Crawl. However,

as noted by Jentzsch and Kersting (2023), while

GPT4 can produce puns, it frequently lacks diver

sity in its outputs—a challenge further amplified in

codemixed environments.

This work examines the performance of GPT

3.5 in generating homophonic puns within the

Hinglish context. Using Chain of Thought prompt

ing (Wei et al., 2023) and the SelfRefine frame

work (Madaan et al., 2024)—techniques designed

to enhance creative text generation—we find that

a key difficulty in pun generation lies in reliably

identifying crosslinguistic homophones. To ad

dress this, we propose an algorithm that detects

homophones across languages.

Native Hindi speakers, who often use English

as a second language, prefer the Latin script for

online communication due to the complexities of

the Devanagari script, which includes conjunct con

sonants, vowel diacritics, and a large character set.

This, combined with the familiarity of the QW

ERTY keyboard, has led to the widespread adop

tion of Latin script for Hindi (WolfSonkin et al.,

2019). To quantify this shift, we compare Hindi

word counts in Devanagari and Latin scripts across

datasets like The Pile and C4, finding a substantial

preference for Latin script. This discrepancy under

scores the need for transliteration to leverage pho

netic similarities across scripts, essential for gen

erating homophonic puns in Hinglish. Therefore

we introduce a lightweight LatintoDevanagari

transliteration module to take advantage of this fact.

Building on He et al. (2019)’s hybrid pipeline

for pun generation, we adapt it to integrate our ho

mophone generation and transliteration modules.

Results show that providing these homophones as

input markedly enhances the quality of generated

puns. A crowdsourced evaluation validates these

findings, providing robust evidence of the improve

ments.

https://github.com/yashYRS/HinglishPun

24

Vanilla Prompting Example

Input: Generate a Hindi English mixed

pun.

Output: Why did the Hindi teacher bring a

ladder to class?

Because he wanted to teach बंदर [bənd̪ər]
(bandar), how to climb the बांस [bãːs] (bam
boo).

Figure 1: Vanilla Prompting leads to grammatical but

incoherent statements. The IPA provided in all prompts

from hereon is only for the paper readability and they

are not a part of the prompt.

Finally, we discuss the limitations of our ap

proach and suggest directions for future research

to advance humor generation in codemixed lan

guages further.

2 Related Work

The field of computational humor has long explored

the creation and understanding of puns. Early work

by Lessard and Levison (1992) focused on gen

erating humor through an antonymbased system

designed to create Tom Swifties. The Joke Analy

sis and Production Engine (JAPE), a pun generator,

produced novel outputs and was later formalized

(Ritchie, 2003). Researchers have called for more

formal computational models of humor, emphasiz

ing the need for experimental validation and ad

vocating for the formalization of humor theories

(Brône et al., 2006).

Over time, approaches to computational humor

have evolved. Modern methods now include neu

ral models (Yu et al., 2018), surprisalbased tech

niques (He et al., 2019), and generative adversar

ial networks (Luo et al., 2019). The exploration

of codemixed puns, particularly those combin

ing Hindi and English, is a more recent develop

ment in the field. Efforts to create datasets for

codemixed HindiEnglish include notable contri

butions from Singh et al. (2018), who curated a

POStagged Hinglish corpus by scraping Twitter.

Aggarwal et al. (2018) made pioneering efforts in

identifying HindiEnglish codemixed puns. Uti

lizing advertisement datasets, they determined the

language of each word, then identified potential

pun locations using a combination of ngram mod

els, smoothing techniques, and phonetic similar

ity. Their goal was to minimize contextual differ

Criteria for SelfRefine

Pun Present: Does the text have a pun?

Algorithm followed: Was the algorithm de

scribed, if any followed?

Coherence: Is the text coherent?

Funny: Is the text funny?

Figure 2: Criteria used to apply the SelfRefine frame

work to each of our designed prompts.

ences between the word altered to create the pun

and the original word, thereby maximizing contex

tual appropriateness. Agarwal and Narula (2021)

focused on generating jokes in codemixed Hindi

English using Hinglish word embeddings. They

used deep learning approaches to generate jokes in

English, which were then transformed into code

mixed HindiEnglish by converting selective parts

of the text or using a pretrained encoder and trans

fer learning method. Their work primarily focused

on general joke generation. However, to the best

of our knowledge, our work on generating homo

phonic puns in codemixed EnglishHindi is novel.

3 CoT prompting to generate puns reveals

problems with finding Homophones

Chain of Thought prompting (Wei et al., 2023) has

proven to be a simple yet effective technique for

enhancing outputs and identifying where LLMs

struggle most in performing a given task.

Posthoc refinement is a common strategy to fix

mistakes, and some popular strategies suggested

recently focus on automated feedback that tries to

selfcritique (Xu et al., 2024; Madaan et al., 2024;

Akyürek et al., 2023) and improve its output itera

tively. The SelfRefine (Madaan et al., 2024) frame

work has been shown to be effective in various

settings and has been adapted to various contexts to

improve performance (Wadhwa et al., 2024; Tian

et al., 2024; Shridhar et al., 2023). The idea is

to assess the generated output by the same LLM

with certain criterion (see Figure : 2), and then

feed the assessment back to the LLM to refine the

prompt, and keep doing this iteratively. For all our

generated puns, we report our final answers after

going through each stage iteratively at least 3 times.

We stop early in case, the pun generated does not

differ in terms of Levenshtein distance from the

previously generated pun or if a positive automated

assessment is made by the LLM.

25

LLMs struggling to find homophones

Step 1: EN: pen, HI: पेन (pen) [pɛn],
HIToEN: pen

Step 2: Since pen == pen, go back to step 1.

Step 1 (redo): EN: apple, HI: एप्प्ल (apple)

[ˈæpəl], HIToEN: apple
Step 2: Since apple == apple, go back to

step 1.

Step 1 (redo): EN: ball, HI:बॉल (ball) [bɔl],
HIToEN: ball

Step 2: Since ball == ball, go back to step

1.

...

Figure 3: Model output stuck in a recursive loop, repeat

ing steps due to failure in finding distinct homophones.

While the model detects incorrect homophones, it fails

to correct them, leading to repeated attempts. This ex

cerpt illustrates the pattern; the full trace included 70

retries. Most cases where HIToEN equals EN occur due

to loan words in Hindi.

Step 1: EN: doctor, HI: डाक्टर (doctor)

[ˈdɒktə], HIToEN: doctor
Step 2: Since doctor == doctor, go back

to step 1.

Step 1 (redo): EN: dude, HI: दूध (milk)

[d̪ud̪ʱɐ], HIToEN:milk

Step 2: Sincemilk != dude, proceed to step

3.

Figure 4: Illustrative trace showing rejected homo

phones and the selection process for acceptable ones.

When using vanilla prompting to generate code

mixed puns, the outputs typically result in grammat

ically correct but incoherent sentences that do not

attempt to make puns (see Figure 1). To further un

derstand this, we provided instructions based on the

algorithm suggested by He et al. (2019) for creating

puns, and tested the model in zeroshot, oneshot,

and fewshot settings (with 2, 4, and 6 examples).

Across all settings, the prompt included instructions

to encourage CoT reasoning to help identify the

bottleneck. The generation temperature was varied,

and between 10 to 20 samples were generated and

manually analysed for each configuration.

The general framework of the prompts designed

is illustrated in Figure 5. This framework forced the

model to regenerate its output until it successfully

identified homophones. In zeroshot and oneshot

learning settings, the model often incorrectly iden

tified homophones, resulting in statements rather

than actual attempts at puns.

Prompt for confirming the homophone be

fore proceeding

Instruction: Construct a codemixed

HindiEnglish pun based on the steps

below.

Steps:

Step 1. Create a triplet of:

a. English word EN

b. Hindi word HI, homophone to EN

c. HI translated to English, labeled

HIToEN

Step 2. If HIToEN == EN, redo step 1.

Otherwise, proceed to step 3

Step 3. Construct short sentences (less than

10 words) with EN as the object of the

sentence.

Step 4. Replace EN with HI.

Step 5. Replace the noun phrase at the start

of the sentence with a contextualized phrase

that is closely related to the HIToEN word.

Example:

Step 1: EN: dude, HI: दूध [d̪ud̪ʱɐ] (milk),
HIToEN:milk

Step 2: Since milk != dude, proceed to

step 3.

Step 3: Construct sentence with EN as the

object: “Jack asked What’s up dude?”

Step 4: Replace EN with HI: “Jack asked

What’s up दूध [d̪ud̪ʱɐ] (dude)?”
Step 5: Replace the noun phrase with a

contextualized phrase: “The cow asked

What’s up दूध [d̪ud̪ʱɐ] (dude)?”

Figure 5: Prompt structure to guide the model to confirm

the homophone before proceeding. This input prompt

contains instructions that are modeled on the basis of

the algorithm suggested by He et al. (2019) to generate

puns in English with necessary modifications to fit the

current context

26

However, the fewshot settings included exam

ples with negative samples of homophones, fol

lowed by the rejection of these negative homo

phones to focus on actual homophones. A sample

of this approach is shown in Figure 4. Including

such examples in fewshot settings led to interest

ing cases where the model got stuck in a recursive

loop, unable to progress beyond the initial step of

identifying homophones. This often resulted in the

maximum token limit being reached, with the API

output oscillating between the first two steps for up

to 70 turns. A portion of these recursive outputs is

shown in Figure 3. We hypothesize that one of the

reasons these models struggle to create convincing

puns is their inability to move beyond the initial

step of even identifying homophones.

4 Homophone Identification

The Epitran package 2 available in Python can be

used to convert orthographic text into their Inter

national Phonetic Alphabet (IPA) forms, and its

efficacy has been well studied and reported in this

regard (Mortensen et al., 2018). The most common

words found in English as well as Hindi are col

lected from various sources, and these words are

converted into their IPA forms using Epitran. The

resulting values are compared with each other and

by using Minimum edit distance as a measure, sim

ilar IPAs (lower minimum edit measures) across

the 2 languages are grouped with each other. This

simple yet effective technique can be used to get ho

mophones between any of the 61 languages that are

supported at the moment by Epitran. However, it

must be noted that some post processing is required

to remove unnecessary and extramatches that might

occur. Borrowed words from the same language

need to be weeded out so that we are not left with

simple inflections of the same word in the 2 lan

guages. Therefore, the Hindi words are translated

as well as transliterated into English. If the mini

mum edit distance of the translation and translitera

tion is low as well, then that implies that the word in

Hindi was in all likelihood a borrowed word from

English, and hence that word is discarded. Words

with less than 3 characters are discarded as well,

since they are most likely to be filler words and

would not be interesting candidates for pun genera

tion.

2https://github.com/dmort27/epitran

5 Transliteration from Devanagari Script

to Latin Script

0 20 40 60
Tokens

0

200K

400K

600K

800K

To
ke

n
C

ou
nt

Common Crawl

0 20 40 60
Tokens

0

10K

20K

30K

40K

50K

60K
The Pile

Devanagari Latin

Figure 6: Comparing the count of tokens in the Devana

gari script vs the same token in the Latin script for the

100 most common words in Hindi across both the Com

mon Crawl and the Pile

To understand the prevalence and distribution of

Hindi words in Devanagari and Latin scripts, we

applied the What’s In My Big Data? (WIMBD)

framework (Elazar et al., 2024) to systematically

analyze two large datasets: C4 (used to train T5

(Raffel et al., 2020)) and The Pile (Gao et al., 2020),

both commonly used to train large language models

(LLMs). WIMBD provides an accessible suite of

tools designed to facilitate exploration and analysis

of large language datasets. We specifically used

the count functionality to compare the exact oc

currences of Hindi words in both the scripts and

found a substantially higher representation of the

Latin script (see Figure: 6). This discrepancy likely

results from a combination of factors, such as the

dominance of Latin script in informal communica

tion, presence of the same homographic English

word, all of which align with our goal of finding

homophones for pun generation. The Latin script’s

higher token counts increase the likelihood of iden

tifying phonetically similar words, thus facilitating

effective pun creation. Therefore to support our ho

mophone generation step, we propose a rulebased

transliteration algorithm.

The algorithm involves individual character map

pings for the 42 extended consonants, 12 vowels,

and 12 vowel markers of the Devanagari script to

their Latin script counterparts. These mappings are

stored locally. For any given word in Devanagari

script, the algorithm iterates over each character. If

a character is a raw vowel (not a vowel marker),

the corresponding Latin equivalent is added directly

from the stored mappings. If the next character is a

vowel marker, it is combined with the current char

acter. The subsequent character is then checked,

27

Data: devng: Word in Devanagari script

Result: latin: Word in Latin script

Initialize latin as an empty string; for

each character c in devng do

if c has a following vowel marker then
c = c + vowel marker

end

if c is a vowel then
Append the Latin equivalent to

latin;
end

if c is a consonant then
if there is a consonant following c

and it also has a vowel marker

then
Append the Latin equivalent of c

to latin;
end

else
Append the Latin equivalent

along with ‘a’ to handle the

schwa sound to latin;
end

end

end

Algorithm 1: Transliteration Algorithm for De

vanagari to Latin

effectively creating a lookahead of 2.

If the following character is a consonant with a

vowel marker, the current character’s mapping is

appended with an “a” to denote the schwa sound

typically associated with Hindi consonants. This

process accounts for the rule inHindi where a conso

nant is assumed to endwith a schwa unless followed

by another vowel. However, since two schwas do

not appear consecutively in natural language, this

lookahead prevents unnecessary additions of the

schwa sound. If the subsequent character lacks a

vowel marker, the “a” is omitted.

Word IPA Variation 1 Variation 2

भूख [bʱuːkʰ] bhook bhuk

�बजली [bɪdʒ͡lɪ] bijli bijlee

Table 1: Examples of Variations that are considered

acceptable by native speakers owing to a lack of tran

scription standard

The proposed transliteration system achieves

64% accuracy on the Dakshina dataset (Roark et al.,

2020), which, while lower than the 72.4% accuracy

of the current stateoftheart (Madhani et al., 2023)

Word IPA Present Actual

इनके [ɪnkɛ] unke inke

में [meːn] be mein

है [hɛ] ahai hai

Table 2: Examples of Mistakes in the annotation of

Google’s Dakshina dataset, along with the correct

transliterations

which are based on neural architectures, offers a

computationally efficient alternative. Through er

ror analysis, we identified issues within the dataset

itself, including errors in ground annotations (see

Table 2).

Additionally, the lack of standard spellings in the

Latin script for transliterated Hindi poses a chal

lenge. Since the script isn’t native, multiple correct

spellings often exist, yet most datasets, including

those available today, only account for one varia

tion. This results in perfectly acceptable alternative

spellings being incorrectly marked as errors (see

Table 1).

In conclusion, while transliteration significantly

aids in processing Hinglish datasets and is crucial

for the postprocessing needed in homophone gen

eration for Hinglish pun creation, its development

is not without fundamental challenges. Addressing

these challenges, such as handling spelling varia

tions and inaccuracies in datasets, would make it

easier to integrate transliteration systems into mod

els like ours more effectively.

6 Modifying Pun Generation with

Surprise

A stripped down version of the methodology

suggested in He et al. (2019) is recreated for the

current context. Given a pair of homophones (w1,

w2), candidate sentences are found from a corpus

(Brown corpus found in the NLTK chosen in our

case). Sentences where the w1 appears at the end

is retained, since puns are generally considered

funnier if there is an element of surprise, and

the pun word appearing at the end increases the

likelihood of the same. In the candidate sentences,

we replace the w1 with w2 and subsequently try to

replace the noun phrase at the start of the sentence

with a topic that is related to the w2 word instead

of the w1 word. The modified phrase results

in a pun after post processing that checks for

grammaticality. Since, in our case the w2 is from a

different language, we translate w2 into English,

28

before trying to find an appropriate topic for the

same (through GLoVe Embeddings or other such

distributional semantic similarity mechanisms).

A sample execution

• Homophone pairs: city , seeti (whistle)

• Find short candidate sentences from the

Brown corpus where city appears at the end.
The man lives in the heart of the city

• Replace city with the homophonic pair

The man lives in the heart of the seeti

• Find apt topic to replace the subject.

The referee lives in the heart of the seeti

Although the resulting phrase can lead to a pun, a

filtration mechanism is required that can remove

phrases / puns that don’t make sense due to the

change in language and can handle the grammati

cality requirements of both the languages in ques

tion. This is a major limitation of this method while

applying it in CodeMixed Settings which will need

to be improved upon in future extensions of this

work.

7 Prompting LLMs by appending

pregenerated list of Homophones

Since the cause of failure in GPT3.5 during pun

generations was shown to be identification of ho

mophones, the modules introduced in Sections 3 &

4 are leveraged and locally generated transliterated

homophones are appended to the end of standard

ised prompts. Astandard prompt structure is created

for Zero shot, one shot, 4 shot (see Figure 7 as an

example), 8 shot and finally 16 shot settings. In all

cases, the input homophones are always appended

at the end, and each input is run in a separate ses

sion without any history except for the examples in

the few shot settings. This modified hybrid prompt

setting improves the output drastically with many

of the outputs generated fulfilling all criterion of

being qualified as puns. Even, when the outputs

generated are not funny, they are at least attempts

at making a pun out of the given inputs.

Survey to Evaluate Hybrid Approach

A small survey was conducted to assess the qual

ity of puns generated by our system across various

settings. Fiftysix participants volunteered to rate

the puns on a scale of 1 (not funny) to 5 (extremely

Example Prompt for Hybrid Approach

Task: Generate a codemixed Hindi

English pun based on the homophones

provided as input. Some example input

output pairs are provided as reference.

Input: ‘Submit’, ‘Sab Mit’ (everything

gets erased)

Output: “Exam ki answer sheet return

karte hi SUBMIT jata hai”

Input: <EnWord>, <HiTransliteratedHo

mophone><(EnglishTranslation)>

Figure 7: Example prompt for the hybrid approach. This

sample has been truncated to show the most relevant

parts of the prompt. The final line of input is dynamically

modified at runtime.

funny). Given the voluntary nature of the survey,

we evaluated 45 random samples per category. To

ensure data integrity and prevent biased participa

tion, we included humangenerated puns from joke

websites.

Each participant received the puns in a random

order, presented via Google Forms. To minimize

bias, participants were unaware of the pun’s origin.

All participants were bilingual in Hindi and English,

aged 2030.

After the survey concluded, we calculated the

mean ratings for each category: Human, Zero Shot,

One Shot, 4 Shot, 8 Shot, and 16 Shot. Submissions

with a mean rating below 1 for humangenerated

puns were discarded, as they likely indicated a lack

of engagement. Additionally, submissions with all

puns rated 5 were removed to eliminate potentially

casual or insincere participation. Following this

filtration, 39 submissions remained. The results

presented in all graphs are based on these 39 sub

missions.

Mean Ratings per Category

Since humour is subjective, even the human gen

erated puns do not always get a full score, and the

mean ratings across all the samples and participants

turned out to 4.32 (see Figure 8). Compared to the

same, the ratings of all the other categories were

pretty decent, with even Zero shot getting an aver

age of 3.31with slight increase in averages resulting

in a 3.61 for 16 shot settings. Although these means

29

Human Shot16 Shot8 Shot4 Shot1 Shot0
0

1

2

3

4

5
M

ea
n

R
at

in
gs

Overall Top 2 Bottom 2

Figure 8: Mean ratings given overall, achieved by top 2

and achieved by bottom 2 puns per category of prompts

are high, the reason for the differences in the mean

with the human ratings was analysed. The top 2

puns that got the highest mean scores in each cate

gory were taken, and for each category this mean

turned out to be a perfect score (see Figure 8). Con

versely, while trying to plot the same thing for the

puns with the lowest scores, the main difference

between the human generated ones get highlighted.

The mean rating for Humans drops to a 3.4 which

can still be considered a pretty decent score. How

ever, for the generated puns, the score drops down

significantly (see Figure 8). Thus, although our

model can generate good puns, there is a lack of

consistency in the generation.

7.1 Comparing Against Human Benchmarks

Abox plot (see Figure 9) is created to show the vari

ability between different samples and participants

in each category. When raw ratings are considered,

the scores Shot 16, Shot 4 show lower variance

in their scores compared to the variances shown

by the one shot and zero shot settings. As shown

from the survey, it is unlikely for the mean to be a

perfect 5 even for a set of human generated puns

due to the subjectivity of humour. Therefore we

compare the scores generated automatically against

the benchmarks set by human performance. We cal

culate the mean rating given by each participant to

the human generated jokes and per participant, we

normalise the scores for all other categories based

on this value. The resulting normalised scores are

plotted as a box plot in Figure 10. It can be seen that

Shot4, Shot8 and Shot16 perform the best. Zero

Shot setting performs better than One shot settings,

although they are both clearly inferior to the Few

shot settings. All in all, the performance of such

models in such hybrid settings is encouraging and

further proves that LLMs can perform exceedingly

well on highly specialised tasks such as generat

ing puns in code mixed settings, provided they are

leveraged aptly and their weaknesses are well un

derstood.

Human Shot16 Shot8 Shot4 Shot1 Shot0
Category

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
at

in
gs

Raw Pun Ratings

Figure 9: Box Plot with Mean Scores Per category of

Prompts

Shot16 Shot8 Shot4 Shot1 Shot0
Category

1

2

3

4

5

R
at

in
gs

Normalised Pun Ratings Per Category

Figure 10: Box Plot with Normalised ratings according

to Human Benchmarks

8 Limitations and Future Work

• Our homophone generation is constrained to

single whole words. I will see vsAalsi (lazy)
are homophonic but span multiple words.

Leveraging such multi word homophones

could enhance the creativity of the generated

content.

• The prompting experiments were conducted

exclusively using gpt − 3.5 − turbo. Our

current strategies do not cover the full range

of possible prompts, and future work could

expand on this.

30

• Our pun generation using Surprisal focuses on

replacing individual nouns, rather than entire

noun phrases. This may result in contextu

ally weaker replacements. Finetuning em

beddings on Hinglish data to better handle the

semantics of noun phrases could lead to more

contextually appropriate and higherquality

puns.

• The survey included only a small number of

samples per method, as participants volun

teered without compensation. A larger sample

size would be needed to draw more robust

conclusions.

• The pun generation methodology is not

languagespecific. Future work could apply

the framework to other codemixed languages,

such as Spanglish (SpanishEnglish) or Ara

bizi (ArabicEnglish), to assess its broader ap

plicability.

Additionally, it must be mentioned that publicly

available datasets of Hinglish often suffer from

various shortcomings, including inadequate main

tenance, annotation issues, and insufficient scale.

These limitations hinder their suitability for training

and evaluating AI models effectively. Addressing

these challenges and improving their quality, avail

ability and out of the box usability is essential.

9 Conclusion

This study presents a novel exploration of ho

mophonic pun generation within the codemixed

Hinglish context. By analyzing and adapting

Englishbased humor generation techniques, par

ticularly through hybrid prompting approaches

with Large Language Models (LLMs), we demon

strate the feasibility of creating Hinglish puns that

align with native humoristic nuances. Feeding

crosslingual homophones as well as incorporating

transliteration techniques improved the pun genera

tion capability of LLMs in the given setting, mak

ing the outputs more contextually relevant. Our

findings, supported by crowdsourced evaluations,

suggest that while hybrid prompting strategies can

generate engaging Hinglish puns, challenges re

main, especially in achieving consistently high hu

mor quality. Future work will benefit from expand

ing homophone recognition to multiword phrases,

refining the selection of humoroptimized LLMs,

and developing more robust code mixed datasets

to enhance the accuracy and cultural relevance of

computational humor in multilingual contexts.

Ethical Statement

The evaluation survey was conducted anonymously

and no private data of any individual was col

lected. External datasets, packages used have been

attributed to the original authors and were used only

after confirming that they were distributed under

licenses that permit research work.

Acknowledgments

I thank Michael Hahn, Alexander Koller and the

anonymous reviewers for helpful comments.

References

Kaustubh Agarwal and Rhythm Narula. 2021. Humor
generation and detection in codemixed hindienglish.
In Proceedings of the Student Research Workshop
Associated with RANLP 2021, pages 1–6.

Srishti Aggarwal, Kritik Mathur, and Radhika Mamidi.
2018. Automatic target recovery for hindienglish
code mixed puns. arXiv preprint arXiv:1806.04535.

Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan,
A. Kalyan, Peter Clark, D. Wijaya, and Niket Tan
don. 2023. Rl4f: Generating natural language feed
back with reinforcement learning for repairing model
outputs. In Annual Meeting of the Association for
Computational Linguistics.

Geert Brône, Kurt Feyaerts, and Tony Veale. 2006. In
troduction: Cognitive linguistic approaches to humor.

Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson,
Abhilasha Ravichander, Dustin Schwenk, Alane Suhr,
Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini,
Sameer Singh, et al. 2024. What’s in my big data?
In The Twelfth International Conference on Learning
Representations.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, et al. 2020. The
pile: An 800gb dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027.

He He, Nanyun Peng, and Percy Liang. 2019. Pun
generation with surprise. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1734–1744, Minneapolis, Minnesota.
Association for Computational Linguistics.

Sophie Jentzsch and Kristian Kersting. 2023. Chat
gpt is fun, but it is not funny! humor is still chal
lenging large language models. arXiv preprint
arXiv:2306.04563.

https://api.semanticscholar.org/CorpusID:258685337
https://api.semanticscholar.org/CorpusID:258685337
https://api.semanticscholar.org/CorpusID:258685337
https://doi.org/10.18653/v1/N19-1172
https://doi.org/10.18653/v1/N19-1172
https://arxiv.org/abs/2306.04563
https://arxiv.org/abs/2306.04563
https://arxiv.org/abs/2306.04563

31

G Lessard and M Levison. 1992. Computational model
ling of linguistic humour: Tom swifty. In Paper
Delivered at the ALLC/ACH Joint Annual Conference.
Christ Church, Oxford.

Fuli Luo, Shunyao Li, Pengcheng Yang, Baobao Chang,
Zhifang Sui, Xu Sun, et al. 2019. Pungan: Gener
ative adversarial network for pun generation. arXiv
preprint arXiv:1910.10950.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Selfrefine: Iterative refinement with
selffeedback. Advances in Neural Information Pro
cessing Systems, 36.

Yash Madhani, Sushane Parthan, Priyanka Bedekar,
Gokul Nc, Ruchi Khapra, Anoop Kunchukuttan,
Pratyush Kumar, and Mitesh Khapra. 2023. Aksha
rantar: Open indiclanguage transliteration datasets
and models for the next billion users. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 40–57, Singapore. Association
for Computational Linguistics.

David R. Mortensen, Siddharth Dalmia, and Patrick Lit
tell. 2018. Epitran: Precision g2p for many languages.
In Proceedings of the International Conference on
Language Resources and Evaluation.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim
its of transfer learning with a unified texttotext
transformer. Journal of machine learning research,
21(140):1–67.

Graeme Ritchie. 2003. The jape riddle generator: tech
nical specification. Institute for Communicating and
Collaborative Systems.

Brian Roark, Lawrence WolfSonkin, Christo Kirov,
Sabrina J. Mielke, Cibu Johny, Işın Demirşahin, and
Keith Hall. 2020. Processing south asian languages
written in the latin script: the dakshina dataset. In
Proceedings of The 12th Language Resources and
Evaluation Conference (LREC), pages 2413–2423.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu
Wang, Ping Yu, Ramakanth Pasunuru, Mrinmaya
Sachan, Jason Weston, and Asli Celikyilmaz. 2023.
The art of llm refinement: Ask, refine, and trust. In
North American Chapter of the Association for Com
putational Linguistics.

Kushagra Singh, Indira Sen, and Ponnurangam Ku
maraguru. 2018. A twitter corpus for hindienglish
code mixed pos tagging. In Proceedings of the sixth
international workshop on natural language process
ing for social media, pages 12–17.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self
improvement of llms via imagination, searching, and
criticizing. ArXiv, abs/2404.12253.

Manya Wadhwa, Xinyu Zhao, Junyi Jessy Li, and Greg
Durrett. 2024. Learning to refine with finegrained
natural language feedback. ArXiv, abs/2407.02397.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chainofthought prompting elic
its reasoning in large languagemodels. arXiv preprint
arXiv:2201.11903.

Genta Indra Winata, Alham Fikri Aji, ZhengXin Yong,
and Thamar Solorio. 2022. The decades progress
on codeswitching research in nlp: A systematic
survey on trends and challenges. arXiv preprint
arXiv:2212.09660.

LawrenceWolfSonkin, Vlad Schogol, Brian Roark, and
Michael Riley. 2019. Latin script keyboards for south
asian languages with finitestate normalization. In
Proceedings of the 14th International Conference on
FiniteState Methods and Natural Language Process
ing, pages 108–117.

Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj
Juraska, Biao Zhang, Zhongtao Liu, William Yang
Wang, Lei Li, and Markus Freitag. 2024. Llmrefine:
Pinpointing and refining large language models via
finegrained actionable feedback. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 1429–1445.

Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. 2018. A neural
approach to pun generation. In Proceedings of the
56th Annual Meeting of the Association for Compu
tational Linguistics (Volume 1: Long Papers), pages
1650–1660.

https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://api.semanticscholar.org/CorpusID:21719838
https://www.aclweb.org/anthology/2020.lrec-1.294
https://www.aclweb.org/anthology/2020.lrec-1.294
https://api.semanticscholar.org/CorpusID:265157870
https://api.semanticscholar.org/CorpusID:269214525
https://api.semanticscholar.org/CorpusID:269214525
https://api.semanticscholar.org/CorpusID:269214525
https://api.semanticscholar.org/CorpusID:270878552
https://api.semanticscholar.org/CorpusID:270878552
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

	Introduction
	Related Work
	CoT prompting to generate puns reveals problems with finding Homophones
	Homophone Identification
	Transliteration from Devanagari Script to Latin Script
	Modifying Pun Generation with Surprise
	Prompting LLMs by appending pregenerated list of Homophones
	Comparing Against Human Benchmarks

	Limitations and Future Work
	Conclusion

