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Abstract

Puns, as a linguistic phenomenon, hold signif-
icant importance in both humor and language
comprehension. While extensive research has
been conducted in the realm of pun generation
in English, there exists a notable gap in the ex-
ploration of pun generation within code-mixed
text, particularly in Hindi-English code-mixed
text. This study addresses this gap by offering a
computational method specifically designed to
create puns in Hindi-English code-mixed text.
In our investigation, we delve into three dis-
tinct methodologies aimed at pun generation
utilizing pun-alternate word pairs. Furthermore,
this novel dataset, HECoP, comprising of 2000
human-annotated sentences serves as a foun-
dational resource for training diverse pun de-
tection models. Additionally, we developed a
structured pun generation pipeline capable of
generating puns from a single input word with-
out relying on predefined word pairs. Through
rigorous human evaluations, our study demon-
strates the efficacy of our proposed models in
generating code-mixed puns. The findings pre-
sented herein lay a solid groundwork for future
endeavors in pun generation and computational
humor within diverse linguistic contexts.

1 Introduction

Puns, as a form of wordplay, play a central role in
humor and language comprehension by exploiting
phonetic or semantic ambiguity to create humor
through dual interpretations (Charina, 2017; Miller
et al., 2017). Puns are a linguistic tool that boosts
engagement and have a broad application in enter-
tainment, advertising, and literature (Korák, 2011;
Shanaieva-Tsymbal, 2021; Bulut and Almabrouk,
2020).

Although computational approaches have made
strides in pun generation and detection in English,
especially with recent advancements in Large Lan-
guage Models (Tian et al., 2022; Zeng et al., 2024),
pun generation remains largely unexplored in low-

resource languages. Code-mixed text, a com-
mon phenomenon in bilingual communities, is one
such low-resource setting that presents unique chal-
lenges. Bilingual speakers code-mix for a range of
sociolinguistic and pragmatic purposes, including
the expression of emotions such as anger, humor,
and sarcasm, among other motivations (Viscaíno,
2011; Williams et al., 2019). Given the utility
of code-mixing in expressing humor and a range
of emotions, the computational analysis of code-
mixed puns offers an intriguing challenge. Effec-
tive pun generation in this context requires models
that can align phonetic similarities and interpret
contextual cues across both languages to produce
coherent and meaningful humor, making it even
more challenging than pun generation in a standard
multilingual setting.

Our work addresses the gap in code-mixed pun
generation by presenting a novel computational ap-
proach for generating Hindi-English code-mixed
puns. We propose three methodologies for generat-
ing puns in code-mixed text, each designed to cre-
ate puns from phonetically similar Hindi-English
word pairs. All three approaches utilize a founda-
tional Large Language Model (LLM). Our findings
reveal that: a) LLMs when directly prompted (base-
line method), do not perform well for generating
code-mixed puns (19.8% pun success rate); b) Our
innovative method surpasses basic baseline prompt-
ing, achieving pun success rates of 38.8%, 62.6%,
and 43%.

Further, leveraging these techniques our research
introduces a new dataset, HECoP (Hindi English
CodeMixed Puns), containing 2,000 machine-
generated sentences designed for training and eval-
uating code-mixed pun generation. For every sam-
ple, we gather human assessments on whether it
is a pun, along with its level of funniness and nat-
uralness. We also tested and compared various
pre-trained multilingual models, such as XLM-R
and mBERT, on HECoP, highlighting their effec-
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tiveness in detecting puns in code-mixed contexts.
Additionally, we developed a structured pun gen-

eration pipeline that creates puns from a single
input word, using phonetic matching, compatibility
scoring, and sentence filtering to ensure humor and
contextual relevance. Human evaluations confirm
that our approach significantly outperforms base-
line models, delivering high-quality Hindi-English
code-mixed puns.

To the best of our knowledge, this is the first
study to explore pun generation in a code-mixed
setting, providing a novel dataset with human anno-
tations and a framework for detecting and creating
valid code-mixed puns.1

2 Related Work

Pun generation has evolved from template-driven
approaches to sophisticated Transformer-based
models. Early systems, such as JAPE-1 (Binsted
and Ritchie, 1994), used fixed templates to gener-
ate puns, leveraging phonetic or semantic similar-
ity in structured formats, but these methods were
limited by their reliance on manually crafted tem-
plates. Later approaches, like T-PEG (Agustini
and Manurung, 2012) and T-Peg (Hong and Ong,
2008), automated the extraction of linguistic pat-
terns from human-generated puns, creating tem-
plates with moderate success but still constrained
by template rigidity.

Recent research has explored various neural ap-
proaches for automatic pun generation. Yu et al.
2018 proposed a neural language model to generate
homographic puns without requiring pun-specific
training data. He et al. 2019a applied the surprisal
principle in an unsupervised model, achieving a
30% success rate in human evaluations. Luo et al.
2019 introduced Pun-GAN, an adversarial gen-
erative network designed to generate puns with
multiple word senses simultaneously, improving
both quality and diversity compared to template-
based methods. Other works focused on generat-
ing context-situated puns, where Sun et al. 2022
proposed a pipeline system including a pun word
retrieval module and a pun generation module. Mit-
tal et al., 2022 introduced AmbiPun, an approach
that generates puns by creating ambiguous con-
texts using dictionary search and one-shot GPT3,
achieving a 52% success rate. Expanding on these
methods, our work introduces pun generation in

1The code and data proposed in this paper can
be found at https://github.com/Likhith-Asapu/
Codemix-Pun-Generation

a code-mixed setting. It also moves away from
the need for pre-defined pairs of alternate and pun
words required in prior approaches through our
proposed pipeline.

3 Task Formulation

Given a list of homophonic pairs of pun word Pw

and alternative word Aw across two language pairs
here namely Hindi and English, we seek to gener-
ate a list of Hindi-English code-mixed puns using
different methods. We follow the definition of pun
presented in Miller et al. (2017) where “A pun is a
form of wordplay in which one sign (e.g., a word
or a phrase) suggests two or more meanings by
exploiting polysemy, homonymy, or phonological
similarity to another sign, for an intended humor-
ous or rhetorical effect.” An example of a pun
following this definition is “My watch is stuck be-
tween 2 and 2.30. It’s a do or dhai situation” where
the pun word Pw is dhai and the alternative word
Aw is die. In this case, the humor arises from the
phonetic similarity between the Hindi word dhai
(which means two and a half, referencing 2:30 in
this context) and the English word die, creating a
playful twist on the phrase do or die.

4 Pun Generation

We adopt a three-step approach for generating
Hindi-English code-mixed puns: 1) Identification
of similar sounding words across a language pair,
2) Generation of candidate sentences with alternate
word Aw, 3) Replacement of Aw with Pw within
these candidate sentences.

4.1 Pun - Alternate Word List Collection

The first step in generating puns is to compile a
list of English and Hindi words that are phoneti-
cally similar but semantically distinct. While this
is straightforward in a monolingual setting as the
words share a common phonological system, code-
mixed scenarios require a novel approach to iden-
tify phonetically similar words across two distinct
languages.

To achieve this, we extracted English and Hindi
words from existing large-scale news monolin-
gual corpora of both languages (Goldhahn et al.,
2012). These words were subsequently converted
into their respective International Phonetic Alpha-
bet (IPA) representations using the epitrans library
(Mortensen et al., 2018), which implements a rule-
based system for phonetic transcription. However,

https://github.com/Likhith-Asapu/Codemix-Pun-Generation
https://github.com/Likhith-Asapu/Codemix-Pun-Generation
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Hindi IPA English IPA Edit

पीपल (pīpal) /pi:p@l/ people /pi:p@l/ 0
िदल (dil) /dil/ deal /di:l/ 0
िबक (bik) /bik/ big /big/ 0
शौक (shock) /SO:k/ shack /Sæk/ 1
गुस्से (gusse) /gusse/ goose /gu:s/ ∞

Table 1: Examples of Hindi and English words with
their IPA transcriptions and Custom Levenshtein edit
distances between IPA forms.

as epitrans generates American English transcrip-
tions for English words, we employed a dictionary-
based mapping to convert these transcriptions into
their corresponding Indian English IPA symbols,
leveraging prior studies on Indian English phonol-
ogy (Jain et al., 2021; Grolman et al., 2021). Us-
ing Indian English IPA symbols, which align more
closely with Hindi phonology than American En-
glish, enhances the accuracy of phonetic matches
between English and Hindi words, thereby improv-
ing the relevance of generated puns.

To quantify the phonetic similarity between
Hindi and English words, we employed the Leven-
shtein edit distance (Ahmed et al., 2021). This dis-
tance measures the minimal number of operations-
substitutions, insertions, and deletions required to
convert one word into another. We use custom costs
for these operations. The substitution cost csub is
adjusted based on phonetic similarities, while the
insertion and deletion costs are set to infinity (∞) to
ensure comparisons are only made between words
with the same number of phonemes.

We define the custom substitution cost between
phones x and y as follows:

csub(x, y) =


0, if x and y are same phones ,
0, if x and y are allophones,
0, if x and y are long/short vowel pairs,
0, if x and y are voiced/unvoiced pairs,
1, otherwise.

Aspirated sounds (e.g., [th] and [t]) and breathy-
voiced variants (e.g., [d

¨
] and [d]) are treated as

allophones with a substitution cost of 0. Similarly,
long-short vowel pairs (e.g., [i:] and [i]) are as-
signed a cost of 0.2 This approach integrates lin-
guistic features like allophonic variation, vowel
length distinctions, and voicing contrasts, enabling
a more nuanced comparison of phonetic similarity
between Hindi and English word pairs.

2More examples can be found in Appendix A

We generated an initial candidate set S of Hindi-
English word pairs, denoted as (Pw, Aw), using a
custom edit distance, with the condition that the
phonetic distance is less than or equal to 1:

S = {(Pw, Aw) | d(p(Pw), p(Aw)) ≤ 1}

Here, Pw represents the Hindi pun word, Aw rep-
resents the English alternate word, and p(w) is the
IPA transcription of w. Subsequently, we manually
filtered this set to exclude cognates such as car
and कार (kaar) to arrive at a list of 500-word pairs
with distinct meanings. This filtered list serves
as the foundation for our pun generation exper-
iments, highlighting the crucial role of phonetic
alignment in creating effective puns, as empha-
sized in prior cross-linguistic pun studies (Zhou
et al., 2020; Jaech et al., 2016).

4.2 Candidate Sentence Generation

To incorporate homophonic word pairs into code-
mixed sentences, we developed three methodolo-
gies for pun generation: a) Contextually Aligned
Pun Generation (Sec. 4.2.1), b) Question-Answer
Pun Generation (Sec. 4.2.2), and c) Subject-
Masked Pun Generation (Sec. 4.2.3). We compare
these approaches against a Baseline Pun Genera-
tion method, which serves as a reference for evalu-
ating the effectiveness of each technique. All four
methods utilize GPT-4o with few-shot learning to
generate puns, leveraging its ability to produce con-
textually relevant outputs3. By employing varied
sentence formats, these methodologies help in gen-
erating diverse and engaging puns.

4.2.1 Contextually Aligned Pun Generation
In this approach, GPT-4o is prompted to gener-
ate five sentences, each ending with the English
word Aw. Furthermore, each sentence must in-
clude a context word Cw, the English translation
of Pw, serving as a contextual anchor to support
the pun word placed at the sentence’s end. For in-
stance, given the tuple (Aw, Pw, Cw), the prompt
is structured as follows: “Generate 5 creative Hindi-
English code-mixed sentences ending with the En-
glish word {Aw}. Include the English word {Cw}
as context in each sentence.” By specifying word
placement and contextual inclusion, this prompt fa-
cilitates the generation of sentences that align with
the desired structure.

3For illustrative examples of the prompts used in these
methodologies, refer to Appendix B
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Pw/Aw Method Generated Sentence Label

भय/bye

Baseline ‘When fear knocks at your door, send faith to answer. कहो भय-भय, बाई-बाई!” 0
Contextually Aligned ‘मेरी लड़की की fear of heights ने हमारे adventure plan को भय कह िदया।” 1
Question-Answer ‘What do you call it जब तुम अपने डर को अलिवदा कहते हो?भय” 1
Subject-Masked ‘The डरपोक लड़की waved goodभय with a smile.” 1

लाश/lush

Baseline ‘The garden was so beautifully green, it was a लाश paradise!” 1
Contextually Aligned ‘जगंल में एक िनज�व dead body िमली, surrounded by एक लाश forest” 1
Question-Answer ‘What do you call a garden जो लाशों से भरा हो?लाश garden” 1
Subject-Masked ‘The भू�तया कि�स्तान was filled with लाश greenery” 1

Table 2: Illustrative examples of code-mixed puns generated using four distinct methods. The table presents the
word pair, method, generated sentence, and the corresponding label (0 for non-pun and 1 for pun). Detailed glosses
for Hindi words are provided in Table 13 in the Appendix for reference.

We add an additional filtering phase to confirm
that the sentences produced by the LLM in the
previous step qualify as puns and are fluent. The
filtering stage refines the outputs to identify the
most appropriate candidate where Pw can replace
Aw while maintaining grammatical and contextual
coherence. This process involves two stages: (1)
Part-of-Speech (POS)4 compatibility: ensuring Pw

and Aw share the same POS tag, which safeguards
grammatical consistency and if no sentences meet
this criterion, all generated sentences are retained
for the subsequent stage; (2) The pun word Pw

replaces Aw in the sentence, and candidates are
prioritized based on the placement of Pw at the sen-
tence’s end, as puns are typically more impactful
when positioned at the end of a sentence (Shahaf
et al., 2015; Mittal et al., 2022). This method en-
sures that the final output meets both POS compati-
bility and optimal pun placement criteria, maximiz-
ing the effectiveness of the generated puns.

For instance, given the tuple (Pw, Aw, Cw) =
(डेढ़, dead, one and a half), the process yields the
following sequence of transformations to generate
the pun:5

Prompt: Generate 5 creative Hindi-
English sentences ending with the word
‘dead’. Have the word ‘one and a half’
as a context in each of these sentences.
Final Pun: "मनेै one and a half litre
दधू ख़रीदा, but when i opened it, it was
already डेढ़."

4.2.2 Question-Answer Pun Generation
This method employs a structured approach to sys-
tematically generate puns in a question-answer for-

4Refer to Appendix C to see POS tagger details
5More detailed example provided in table 9 in Appendix

mat. The process consists of three key stages: gen-
erating a short phrase containing Aw, replacing Aw

with Pw in the generated phrase, and formulating a
question based on the transformed phrase.

The first stage involves generating a short phrase
that naturally incorporates Aw. This initial phrase
serves as the foundation for the subsequent trans-
formation. In the second stage, Aw in the generated
phrase is replaced by Pw. Replacement of Aw with
Pw introduces the pun, leveraging the linguistic
similarity or contextual contrast between the two
words, enabling the generated phrase to exploit
dual meanings or humor.

The third and final stage involves generating a
question that corresponds to the modified phrase,
completing the pun. GPT-4o is again employed
for this task, using its understanding of the context
to generate a question that makes the pun explicit
and amusing. Additionally, to cater to the code-
mixed nature of the task, a Hindi translation of the
question is produced. These steps are essential for
framing the pun within a question-answer format,
which not only heightens the humor but also adds
an element of surprise.

For instance, given the word pair (Pw, Aw) =
(गाय, guy), the process yields the following se-
quence of transformations to generate the pun:

Generated Small Phrase: A cool guy
Replaced Pun Word: A cool गाय
Generated Question: What do you call
a cow wearing sunglasses?
Generated Translated Question: Sun-
glasses पहने हुए cow को आप क्या कहते हैं?
Final Pun: Sunglasses पहने हुए cow को
आप क्या कहते हैं?A cool गाय
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Model Suc(%) Fun. Accep.

Contextually Aligned 38.8 2.32 4.32
Question-Answer 62.6 2.59 4.28
Subject-Masked 43 2.24 4.54
Baseline 19.8 2.17 4.48

Table 3: Comparison of Success percentage(Suc%),
Mean Funniness score rated out of 5(Fun.), and Mean
Acceptability score rated out of 5(Accep.) for different
pun generation methods in Section 4.2.

4.2.3 Subject-Masked Pun Generation

This approach enhances the generation of code-
mixed Hindi-English puns by incorporating a
subject-masking step, which refines the contex-
tual alignment of the sentence subject with the
pun word, thereby improving coherence and hu-
mor. This approach unfolds in three key stages:
sentence generation, alternate word replacement,
and subject replacement.

The process begins by providing the language
model with a prompt designed to generate a short
sentence that ends with the alternate word Aw. Sub-
sequently, the alternate word Aw in the generated
sentence is replaced with the pun word Pw. This
substitution introduces the pun, similar to the pro-
cess in Section 4.2.2. The third and final stage
involves modifying the subject or noun phrase of
the sentence to enhance the relevance of the subject
and the pun word. This is achieved by masking the
original subject and replacing it with a noun phrase
generated in Hindi, thus, generating a pun with
a highly relevant subject. Additionally, replacing
the noun phrase with a translation in the alternate
language, such as Hindi, yields higher-quality code-
mixed sentences as noted in prior studies (Gupta
et al., 2018, 2020).

For instance, given the word pair (Pw, Aw) =
(लाख, luck), the process yields the following se-
quence of transformations to generate the pun:

Generated Short Sentence: The man
attributed all his success to luck
Replaced Alternate Word: The man
attributed all his success to लाख
Masked Subject: [MASK] attributed all
his success to लाख
Final Pun Sentence: The lucky अमीर
businessman attributed all his success to
लाख

4.2.4 Baseline Pun Generation
For the baseline model, we utilized GPT-4o with
few-shot prompting to generate puns based on
given word pairs (Pw, Aw). This method served as
a foundational approach for pun generation and pro-
vided a benchmark against which the performance
of other methods could be evaluated.

5 Annotation and Dataset Analysis

To ensure the development of a high-quality dataset
for pun detection, a structured annotation frame-
work was designed, enabling human annotators
to evaluate each generated pun across multiple di-
mensions, with particular emphasis on linguistic
coherence and humor quality. Four undergradu-
ate students participated in the annotation process.
Collecting these human judgments serves two pur-
poses: to assess and compare the performance of
the pun generation methods discussed above, and
to compile datasets for Pun Detection. To maintain
data quality, an initial pilot annotation phase was
conducted using 150 samples. During this phase,
annotators engaged in discussion and consensus-
building to resolve disagreements, which helped
establish standardized criteria and procedures be-
fore commencing full-scale annotation.

5.1 Annotation Guidelines

Each pun was evaluated on three criteria: (1) Pun
Success, (2) Funniness, and (3) Acceptability, fol-
lowing annotation guidelines adapted from prior
research (He et al., 2019b).

• Pun Success: This metric evaluates whether
the sentence successfully incorporates word-
play, measured on a binary scale with an ad-
ditional option for instances where the in-
tended pun is not constructed using the speci-
fied word pair. This assessment ensures that
the primary objective of creating a pun is
achieved.

• Funniness: The degree of humor elicited by
the pun is measured using a 5-point Likert
scale, ranging from “Not Funny” to “Hilari-
ous.” This metric captures the inherently sub-
jective nature of humor and assesses the effec-
tiveness of the pun in generating amusement.

• Acceptability: This metric evaluates the
grammatical accuracy and fluency of the code-
mixed text on a 5-point scale, from “Definitely
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Model Validation Test

F1 Precision Recall Accuracy F1 Precision Recall Accuracy

1. Task-Specific Fine Tuning

XLM-R (Conneau et al., 2020) 67.81.18 69.51.16 69.00.96 69.00.96 67.11.12 68.01.14 69.01.25 69.01.25
mBERT (Devlin et al., 2019) 65.281.82 65.41.79 66.02.01 66.02.01 63.41.78 63.51.82 64.01.66 64.01.66
IndicBERT (Kakwani et al., 2020) 61.740.73 62.30.71 62.90.83 62.90.83 62.03.11 62.42.77 63.52.59 63.52.59

2. Transfer Learning + Task-Specific Fine Tuning

Hing-mBERT (Nayak and Joshi, 2022a) 64.52.22 65.31.57 65.21.65 65.21.65 65.11.74 66.40.64 65.42.19 65.42.19
Hing-Roberta (Nayak and Joshi, 2022a) 64.100.30 64.50.56 64.40.24 64.40.24 63.91.25 65.00.81 64.11.46 64.11.46
GCM-XLMR (Kodali et al., 2024) 61.632.00 63.22.12 63.91.59 63.91.59 60.11.27 62.20.69 62.60.63 62.60.63
GCM-mBERT (Kodali et al., 2024) 62.631.22 63.01.56 62.80.71 62.80.71 61.30.70 61.70.98 61.30.48 61.30.48
ACL-XLMR (Das et al., 2023) 64.010.79 64.20.43 64.90.52 64.90.52 63.32.05 63.82.11 64.52.15 64.52.15
ACL-mBERT (Das et al., 2023) 59.973.65 60.43.43 61.63.02 61.63.02 61.32.55 61.72.23 62.61.46 62.61.46

3. NLI-Based Models

BART-large-nli (Lewis et al., 2020) 64.901.42 65.51.79 66.21.95 66.21.95 62.01.92 62.52.11 63.62.28 63.62.28
roberta-large-nli (Liu et al., 2019) 62.732.29 62.72.40 63.32.76 63.32.76 63.11.59 63.11.65 63.61.27 63.61.27

4. Few-Shot Learning

IndicBART (Dabre et al., 2022) 54.51.71 54.51.71 55.81.78 55.81.78 53.61.69 53.11.65 53.91.70 53.91.70
mBART (Liu et al., 2020) 55.51.81 55.21.74 54.31.73 54.31.73 54.31.73 54.01.71 54.61.74 54.61.74
Llama-3.2-1B (Touvron et al., 2023) 50.52.09 50.12.46 53.52.09 53.52.09 51.52.98 52.21.85 56.51.89 56.51.89
Airavata (Gala et al., 2024) 51.92.79 51.84.27 56.72.41 56.72.41 60.53.11 60.72.36 61.12.34 61.12.34

Table 4: Performance comparison of different models for pun detection, grouped by model type. Class Weighted
Metrics (F1, Precision, Recall, Accuracy) are presented for both Validation and Test datasets, with subscripts
indicating standard deviation.

Unacceptable” to “Definitely Acceptable and
Very Fluent.” Ensuring linguistic coherence
and readability is critical particularly in the
context of code-mixed text.

To ensure the reliability and consistency of the
annotations, inter-annotator agreement was mea-
sured using Fleiss Kappa coefficient(Fleiss and
Cohen, 1973)(κ = 0.487), suggesting moderate
agreement. We also calculated the Average Pair
Wise Percentage Agreement to be 72.2% which
shows a high degree of agreement.

5.2 Pun Generation Evaluation

In Section 4.2 we described various methods to
generate Hindi-English code-mixed puns. To un-
derstand which methods fare well in generating
good puns we evaluated the generated puns using
three quantitative metrics: (1) Success Percentage
(Percentage of successful puns generated by the
method), (2) Mean Funniness Score (out of 5), and
(3) Mean Acceptability Score (out of 5), as shown
in Table 3.

The Baseline method exhibited the lowest per-
formance, achieving a Success Percentage of 19.8%
and a Mean Funniness Score of 2.17, frequently
failing to effectively utilize the pun-alternate word
pair and often producing nonsensical outputs. The

Question-Answer method achieved the highest
Success Percentage (62.6%) and Mean Funniness
Score (2.59), due to its structured question-answer
format, which naturally highlights wordplay and
humor while maintaining contextual relevance.
The Subject-Masked method scored highest in Ac-
ceptability (4.54) by ensuring contextual coherence
through subject adjustment, but achieved a lower
Success Percentage (43%) as it sometimes con-
strained humor to only the subject and pun word.
The Contextually Aligned method, which required
generating sentences with two specific words, faced
complexity in maintaining coherence, leading to
lower Success (38.8%) and Acceptability (4.32)
scores.

Overall, our proposed methods significantly out-
performed the baseline, with structured approaches
like Question-Answer excelling in humor gener-
ation, while methods such as Subject-Masked,
achieved superior grammatical coherence.

6 Pun Detection

Having created the dataset, we wanted to evaluate
if language models can be trained to detect code-
mixed pun sentences. To this end, we trained vari-
ous pre-trained multilingual language models. The
annotated dataset was split into training (70%), de-
velopment (20%), and test (10%) sets. Each model
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was evaluated using standard class-weighted met-
rics (F1 score, precision, recall, and accuracy).

6.1 Models and Methodologies
Four principal methodologies were applied for pun
detection:

• Task-specific Fine-tuning for Encoder-
based Models: Encoder-based models, such
as XLM-R and mBERT, were fine-tuned
specifically for the pun detection task, lever-
aging their pre-trained multilingual features
to distinguish pun structures effectively.

• Transfer Learning + Task-Specific Fine-
tuning: Encoder-based models continued pre-
trained on large scale code-mixed corpora pre-
sented by Nayak and Joshi, 2022b (Hing mod-
els), Das et al., 2023 (ACL Models) and Ko-
dali et al., 2024 (GCM models) were further
fine-tuned for pun detection. This approach
aimed to transfer relevant linguistic and con-
textual knowledge to enhance the detection of
code-mixed puns.

• Natural Language Inference (NLI) for NLI-
based Models: NLI-based models, including
BART-nli, were assessed for their capacity
to produce sentence embeddings, which may
help capture semantic nuances crucial for un-
derstanding puns, especially in code-mixed
contexts.

• Few-shot Learning for Decoder and
Encoder-Decoder Models: Both decoder-
only models (e.g., Airavata, LLaMA) and
encoder-decoder models (e.g., IndicBART,
mBART) were employed using few-shot learn-
ing to detect puns, leveraging minimal labeled
data and generative capabilities.

6.2 Performance Evaluation
Model performances were evaluated on both de-
velopment and test sets, with results presented in
Table 4. Each model was evaluated three times
on shuffled datasets constructed from 3 random
seeds, and the scores were averaged with standard
deviations shown as subscripts.

The Task-Specific Fine-tuning approach
demonstrated superior performance across most
metrics, with XLM-R achieving the highest F1
scores and accuracy on both validation (67.8%)
and test sets (67.1%). Transfer learning combined

with task-specific fine-tuning also produced
competitive results, particularly for Hing-mBERT,
which achieved an F1 score of 64.5% on the
validation set and 65.1% on the test set.

For NLI-based models, BART-large-nli outper-
formed other models in this category, with a vali-
dation F1 score of 64.9%. However, it fell slightly
short on the test set (62.0%). Few-shot learning
approaches, while effective in resource-scarce set-
tings, exhibited comparatively lower performance.

7 Automating Code-Mixed Pun
Generation

Methods outlined in Section 4.2 are effective for
producing code-mixed puns. However, a constraint
is that the procedure presumes that phonetically
similar word pairs have already been identified and
compiled. Such a constraint might limit the ex-
tension of this approach to additional code-mixed
language pairs or multilingual contexts. Hence, to
further refine and partially automate the pun gener-
ation process, we propose a pipeline that generates
code-mixed Hindi-English puns given only an in-
put Hindi pun word. This pipeline comprises three
key stages: (1) Selection of phonetically similar
English candidates, (2) Compatibility scoring of
pun-alternate word pairs, and (3) Sentence genera-
tion and filtering.

7.1 Phonetically Similar Word Selection
The pipeline begins by identifying English words
phonetically similar to the input Hindi pun word
Pw, as detailed in Section 4.1. Using the custom
phonetic edit distance metric described, the model
retrieves the top 5 English candidates from a large-
scale lexicon, selecting those with the lowest scores.
This ensures that the alternate words Aw are pho-
netically aligned with Pw, enabling the generation
of natural and contextually humorous puns.

7.2 Training a Compatibility Scoring Model
The next stage involves identifying the most com-
patible English alternate word Aw for a given Hindi
pun word Pw. To do this we trained a scoring
model to compute a compatibility score for pun-
alternate word pairs. We trained the scoring model
on the 500 pairs obtained in Section 4.1 where the
compatibility score ranged from 0 to 4 indicating
the number of methods from section 4.2 that were
successful in generating a pun for a given pair.

The compatibility model employs a feature set
that includes:
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Figure 1: Overview of the proposed code-mixed pun generation pipeline, comprising of: (1) Word Pair Selection,
which identifies phonetically similar English candidates for the input Hindi pun word and selects the most compatible
pair (2) Pun Generation, which creates, filters, and selects the most contextually humorous sentence

• BERT Embedding: Contextualized word em-
beddings for both Pw and Aw, capturing se-
mantic relationships essential for humor.

• POS Compatibility: Part-of-speech tags en-
coded as one-hot vectors, based on the univer-
sal POS tag set.

The outputs for the two words are concatenated
and fed into a neural regression model with two hid-
den layers (dimensions: 512 and 256) optimized for
mean squared error (MSE). This model evaluates
compatibility scores to identify the most suitable
English alternate word (Aw) to serve as the pun
counterpart for Pw.

7.3 Sentence Generation and Filtering

Once a compatible word pair (Pw, Aw) is identi-
fied, we generate candidate sentences incorporating
this pair using the methods described in Section 4.2.
After generation, the candidate sentences undergo
a filtering process to select the most effective pun.
Specifically, we use the XLM-R model, trained on
the pun classification task from section 6, to assign
a confidence score to each candidate sentence, with
the sentence receiving the highest confidence score
chosen as the final pun candidate.

7.4 Evaluation

To assess the efficacy of our pun generation
pipeline, we compared it with a baseline model
in which GPT-4o is prompted directly to generate a
pun using only the given pun word Pw, without ad-
ditional contextual constraints. The outputs of our
proposed pipeline and the baseline were directly
compared in a human evaluation, where the annota-
tors were asked to rate the funniness of each output
and determine which sentence was the better pun
overall.

Model Win Rate (%) Avg. Funniness

Proposed Model 67.65 1.79
Baseline Model 32.35 0.91

Table 5: Human evaluation results comparing the pro-
posed pipeline with the baseline model. Average Funni-
ness was rated out of 5.

As shown in Table 5, human evaluation demon-
strates that the proposed pipeline significantly out-
performed the baseline, achieving a win rate of
67.65% over 50 evaluated samples. The win rate
(Wrate) is calculated as:

Wrate =
Nmodel

Npun
× 100
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Where Nmodel represents the number of instances
where the model’s output was preferred, and Npun
denotes the total instances where at least one model
produced a valid pun. The baseline struggles to
generate quality puns even when constrained to
a single pun word and often produces sentences
where the pun word is not used as a pun. In con-
trast, our method consistently avoids such errors,
ensuring humor and contextual coherence in Hindi-
English code-mixed puns, further highlighting the
utility of HECoP.

8 Conclusion and Future Work

This study proposed a structured approach for
generating Hindi-English code-mixed puns by
leveraging phonetic similarity matching between
Hindi and English words. These pairs were in-
tegrated into structured sentence generation tech-
niques, such as context-aligned, question-answer,
and subject-masked prompts, embedding humor
naturally in code-mixed contexts.

For pun detection, we evaluated multiple mod-
els, with encoder-based approaches like XLM-R
and mBERT performing strongly, highlighting the
effectiveness of fine-tuning for humor recogni-
tion. Additionally, our automated pun generation
pipeline, combining phonetic matching, compat-
ibility scoring, and sentence filtering, produced
contextually relevant puns. Human evaluation
confirmed that this approach significantly outper-
formed the baseline, demonstrating its potential for
high-quality code-mixed pun generation.

Future work could explore expanding the dataset
to cover additional code-mixed language pairs and
incorporating advanced multilingual LLMs to fur-
ther enhance pun quality and detection perfor-
mance.

Limitations

The reliance on robust models like GPT-4o may
be less effective for low-resource languages, and
adapting the approach to other language pairs could
be challenging due to issues like unavailable pho-
netic transcriptions or script-to-IPA mappings. Ad-
ditionally, our focus on specific pun techniques
does not cover subword-level puns or more com-
plex wordplay.
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A Phonetic Substitution Rules

The phonetic substitutions outlined in the three ta-
bles American English to Indian English Substitu-
tion Table, Vowel Substitution Table and Consonant
Substitution Table were integral to the methodol-
ogy described in Section 4.1. The phone pairs in
the vowel and consonant table have a substitution
cost of 0 as described in Section 4.1.

American English to Indian English The Amer-
ican English to Indian English Substitution Table
(Table 6) addressed differences between American
and Indian English phonologies. By converting
American English IPA transcriptions into Indian
English IPA symbols, which align more closely
with Hindi phonology, this mapping enhanced the
relevance of phonetic comparisons and ensured
consistency with Indian English pronunciations.

Vowel Substitution The Vowel Substitution Ta-
ble (Table 7) provided mappings for vowel vari-
ations based on shared phonetic features, such
as vowel length distinctions, nasalization, and
stress differences. These substitutions reduced mis-
matches caused by phonological variations across
the two languages.

Consonant Substitution Finally, the Consonant
Substitution Table (Table 8) accounted for varia-
tions in voicing and aspiration. Substitutions be-
tween voiced and unvoiced pairs (e.g., [p] and [b],
[t] and [d]) and allophones (e.g., [th] and [t]) were
assigned a substitution cost of 0. This approach
allowed us to capture phonetically similar word
pairs while respecting linguistic variations.

By integrating these substitution rules into the
custom Levenshtein edit distance, we ensured a nu-
anced comparison of phonetic similarity, enabling
the identification of Hindi-English word pairs suit-
able for pun generation.

B Implementation Details for Pun
Generation Methods

The prompts and the examples of candidate sen-
tences generated by each of the methods in Sec-
tion 4.2 are given in Table 9 for Contextually
Aligned Pun Generation (Section 4.2.1), Table 10
for Question-Answer Pun Generation (Section 10),
Table 11 Subject-Masked Pun Generation (Section
4.2.3) and Table 12 for Baseline Pun Generation
(Section 4.2.4). Refer to the System prompts in
these tables to understand the pun generation pro-

cess for Question-Answer and Subject-Masked Pun
Generation.

For generating code-mixed text in all three meth-
ods, we initially experimented with several mul-
tilingual and code-mixed text generation models,
including Airavata, LLaMA, Gemma, Gemini, and
GPT-4o. Among the models evaluated, GPT-4o
demonstrated superior performance in generating
coherent and linguistically appropriate code-mixed
text, making it the preferred choice for our experi-
ments. This model was used for all pun generation
methods in Section 4.2. The generation process
used a temperature setting of 1.0 to balance creativ-
ity and coherence in the outputs.

C POS Tagger Details

To ensure grammatical consistency in our pun gen-
eration pipeline, we developed a Part-of-Speech
(POS) tagger specifically tailored for Hindi-English
code-mixed text. The tagger was trained on the
GLUECoS benchmark dataset (Khanuja et al.,
2020), which provides high-quality annotations
for POS tagging in code-mixed language. For the
model architecture, we employed a base XLM-
RoBERTa (XLMR) model, leveraging its strong
multilingual capabilities to handle the intricacies
of code-mixed Hindi-English data.

The training process was conducted over five
epochs, optimizing the model to recognize and clas-
sify tokens into the Universal POS tag set (Petrov
et al., 2011). This tag set, with its standardized
categories, ensures compatibility and consistency
across linguistic resources. The trained model
achieved an accuracy of 91% on the GLUECoS
benchmark, demonstrating its effectiveness in ac-
curately tagging code-mixed text.

D Annotation Guidelines

We include a screenshot of the annotation page (Fig-
ure 2) corresponding to the guidelines described
in Section 5.1. Additionally, a screenshot of the
annotation page (Figure 3) used for the evaluation
process described in Section 7.4 is also provided.

E Pun Classifier Implementation Details

We fine-tuned multiple pre-trained multilingual
language models for the task of detecting code-
mixed pun sentences. The models employed in this
study included XLM-R, mBERT, IndicBERT, nat-
ural language inference (NLI)-based models such
as BART-large-nli and roberta-large-nli, as well as
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generation-based models like Airavata, LLaMA,
and IndicBART. Model checkpoints were accessed
and managed using the HuggingFace Transformers
library (Wolf et al., 2020). All experiments were
conducted using 4 NVIDIA GeForce RTX 2080 Ti
GPUs to ensure computational efficiency.

Task-Specific Fine-Tuning For encoder-based
models (e.g., XLM-R, mBERT, IndicBERT) and
NLI-based models (e.g., BART-large-nli, roberta-
large-nli), we fine-tuned the models using a batch
size of 16 for training and 32 for evaluation. The
training process involved a warmup phase of 500
steps, a weight decay rate of 0.01, and mixed-
precision training (fp16) to optimize computational
performance. Models were trained for 30 epochs,
and the checkpoint with the highest accuracy on
the development set was selected for inference on
the test set.

Few-Shot Learning for Generative Models For
decoder-only models (e.g., Airavata, LLaMA)
and encoder-decoder models (e.g., IndicBART,
mBART), we employed few-shot learning method-
ologies. The models were provided with prompts
containing labeled examples as input. During infer-
ence, we utilized beam search with a beam size of
5, temperature sampling (temperature = 1.0), and
nucleus sampling (top-p = 0.9) to generate predic-
tions.

Dataset Splits and Evaluation Metrics The an-
notated dataset was divided into training (70%),
development (20%), and test (10%) sets. Model
performance was evaluated using class-weighted
F1-score, precision, recall, and accuracy metrics.
To address the class imbalance in the dataset, a
weighted loss function was employed during train-
ing. Specifically, higher weights were assigned to
the minority class (pun) by computing the weight
as NnotPun/Npun, where Npun and NnotPun de-
note the number of samples in the pun and non-pun
classes, respectively. Each model was evaluated
on the dataset split using three different random
seeds. The models were trained and tested three
times, and the scores were averaged to ensure the
robustness of the results. We report the mean and
standard deviation of these scores in Table 4.

F Compatibility Scorer Implementation
Details

The compatibility scoring model was trained to
compute the compatibility score for pun-alternate

word pairs, as detailed in Section 4.1. The train-
ing dataset comprised 500 pairs, annotated with
scores ranging from 0 to 4, representing the num-
ber of methods from Section 4.2 that successfully
generated a pun for the given pair.

Model Architecture The model’s input features
included contextualized embeddings for Pw and
Aw, extracted using a pretrained BERT model. Ad-
ditionally, part-of-speech (POS) tags for both Pw

and Aw were encoded as one-hot vectors based on
the universal POS tag set. The embeddings and
POS features were concatenated into a single fea-
ture vector of size 1550 (775 dimensions for each
word embedding - 768 from BERT and 7 for POS).

The neural architecture of the compatibility
model consisted of two fully connected hidden lay-
ers. The first hidden layer contained 512 units,
followed by a second hidden layer with 256 units,
both employing ReLU activation functions. The fi-
nal output layer was a single unit that predicted the
compatibility score using a regression approach.
Mean squared error (MSE) was used as the loss
function to optimize the model’s performance.

Training Hyperparameters Training was per-
formed using a total of 100 epochs. An early stop-
ping mechanism was employed with a patience of
5 epochs and a threshold of 0.001. The dataset was
split into 90% training and 10% testing subsets, and
the model was trained using the Adam optimizer
with a batch size of 32.

Other Experimented Models We explored var-
ious feature representations and architectures to
identify the optimal configuration for compatibility
scoring. These included using BERT embeddings
alone, combining static FastText word embeddings
with POS tags, and employing a Siamese network
architecture on BERT + POS embeddings. Among
all approaches, the standard BERT + POS feature
set achieved the best performance, with a minimum
MSE loss of 0.82 on the validation set.
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American English IPA Indian English IPA

eI e:
oU, ow o:
A O
2 a
D d

¨E e
h H
i i:
I i
ô r
t ú
T th

u u:
U u
w v
N Ng

Table 6: American English to Indian English Substitutions.
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Original IPA Vowel Mapped IPA Vowel

@, a:, ã, ã:, 6, 6:, 2 a
æ, æ: ae
e:, ẽ, E, E: e
i:, I, y i
O:, O, o: o
U, u: u

Table 7: Vowels Mapping Table.
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Original IPA Mapped IPA
h .
H h
p b
b
¨

b
T, t, ú d
D, ã, ó, d

¨
d

k, q, x g
å, G, g

¨
g

w, f v
S, Z

¨
Z

>
Ã,

>
Ã
¨

,
>
tS Z

J, ç j
s z
ï, ñ, ñ, N, ð n
l, í l
R, ô, õ, ô

"
, r

"
r

Table 8: Consonant Mapping Table. The first phone aspirated [h] is mapped to an empty phone hence . is present in
it place
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Contextually Aligned Pun Generation
Prompt for tu-
ple (Pw, Aw, Cw)

Generate 5 creative Hindi-English code-mixed pun-style sentences ending with the
english word ‘{Aw}’. Have the english word ‘{Cw}’ as a context in each of these
sentences. Ensure the word ‘{Aw}’ occurs after the word ‘{Cw}’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.

Prompt Examples
for few shot gener-
ation

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’share’. Have the english word ’lion’ as a context in each of these
sentences. Ensure the word ’share’ occurs after the word ’lion’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.
Assistant: 1. Jungle में lion का status high ह,ै पर उसकी fame को भी एक अच्छा सा
share चािहए! 2. Lion अपने territory को protect करता ह,ै लेिकन कभी-कभी उसको अपनी

success का share भी देना पड़ता ह.ै 3. अगर lion के साथ photo �खचनी ह,ै तो उसके साथ

share भी करना पडे़गा! 4. Lion की leadership को challenge करना ह,ै तो उसका power

share भी जरूरी ह!ै 5. Lion की roar की आवाज सुनी ह,ै तो उसका impact share करना भी

तो पडे़गा!

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’bat’. Have the english word ’chair’ as a context in each of these
sentences. Ensure the word ’bat’ occurs after the word ’chair’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.
Assistant: 1. उसने कहा, "When I have enough money in my pocket, it feels like

my luck is always on my side." 2. मेरे friend ने मजाक में कहा, "Money can buy you

almost everything, but you still need a bit of luck." 3. आजकल money की कमी तो

सबको ह,ै पर luck से सब कुछ िमलता ह।ै 4. �जतना भी invest करो, कभी न कभी तो िमलेगी

तुम्हें money with a bit of luck! 5. अगर तुम्हारे पास money नहीं ह,ै तो बस तुम्हें चािहए

थोड़ा सा luck!

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’bat’. Have the english word ’chair’ as a context in each of these
sentences. Ensure the word ’bat’ occurs after the word ’chair’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.
Assistant: 1. जब वह अपनी comfy chair पर बठैा, उसने सोचा, "I really need a better

bat to improve my game." 2. उसने अपनी favorite chair पर बठैते हुए कहा, "This chair

is perfect, but I could really use a new bat." 3. Chair पर आराम करते हुए उसने कहा,

"Yaar, I wish I had a bat like that for my cricket matches." 4. उसने अपनी chair पर

बठैते हुए कहा, "This chair is great for relaxing, but I'm missing a good bat." 5. जसेै

ही वह chair से उठा, उसने अपने भाई से पूछा, "Have you seen my cricket bat around

here?"

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’book’. Have the english word ’hunger’ as a context in each of these
sentences. Ensure the word ’book’ occurs after the word ’hunger’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.



49

Assistant: 1. जब भी late-night की hunger शुरू होती ह,ै मैं तुरतं अपने favorite snack

ideas book को open कर लेता हँू। 2. Office के काम के बाद, जब hunger मुझसे िमलती

ह,ै तो मैं always अपनी comfort food recipe book देखता हँू। 3. िदनभर की मेहनत के बाद,

hunger से deal करने के �लए मैंने एक खास meal prep book खरीदी। 4. अगर weekend पर

hunger strike कर,े तो एक quick fixes की book मेरे पास हमेशा ready रहती ह।ै 5. शाम की

hunger को curb करने के �लए, मैंने recently एक new healthy eating book buy की ह।ै

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’deal’. Have the english word ’heart’ as a context in each of these
sentences. Ensure the word ’deal’ occurs after the word ’heart’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.
Assistant: 1. जब भी late-night की hunger शुरू होती ह,ै मैं तुरतं अपने favorite snack

ideas book को open कर लेता हँू। 2. Office के काम के बाद, जब hunger मुझसे िमलती

ह,ै तो मैं always अपनी comfort food recipe book देखता हँू। 3. िदनभर की मेहनत के बाद,

hunger से deal करने के �लए मैंने एक खास meal prep book खरीदी। 4. अगर weekend पर

hunger strike कर,े तो एक quick fixes की book मेरे पास हमेशा ready रहती ह।ै 5. शाम की

hunger को curb करने के �लए, मैंने recently एक new healthy eating book buy की ह।ै

Example Pun Fil-
tering Process for
(Pw, Aw, Cw) =
(डेढ़, dead, one and
a half)

Prompt: Generate 5 creative Hindi-English code-mixed pun-style sentences ending
with the english word ’dead’. Have the english word ’one and a half’ as a context in
each of these sentences. Ensure the word ’dead’ occurs after the word ’one and a half’.
Avoid providing English translations. Make sure to write the English words in roman
script and Hindi words in Devanagari. Maintain a balanced 1:1 ratio between hindi
and english words.
Response after POS filtering:
"उसने one and a half ghante सोच समझकर नया laptop खरीदा, और वो बाद में एक और

आधा डेढ़ हो गया।",

"मनेै one and a half litre दधू ख़रीदा, but when i opened it, it was already डेढ़.",

"उसने one and a half ghante तक �चता की, और िफर पता चला िक उसका plan पहले ही

डेढ़ हो गया था।"

Pun: मनेै one and a half litre दधू ख़रीदा, but when i opened it, it was already डेढ़.

Rating: 4 - Quite Funny

Table 9: Example prompts for few shot learning and Example filtering process for the Contextually Aligned Pun
Generation Process, demonstrating the steps for generating Hindi-English code-mixed puns using a combination of
pun words, alternate words, and contextual meanings as outlined in Section 4.2.1.
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Question-Answer Pun Generation
System Prompt Follow these steps to generate a pun: First generate a very short phrase(which can

be a response to questions such as Noun Phrase) with the given alternate word. For
example if the alternate word is ’guy’ the generated sentence is "A cool guy". Then
replace the alternate word with the pun word. For example if the pun word is 'गाय'
the new sentence would become "A cool गाय". Then generate a pun question for this
"What do you call a cow wearing sunglasses?". Write it in the below format ill give
pairs of pun words and alternate word

Generated Small Phrase: A cool guy
Replace Pun Word: A cool गाय
Generated Question: What do you call a cow wearing sunglasses?
Generated Translated Question: What do you call a cow जो sunglasses पहनती ह?ै

Prompt for tu-
ple (Pw, Aw, Cw)

The pair is Pun Word = ‘{Pw}’(meaning {Cw}) and Alternate Word = ‘{Aw}’

Prompt Examples
for few shot gener-
ation

User: The pair is Pun Word = ‘लाख’(meaning lakh) and Alternate Word = luck
Assistant: Generated Small Phrase: A stroke of luck
Replace Pun Word: A stroke of लाख

Generated Question: What do you call a huge fortune that strikes suddenly?

Generated Translated Question: What do you call a huge fortune जो suddenly

हा�सल होता हे?

Pun: What do you call a huge fortune जो suddenly हा�सल होता हे? A stroke of लाख

User: The pair is Pun Word = ‘पीपल’(meaning tree) and Alternate Word = people
Assistant: Generated Small Phrase: A group of people

Replace Pun Word: A group of पीपल

Generated Question: What do you call a gathering under a sacred tree?

Generated Translated Question: What do you call a समूह under a sacred पेड़?

Pun: What do you call a समूह under a sacred पेड़? A group of पीपल

User: The pair is Pun Word = ‘िबक’(meaning sold) and Alternate Word = big
Assistant: Generated Small Phrase: A big sale

Replace Pun Word: A िबक sale

Generated Question: What do you call a huge sale where everything is sold out?

Generated Translated Question: What do you call a huge sale जहां सब कुछ िबक

जाता ह?ै

Pun: What do you call a huge sale where everything is sold out? A िबक sale

User: The pair is Pun Word = ‘वन’(meaning Forest) and Alternate Word = won
Assistant: Generated Small Phrase: He won the game

Replace Pun Word: He वन the game

Generated Question: What do you call it when someone conquers a forest in a

game?

Generated Translated Question: What do you call it जब कोई खेल में जगंल conquer

करता ह?ै

Pun: What do you call it जब कोई खेल में जगंल conquer करता ह?ै He वन the game

User:The pair is Pun Word = ’धन’(meaning money) and Alternate Word = done
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Assistant: Generated Small Phrase: All done

Replace Pun Word: All धन

Generated Question: What do you call it when you've earning making a lot of

money?

Generated Translated Question: What do you call it जब तुमने बोहोत सारा पसेै कमा

�लया हो?

Pun: What do you call it जब तुमने बोहोत सारा पसेै कमा �लया हो? All धन

Example Pun Fil-
tering Process for
(Pw, Aw, Cw) =
(खो, co, lost)

Prompt: The pair is Pun Word = ‘खो’(meaning lost) and Alternate Word = co
Response:
Generated Small Phrase: Co-worker

Replace Pun Word: खो-worker

Generated Question: What do you call a colleague who is often hard to find?

Generated Translated Question: What do you call a सहकम� जो अक्सर ढँूढने में मु��कल

होता ह?ै

Pun: What do you call a सहकम� जो अक्सर ढँूढने में मु��कल होता ह?ै A खो-worker

Rating: 5 - Hilarious

Table 10: System Prompt, Generic Prompt Template, Example prompts for few shot learning, and Example filtering
process for the Question-Answer Pun Generation method, demonstrating the steps for generating Hindi-English
code-mixed puns using a combination of pun words, alternate words, and contextual meanings as outlined in Section
4.2.2.



52

Subject-Masked Pun Generation
System Prompt Given a pair of pun words and alternate words use the following steps to generate

a Hindi-English codemixed pun. First generate a short sentence ending with the
alternate word. Then replace the alternate word with the pun word. Then replace
the subject of the sentence to add relevance to the pun. Then translate the subject to
codemixed Hindi-English version.
Example: The pair is Pun Word = ‘लाख’(meaning lakh) and Alternate Word = luck

Short Sentence: The man attributed all his success to luck
Replace Alternate Word: The man attributed all his success to लाख
Mask the Subject: [MASK] attributed all his success to लाख
Pun Sentence: The lucky rich businessman attributed all his success to लाख
Translated Sentence: The lucky अमीर businessman attributed all his सफलता to लाख.

Prompt for tu-
ple (Pw, Aw, Cw)

The pair is Pun Word = ‘{Pw}’(meaning {Cw}) and Alternate Word = ‘{Aw}’

Prompt Examples
for few shot gener-
ation

User: The pair is Pun Word = ‘िबक’(meaning sold) and Alternate Word = big
Assistant: Generated Small Phrase: The event was a big success.

Replace Pun Word: The event was a िबक success.

Mask the Subject: [MASK] was a िबक success.

Pun Sentence: The sold-out concert was a िबक success.

Translated Sentence: The sold-out संगीत सभा was a िबक success.

User: The pair is Pun Word = ‘सच’(meaning truth) and Alternate Word = such
Assistant: Generated Small Phrase: She was never faced with such challenges

before.

Replace Pun Word: She was never faced with सच challenges before.

Mask the Subject: [MASK] was never faced with सच challenges before.

Pun Sentence: The dishonest lawyer was never faced with सच challenges before.

Translated Sentence: The dishonest वकील was never faced with सच challenges

before.

User: The pair is Pun Word = ‘पीपल’(meaning tree) and Alternate Word = people
Assistant: Generated Small Phrase: The park was filled with people enjoying the
evening.

Replace Pun Word: The park was filled with पीपल enjoying the evening.

Mask the Subject: [MASK] was filled with पीपल enjoying the evening.

Pun Sentence: The forest was filled with पीपल enjoying the evening.

Translated Sentence: The जगंल was filled with पीपल enjoying the evening.

User: The pair is Pun Word = ‘पीपल’(meaning tree) and Alternate Word = people
Assistant: Generated Small Phrase: The park was filled with people enjoying the
evening.

Replace Pun Word: The park was filled with पीपल enjoying the evening.

Mask the Subject: [MASK] was filled with पीपल enjoying the evening.

Pun Sentence: The forest was filled with पीपल enjoying the evening.

Translated Sentence: The जगंल was filled with पीपल enjoying the evening.
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Example Pun Fil-
tering Process for
(Pw, Aw, Cw) =
(दौरा,dora, seizure)

Prompt: The pair is Pun Word = ‘दौरा’(meaning seizure) and Alternate Word = dora
Response:
Short Sentence: The child loves watching Dora the Explorer.

Replace Alternate Word: The child loves watching दौरा the Explorer.

Mask the Subject: [MASK] loves watching दौरा the Explorer.

Pun Sentence: The अस्पताल के मरीज loves watching दौरा the Explorer.

Pun: The अस्पताल के मरीज loves watching दौरा the Explorer.

Rating: 5 - Hilarious

Table 11: System Prompts, Generic Prompt Template, Example prompts for few shot learning, and Example filtering
process for the Subject-Masked Pun Generation method, demonstrating the steps for generating Hindi-English
code-mixed puns using a combination of pun words, alternate words, and contextual meanings as outlined in Section
4.2.3.
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Baseline Pun Generation
Prompt for tu-
ple (Pw, Aw, Cw)

Generate a hinglish pun where the pun word is the hindi word ‘{Pw}’ and the alternate
word is english word ‘{Aw}’. Maintain a balanced ratio between english and hindi
words. Make sure to write the English words in roman script and Hindi words in
Devanagari.

Prompt Examples
for Few-Shot Gen-
eration

User: Generate a hinglish pun where the pun word is the hindi word ‘ढाई’ and the
alternate word is english word ‘die’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari. .
Assistant: मेरा watch 2 and 2.30 के बीच stuck ह.ै It's a do or ढाई situation.

User: Generate a hinglish pun where the pun word is the hindi word ‘दधू’ and the
alternate word is english word ‘dude’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari. .
Assistant: American milk ने Indian milk से क्या कहा? "What's up दधू?"

User: Generate a hinglish pun where the pun word is the hindi word ‘बेटा’ and the
alternate word is english word ‘beta’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari.
Assistant: A daughter is the perfect child. A son is just a बेटा version.

User: Generate a hinglish pun where the pun word is the hindi word ‘स्नान’ and the
alternate word is english word ’none’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari.
Assistant: I really don't care िक कौन प्र�तिदन bath करता ह।ै...Its स्नान of my business...

Example Puns Fil-
tering Process for
(Pw, Aw, Cw) =
(वन, one, forest)

Prompt Generate a hinglish pun where the pun word is the hindi word ‘वन’ and the
alternate word is english word ’one’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari.

Pun: Why did the tree go to therapy? Because it had too many वन-sided

conversations.

Rating: 5 - Hilarious

Table 12: Generic Prompt Template, Example prompts for few-shot learning, and Example filtering process for the
Baseline Pun Generation method, demonstrating the generation of Hindi-English code-mixed puns with a balanced
mix of Hindi and English words, as outlined in Section 4.2.4.
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Pw/Aw Method Generated Sentence with Gloss, Transliteration, and Translation Label

भय (fear)/
bye

Baseline

“When fear knocks at your door, send faith to answer. कहो भय-भय, बाई-बाई!
Gloss: कहो = say, भय-भय = fear-fear, बाई-बाई = bye-bye
Transliteration: When fear knocks at your door, send faith to answer, Kaho
bhay-bhay, bai-bai!
Translation: When fear knocks at your door, send faith to answer. Say fear-fear
bye-bye”

0

Contextually Aligned

“मेरी लड़की की fear of heights ने हमारे adventure plan को भय कह िदया।

Gloss: मेरी = my, लड़की = girl, की = 's, भय = fear, कह िदया = turned into
Transliteration: Meri ladki ki fear of heights ne hamaare adventure plan ko
bhay kah diyaa.
Translation: My daughter’s fear of heights turned our adventure plan into
’fear’.”

1

Question-Answer

“What do you call it जब तुम अपने डर को अलिवदा कहते हो? कहो भय
Gloss: जब = when, तुम = you, अपने = your, डर = fear, को = to, अलिवदा
= goodbye, कहते = say, हो = do

Transliteration: Jab tum apne ar ko alavidaa kahte ho? Kaho bhay.
Translation: What do you call it when you say goodbye to your fear? Say
’fear’.”

1

Subject-Masked

“The डरपोक लड़की waved goodभय with a smile.
Gloss: डरपोक = cowardly, लड़की = girl, goodभय = good-fear
Transliteration: The arpok ladki waved good-bhay with a smile.
Translation: The cowardly girl waved good-fear with a smile.”

1

लाश

(corpse)/
lush

Baseline

“The garden was so beautifully green, it was a लाश paradise!
Gloss: लाश = corpse, paradise = paradise
Transliteration: The garden was so beautifully green, it was a laash paradise.
Translation: The garden was so beautifully green, it was a corpse paradise.”

1

Contextually Aligned

“जगंल में एक िनज�व dead body िमली, surrounded by एक लाश forest
Gloss: जगंल = forest, में = in, एक = a, िनज�व = lifeless, लाश = corpse, िमली
= found

Transliteration: Jangal men ek nirjiv dead body milii, surrounded by ek lash
forest.
Translation: A lifeless dead body was found in the forest, surrounded by a
corpse forest.”

1

Question-Answer

“What do you call a garden जो लाशों से भरा हो? A लाश garden
Gloss: जो = which, लाशों = corpses, से = with, भरा = full, हो = is
Transliteration: What do you call a garden jo lashon se bhara ho? A lash
garden.
Translation: What do you call a garden full of corpses? A corpse garden.”

1

Subject-Masked

“The भू�तया कि�स्तान was filled with लाश greenery
Gloss: भ�ूतया = haunted, कि�स्तान = cemetery, लाश = corpse
Transliteration: The bhutiyaa kabristaan was filled with lash greenery.
Translation: The haunted cemetery was filled with corpse greenery.”

1

Table 13: Examples of code-mixed Hindi-English puns generated using four different methods: Baseline, Contextu-
ally Aligned, Question-Answer, and Subject-Masked. For each word pair (Pw/Aw), the table presents a generated
sentence along with its gloss, transliteration, translation, and label. The label column indicates whether the generated
sentence contains a pun (0) or not (1). The examples illustrate the use of alternate words (Aw) and pun words (Pw)
to create humorous and contextually relevant sentences.
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Figure 2: Example of the annotation interface used to evaluate puns generated by methods in Section 4.2. The
evaluation focuses on three criteria: Pun Success, Funniness, and Acceptability. Annotators classify puns as
successful or unsuccessful, rate humor on a 5-point Likert scale, and asses Acceptability based on sentence fluency
and grammatical correctness rated on a 5-point scale, following guidelines. An additional option was given for pun
success where annotators could rate if a pun was formed without the specified pun-alternate word pair.
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Figure 3: Example of annotation interface used to compare the funniness and quality of puns generated by the
proposed pun generation pipeline (Section 7) versus the baseline model. Annotators rated each pun for funniness on
a scale and selected the better pun overall.
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