
COLING 2025

Proceedings of the
1st Workshop on Computational Humor (CHum)

Editors
Christian F. Hempelmann, Julia Rayz,

Tiansi Dong, and Tristan Miller

January 19, 2025

©2025 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 979-8-89176-204-6

ii

Preface

The impressive recent progress in generative AI has opened up new frontiers for complex tasks that can
be thought of as essentially human, including the production or interpretation of humor. For its part,
humor research in general has become a mature, interdisciplinary field, both in theoretical advances
across disciplines such as psychology, linguistics, and sociology, and in its breadth of purview and
empirical support. While much existing research raises the question of whether modern language models
can meaningfully contribute to theoretical linguistics, this First Workshop on Computational Humor
(CHum 2025) proposes a parallel inquiry: despite their primary focus on engineering objectives, should
these models be evaluated for their relevance to humor theory? Specifically, we set out to examine
whether they can effectively model humor in alignment with established theoretical frameworks. As
such, the workshop aims to foster further work on modeling the processes of humor with current methods
in computational linguistics and natural language processing, against the theoretical backdrop of humor
research and with reference to relevant corpora of textual, visual, and multimodal materials.

Being more dependent on context and inference than straightforward forms of communication, humor
poses particular challenges for probabilistic approaches. For these and other reasons, it has long served
as a special field of application for computational linguistics – understanding humor has often been
referred to as “AI complete” and as such considered to be a potential test case for Artificial General
Intelligence. Humor is approached presumably for this very reason whenever new paradigms arise in
NLP, which currently center around large language models (LLMs). However, the study of humor is
inherently multidisciplinary, and computational humor systems should therefore integrate insights from
multiple disciplines in order to perform effectively. With this in mind, the workshop’s keynotes bring
together researchers from theoretical linguistics, psychology, and computer science, all of whom have
expertise in humor theories. Among the questions raised in the keynotes are how elements of humor
theories can be incorporated into LLM-generated text, and whether LLMs can be used to test humor
theories.

Although we have chosen to name our event the “First” workshop for computational humor, we
must acknowledge the groundwork that has been laid by a number of previous gatherings. These
include the Twelfth Twente Workshop on Language Technology joint with the International Workshop
on Computational Humour (1996), the Twentieth Twente Workshop on Language Technology, titled
The April Fool’s Day Workshop On Computational Humour (2002), the 3rd International Workshop
on Computational Humor (2012), the 2012 AAAI Fall Symposium Artificial Intelligence of Humor
(2012), Dagstuhl Seminar 21362 on Structure and Learning (2021), and the annual panels on Humor
and Artificial Intelligence at the International Society of Humor Studies Conferences (2018–). These
meetings, sometimes limited to invited contributions, aimed to explore diverse goals, from assessing
how modeling humor could contribute to modeling intelligence, to the design of intelligent systems
capable of understanding the (theoretical) mechanisms of jokes and collaboratively contributing to their
generation. Like us, many of our invited speakers have participated in these previous meetings, making
them well positioned to provide insights into the progress and evolution of the field.

CHum 2025 received a total of 28 submissions, which is many more than we could accept for
presentation. In the end, we selected eleven papers that we felt most closely aligned with the workshop’s
interdisciplinary aims. Our selection includes work on advancing the state of the art is humor research
by applying current computational models and techniques, as well as more task-focused NLP papers that
apply techniques informed by existing humor research.

We would like to thank everyone who submitted a paper to the workshop, as well as the members of our
Program Committee for their timely and insightful reviews.

Christian F. Hempelmann, Julia Rayz, Tiansi Dong, and Tristan Miller January 2025

iii

Keynotes

How Many Stochastic Parrots Does it Take to Change a Lightbulb?
Salvatore Attardo, East Texas A&M University

Generally speaking the discussion of humor and AI has centered on questions such as “Does AI have a
sense of humor?” or “Does AI understand humor and/or chan it explain it?” or “Can AI produce humor?”
More pragmatic projects tend to focus on recognition: “Can AI identify humor/irony/puns/satire?” I find
these questions interesting, but up to a point. First, the seem all tinged, more or less consciously, to
what we could call the “anthropomorphic AI ideology”: the belief that AIs match/reflect/approximate
human intelligence and that humor is a folk-metric of performance, a sort of Humorous Turing test: if
AIs understand/produce humor then they are truly “human” (for some senses of “be” and “human” to be
specified). The character of Data in Star Trek: The Next Generation is the standard bearer for this set of
beliefs. Second, the idea, to which I shamefully contributed, that humor is “AI complete” and hence if
an AI “masters” humor it should thereby be an AGI (Artificial General Intelligence). Third, the current
wave of LLMs are essentially black boxes and it is unclear to what extent a black box model counts as
an explanation. Having managed to alienate the entire audience of the gathering, I will then proceed to
argue that LLMs provide us with an excellent implementation of Trier’s (1931) lexical field theory and
more broadly of the semantic network postulated by Fillmore, Raskin, Eco and many others. As such
they make some aspects of theories of humor testable in a new empirical way.

Unlocking the Punchline: Navigating Humor Computation From Understanding to Generation
and Beyond
Liang Yang, Dalian University of Technology

Significant progress has been made in the field of humor computation, including recognition and
generation. Despite its promising developments, several challenges still remain in the era of LLMs.
In this talk, I will present our recent efforts to address some of them. (1) For understanding, I will
discuss the understanding mechanism of large models for humor. (2) For generation, I will introduce
how large models generate specific types of humor by integrating humor theory. (3) Finally, I will share
our future exploration directions, such evaluation of sense of humor.

The Psychology of Computational Humor
Willibald Ruch, University of Zurich

This keynote will highlight what computational humor needs from research into the psychology of
humor, what psychology can gain from requirements and results in computational humor, and where
this underappreciated multidisciplinary symbiosis has (not) gone and needs to develop.

Get With The Program! From Talking the Talk to Walking the Walk in Computational Humour
Tony Veale, University College Dublin

LLM-based agents such as ChatGPT exhibit an amiable if superficial wit, and show a skilled ear for
mimicry that lets them capture the cadences and attitudes of famous comics. Their auto-regressive
generation of continuations to a given prompt makes them especially adept at using the “yes, and . . . ”
principle of improv comedy to wring laughs from silly premises. But jokes of the short and snappy
variety that are crafted to be retold in many different contexts require an LLM to do more than talk like
a comedian. The words and attitudes must be appropriate to a joke, and the text must actually work like
a joke too, with an effective logical mechanism that snaps shut on an audience like a mouse in a trap.
Although LLMs can do a surprisingly good job of analyzing and explaining jokes, they do a rather poor
job of turning this reactive appreciation into a proactive generative ability. In this talk I consider how we
might tackle this understanding vs. generating gap.

iv

Organizing Committee

Christian F. Hempelmann, East Texas A&M University
Julia Rayz, Purdue University
Tiansi Dong, Fraunhofer IAIS and University of Cambridge
Tristan Miller, University of Manitoba

Program Committee

Adam Jatowt, University of Innsbruck
Alessandro Valitutti, Phedes Lab
Anna Palmann, University of Amsterdam
Anne-Gwenn Bosser, École Nationale d’Ingénieurs de Brest
Bob Mankoff, CartoonCollections.com
Drew Gorenz, University of Southern California
Elena Mikhalkova, European University at Saint Petersburg
Heather Knight, Oregon State University
Joe Toplyn, Twenty Lane Media
Juliette Love, Google DeepMind
Kory Mathewson, Google DeepMind
Kristian Kersting, TU Darmstadt
Larry Lefkowitz, Working Knowledge LLC
Max Petrenko, Amazon
Nathaniel Laywine, York University
Ori Amir, University of Texas Permian Basin
Pelin Cunningham-Erdogdu, University of Texas at Austin
Piotr Mirowski, Google DeepMind
Rada Mihalcea, University of Michigan
Rey Alejandro Gonzalez, Purdue University
Sophie Jentzsch, German Aerospace Center (DLR)
Tatiana Ringenberg, Purdue University
Yi Zhang, Purdue University

v

Table of Contents

The Exception of Humor: Iconicity, Phonemic Surprisal, Memory Recall, and Emotional Associations
Alexander Kilpatrick and Maria Flaksman . 1

Text Is Not All You Need: Multimodal Prompting Helps LLMs Understand Humor
Ashwin Baluja .9

Rule-based Approaches to the Automatic Generation of Puns Based on Given Names in French
Mathieu Dehouck and Marine Delaborde . 18

Homophonic Pun Generation in Code Mixed Hindi English
Yash Raj Sarrof . 23

Bridging Laughter Across Languages: Generation of Hindi-English Code-mixed Puns
Likhith Asapu, Prashant Kodali, Ashna Dua, Kapil Rajesh Kavitha and Manish Shrivastava 32

Testing Humor Theory Using Word and Sentence Embeddings
Stephen Skalicky and Salvatore Attardo . 58

Pragmatic Metacognitive Prompting Improves LLM Performance on Sarcasm Detection
Joshua Lee, Wyatt Fong, Alexander Le, Sur Shah, Kevin Han and Kevin Zhu 63

Can AI Make Us Laugh? Comparing Jokes Generated by Witscript and a Human Expert
Joe Toplyn and Ori Amir . 71

Evaluating Human Perception and Bias in AI-Generated Humor
Narendra Nath Joshi . 79

The Theater Stage as Laboratory: Review of Real-Time Comedy LLM Systems for Live Performance
Piotr Mirowski, Kory Mathewson and Boyd Branch . 88

The Algorithm is the Message: Computing as a Humor-Generating Mode
Vittorio Marone . 96

vii

Workshop Program

08:45–09:00 Opening remarks
Christian F. Hempelmann, Julia Rayz, Tiansi Dong and Tristan Miller

Keynote 1

09:00–09:45 How Many Stochastic Parrots Does it Take to Change a Lightbulb?
Salvatore Attardo, East Texas A&M University

Paper session 1: Multimodal Pathways to Meaning and Memory

09:45–10:05 The Exception of Humor: Iconicity, Phonemic Surprisal, Memory Recall, and Emo-
tional Associations
Alexander Kilpatrick and Maria Flaksman

10:05–10:25 Text Is Not All You Need: Multimodal Prompting Helps LLMs Understand Humor
Ashwin Baluja

Keynote 2

11:00–11:45 Unlocking the Punchline: Navigating Humor Computation From Understanding to
Generation and Beyond
Liang Yang, Dalian University of Technology

Paper session 2: Algorithms and Frameworks for Pun Generation

11:45–12:05 Rule-based Approaches to the Automatic Generation of Puns Based on Given
Names in French
Mathieu Dehouck and Marine Delaborde

12:05–12:25 Homophonic Pun Generation in Code Mixed Hindi English
Yash Raj Sarrof

12:25–12:45 Bridging Laughter Across Languages: Generation of Hindi-English Code-mixed
Puns
Likhith Asapu, Prashant Kodali, Ashna Dua, Kapil Rajesh Kavitha and Manish
Shrivastava

ix

Keynote 3

13:30–14:15 The Psychology of Computational Humor
Willibald Ruch, University of Zurich

Paper session 3: Explorations in Semantics and Pragmatics

14:15–14:35 Testing Humor Theory Using Word and Sentence Embeddings
Stephen Skalicky and Salvatore Attardo

14:55–15:40 Pragmatic Metacognitive Prompting Improves LLM Performance on Sarcasm De-
tection
Joshua Lee, Wyatt Fong, Alexander Le, Sur Shah, Kevin Han and Kevin Zhu

Keynote 4

14:55–15:40 Get With The Program! From Talking the Talk to Walking the Walk in Computational
Humour
Tony Veale, University College Dublin

Paper session 4: Evaluating and Experiencing Generated Humor

16:10–16:30 Can AI Make Us Laugh? Comparing Jokes Generated by Witscript and a Human
Expert
Joe Toplyn and Ori Amir

16:30–16:50 Evaluating Human Perception and Bias in AI-Generated Humor
Narendra Nath Joshi

16:50–17:10 The Theater Stage as Laboratory: Review of Real-Time Comedy LLM Systems for
Live Performance
Piotr Mirowski, Kory Mathewson and Boyd Branch

17:10–17:30 The Algorithm is the Message: Computing as a Humor-Generating Mode
Vittorio Marone

17:30–17:40 Closing remarks
Christian F. Hempelmann, Julia Rayz, Tiansi Dong and Tristan Miller

x

xi

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 1–8
January 19, 2025. ©2025 Association for Computational Linguistics

Abstract

This meta-study explores the relationships

between humor, phonemic bigram

surprisal, emotional valence, and memory

recall. Prior research indicates that words

with higher phonemic surprisal are more

readily remembered, suggesting that

unpredictable phoneme sequences promote

long-term memory recall. Emotional

valence is another well-documented factor

influencing memory, with negative

experiences and stimuli typically being

remembered more easily than positive

ones. Building on existing findings, this

study highlights that words with negative

associations often exhibit greater surprisal

and are easier to recall. Humor, however,

presents an exception: while associated

with positive emotions, humorous words

also display heightened surprisal and

enhanced memorability.

1 Introduction

There are a number of factors that can influence the

memorability of events and stimuli. Two examples

of this are probability and emotional valence where
highly improbable events and stimuli are

remembered with greater clarity (e.g., Ranganath

& Rainer, 2003) as are those associated with

negative emotions (e.g., Kensinger, 2007). This
report documents a meta-study which explores

these effects by examining the relationship

between phonemic bigram surprisal, emotional
valence, and memory recall in American English

words. Specifically, it investigates whether

humorous words are more surprising and

memorable. The findings of this meta-study build
upon existing literature by demonstrating that

while negative emotional valence generally

enhances memory and increases phonological

surprisal, humor presents an exception. Despite its
positive emotional valence, humor is associated

with higher surprisal and recall accuracy. These

results provide deeper insights into the interplay
between phonological markedness, emotional

valence, and memory retention, suggesting that

humor may engage unique cognitive processes

compared to other emotions. It is important to note
that while there are various types of humor (for a

review and discussion on how deep learning

models might identify them, see Chen & Soo,
2018), the present study focuses on an experiment

by Engelthaler and Hills (2017), in which

participants rated words highly if they were
“amusing or likely to be associated with humorous

thought or language (e.g., absurd, amusing,

hilarious, playful, silly, whimsical, or laughable).”

Consequently, this study adopts a one-dimensional
perspective of humor as defined by those ratings.

The negativity bias, the tendency for negative

information to have a greater impact on memory
than positive information, plays a crucial role in

shaping how we recall emotional events. Negative

emotions are often remembered with greater

accuracy compared to positive or neutral ones (e.g.,
Baumeister et al., 2001; Rozin & Royzman, 2001;

LaBar & Cabeza, 2006), a phenomenon well-

documented in psychology and cognitive science.
This enhanced recall is primarily attributed to the

evolutionary function of negative emotions which

can signal potential threats. Learning to avoid

negative events is more evolutionarily beneficial
than engaging with positive events, leading

humans to be primed for remembering and learning

from negative experiences. Research by Kensinger
(2007) shows that negative emotional content

enhances memory retention by fostering greater

attentional focus during encoding and retrieval.

The Exception of Humor: Iconicity, Phonemic Surprisal,

Memory Recall, and Emotional Associations

Alexander Kilpatrick1 & Maria Flaksman2

1Nagoya University of Commerce and Business
2Otto-Friedrich University of Bamberg

1

Additionally, studies have found that negative

events are remembered more vividly due to their
emotional salience, resulting in more detailed and

accurate recollections (Phelps, 2004; LaBar &

Cabeza, 2006). This body of research underscores

the cognitive mechanisms behind the superior
recall of negative emotions, emphasizing their

significance in both personal memory and societal

perceptions (Rozin & Royzman, 2001).
Phonemic bigram surprisal, as utilized in this

study, is based on Shannon's (1948) Information

Theory, which quantifies the amount of

information expressed by communication systems.
In the context of this study, surprisal is calculated

as the negative logarithm (base 2) of the probability

of a particular phoneme occurring given the
preceding phoneme (P), returning a value in bits of

information. Phonemic bigram surprisal captures

how unexpected a bigram sequence is where

unpredictable bigrams carry more information than
predictable bigrams. Average surprisal for a word

is derived by summing the information for all

bigrams and dividing by the total number of
bigrams in the word.

 𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 = −𝑙𝑜𝑔2𝑃 (1)

Phonemic bigram surprisal has been shown to

influence memory recall, as evidenced in a study
examining iconicity and surprisal in linguistic

processing (Kilpatrick & Bundgaard-Nielsen,

2024). The study demonstrated that words with
high surprisal tend to be processed more slowly and

less accurately during perception but are more

memorable. However, iconic words—which were

already known to be easier to process and more
memorable (e.g., Sidhu, Vigliocco & Pexman,

2020; Sidhu, Khachatoorian & Vigliocco, 2023)—

exhibited higher average surprisal than arbitrary
words. Indeed, iconic words tend to evolve towards

phonemic predictability and arbitrariness over long

periods of time in different stages of de-iconization
(Flaksman, 2017). These stages exhibit a stochastic

relationship with surprisal whereby words in early,

highly iconic stages carry more surprisal than those

in later, more arbitrary stages (Flaksman &
Kilpatrick, In Press). This relationship between

memorability, surprisal and iconicity suggests that

while improbable phoneme combinations can
create a cognitive disadvantage during processing,

this increased effort ultimately enhances retention

in long-term memory.

It has also been shown that emotional valence is

reflected in phonemic bigram surprisal (Kilpatrick,
Under Review). Specifically, negative words are

composed of more surprising phoneme sequences,

which enhances their retention and suggests that

the negativity bias is encoded in languages. This
connection between phonemic structure and

emotional content provides valuable insights into

the cognitive mechanisms underlying memory
retention.

Phonemic surprisal could serve as an important

additional datapoint in machine learning

algorithms focused on emotion and sentiment
analysis. By quantifying the predictability of

phoneme sequences, phonemic surprisal offers

insights into how sound patterns might relate to
emotional valence in language. Current sentiment

analysis algorithms typically rely on lexical and

syntactic features, often overlooking the

phonological aspects that could improve model
accuracy. This position aligns with earlier research

(Kilpatrick, 2023) that explored the utility of iconic

associations between phonemes and various
emotions and sentiments. In that study, machine

learning algorithms were constructed to predict

emotions and sentiments using the phonemes in
each word. Model feature importance scores

revealed that, while it was difficult to distinguish

fine-grained emotional differences, general

positivity and negativity was stochastically
reflected in phonemes. Interestingly, the algorithms

constructed to predict negative emotions (Anger,

Disgust, Fear, Negative Valence, and Sadness)
performed better than those constructed to predict

positive emotions (Anticipation, Joy, Positive

Valence, Surprise, and Trust), suggesting that

iconic negative associations are more robustly
reflected in phonemes than positive associations.

Increased surprisal in iconic words represents a

form of phonological markedness that goes hand in
hand with other observed iconic markedness

strategies (Voeltz & Kilian-Hatz, 2001) including

the use of phonotactic violations (e.g., vroom

[vɹum]), non-native speech sounds (e.g., ugh [əx]),
gemination (e.g., GRRRR! [gr:]), or vowel

lengthening (e.g., WHAAT? [wæːt]). Dingemanse

and Thompson (2020) explore the relationship
between humor and markedness through the lens of

iconicity. They propose that structural markedness

is a key factor underlying perceptions of both
funniness and iconicity in words. Marked cues

function as metacommunicative signals, drawing

2

attention to words as playful and performative.

This research suggests that playful and poetic
elements are integral to the lexicon, highlighting

the intersection of humor and markedness in

language. In the context of the present study, this

suggests that words with humorous associations
should carry more information than those without.

Imitative words—particularly ideophones—are

expressive and more likely to violate phonological,
morphological and syntactic norms (Dingemanse,

2017 Dingemanse & Akita, 2017). As both

humorous and iconic words are related to

expressivity, this relationship is worth further
investigation which we attempt in the present

study. For example, we expect humorous words

like booby (M = 4.07), waddle (M = 4.05) or gaggle
(M = 3.82) to have higher average surprisal than

words like torture (M = 1.26), war (M = 1.34), or

casket (M = 1.38), where numbers in parentheses

represent humor Likert averages. However, this
prediction is at odds with the finding that words

with negative associations carry more information

because humor is typically associated with positive
valence. This study seeks to reconcile these

seemingly contradictory observations.

This study builds on prior research investigating
the relationship between phonemic surprisal,

emotional valence, and memory, with a particular

focus on how humor functions within this

framework. While previous findings have
highlighted the role of negativity bias in enhancing

memory recall (Kilpatrick, Under Review), humor

presents a unique case of a positive emotional
valence associated with high surprisal. By

examining words rated for their humor, we aim to

determine whether the cognitive mechanisms that

enhance memorability in negative valence also
apply to humor, and how these effects differ

between iconic and non-iconic words.

2 Method

Data here: https://shorturl.at/2SXvO. Phonemic

bigram surprisal was calculated by cross-

referencing the SUBLEX-US corpus (Brysbaert &
New, 2009) with the CMU Pronouncing Dictionary

(Weide, 1999) to obtain phonemic transcriptions

and frequencies. A more detailed explanation of
this process is provided in the above link. This

combined dataset was then cross-referenced with

existing datasets to provide morpheme counts
(Sánchez-Gutiérrez, 2018) and parts of speech

(Brysbaert, New, & Keuleers, 2012) because

number of morphemes and word classification

have been shown to influence surprisal (Kilpatrick
& Bundgaard-Nielsen, 2024). Iconicity ratings

were obtained from an existing experiment (Winter

et al., 2023) where American English speakers

were asked to provide Likert scale ratings to words
according to how much they “sound like” their

meaning. The memory recall data comes from a

pre-existing psycholinguistic experiment (Cortese,
Khanna, & Hacker, 2010) which involved the

training of 120 undergraduate students on a list of

words in one experimental session and the testing

of their recall accuracy in a second session within
the same week.

This study draws from three existing

experiments for the emotion data. Firstly, there are
ten emotions—Anger, Anticipation, Disgust, Fear,

Joy, Negative, Positive, Sadness, Surprise, and

Trust—taken from the NRC Emotion Lexicon

(Mohammad & Turney, 2013) where American
English-speaking participants were asked to

provide binary responses to words according to

whether they associate each word with a particular
emotion. The NRC_Valence (Mohammad &

Turney, 2013) variable also comes from the NRC

emotion lexicon while G_Valence (Scott et al.,
2019) comes from the Glasgow Norms which was

collected from English speaking participants in

Scottland and is included to explore potential

crossover into other variants of English. Lastly, the
Humor variable comes from an online study

(Engelthaler & Hills, 2018) where English-

speaking participants were asked to rate how
humorous words are on a 5-point Likert scale. In

that study, participants were asked to rank words

where at one end of the scale, words are “dull or

unfunny” and at the other, “absurd, amusing,
hilarious, playful, silly, whimsical, or laughable”

(Engelthaler & Hills, 2018). The original study

made no distinction between different types of
humor and there is no way to disentangle

differences between, irony, sarcasm, dark humor,

or wordplay. No samples were excluded from the

models except in the case of missing data. That is,
words like glimmer, whisper, and crunch, are

iconic, but are not particularly humorous nor are

they seemingly associated with emotional valence.
Despite not carrying said associations, they were

included in the following analyses.

3

The emotional response variables are measured

using three distinct types of scales. For emotions
from the NRC emotion lexicon, such as Fear,

responses are measured on a binary scale, where

participants rate the presence or absence of a single

emotion from 0 (neutral) to 1 (fearful). On the other
hand, the humor dataset presents a one-tailed

continuous scale represented by averages of Likert

responses from 1 (neutral) to 5 (humorous). Lastly,
the valence variables are assessed on a two-tailed

scale, where ratings range from 1 (negative) to 7

(positive), with 4 representing a neutral emotional

state. This scale accounts for both positive and
negative valence, capturing a bidirectional

emotional response. That noted, there is

undoubtedly some measure of bidirectionality in
other variables, particularly the Negative and

Positive variables from the NRC emotion lexicon.

This data is used in two series of multiple linear

regression models. The first series is designed to
explore the relationship between emotions—which

are included as the dependent variables—and

average bigram surprisal (Average_Surprisal)
which is included alongside iconicity ratings

(Iconicity_Rating), phonemic length

(Phoneme_Length), morphemic length
(Morpheme_Length), and parts of speech (PoS)

categories. Here, we predict that those emotions

associated with positivity (e.g., Anticipation, Joy,

Positive, Surprisal, and Trust) will carry less
information than those associated with negativity

(e.g., Anger, Disgust, Fear, Negative, and Sadness).

We predict that this pattern will be exhibited more
robustly in the Valence variables due to their bi-

directional nature. Humor--or at least words

assigned high humor ratings in Engelthaler & Hills,

(2018)—is predicted to carry more information
despite being typically associated with positivity.

In the second series of models, the emotion

variables are included as independent variables,
and the results of the memory recall experiment are

included as the dependent variables. Here, we

predict that same pattern whereby negative

emotions will exhibit a positive correlation with
memory recall, even when average bigram

surprisal is taken into consideration. Again, we

expect Humor to buck this trend and exhibit an
increased memory recall accuracy.

3 Results

Firstly, to test the assumption that humor has a

generally positive association, we ran two simple

linear regression analyses, using Humor ratings

(Engelthaler & Hills, 2018) as the dependent
variable and valence ratings (NRC_Valence and

G_Valence) as the predictor variables. In both

models, valence was a significant predictor of

humor, indicating a positive correlation between
Humor and positive valence (p < 0.001 in both

models).

Two models were constructed using the two-
tailed valence variables from the NRC emotion

lexicon and the Glasgow norms (Table 1) as

dependent variables. Both exhibited a significant

negative effect of both average surprisal and
iconicity ratings revealing that negative valence is

associated with both increased surprisal and

iconicity. In other words, words associated with
negative valence are made up of more

unpredictable bigrams and negative valence is

more robustly expressed than positive valence in

iconic associations.
Following this, a series of multiple linear

regression models were constructed using the one-

tailed emotion variables from the NRC emotion
lexicon (Table 2) as dependent variables. These

models show a general trend whereby negative

emotions carry more average surprisal. Important
to note here is that this was only significant with

Disgust, which exhibited a significant positive

correlation, and Anticipation and Joy which

exhibited significant negative correlations. Almost

Variable G_Valence NRC_Valence

(Intercept) 28.03*** 37.22***

Average_Surprisal -2.11* -4.51***

Iconicity_Rating -5.32*** -10.31***

Phoneme_Length 0.37 -0.18

Morpheme_Length 1.31 -1.24

PoS_Adverb 1.61 2.89**

PoS_Determiner 0.41 0.029

PoS_Interjection -0.05 0.87

PoS_Name -0.18 2.40*

PoS_Noun 1.70 5.37***

PoS_Number 1.337 0.904
PoS_Preposition -0.22 0.45

PoS_Pronoun 0.45 1.54

PoS_Unclassified 0.28 0.14

PoS_Verb -1.48 0.74

Table 1: Results of the two valence models.

Asterisks denote significance (* p < 0.05, ** p <

0.01, *** p < 0.001).

4

all variables demonstrated a positive correlation

with iconicity ratings except for Anticipation

which was not significant and Positive which

revealed a significant negative relationship with
iconicity ratings.

Humor was also tested as a dependent variable

(Table 3). Despite being associated with positive
valence, it exhibited a significant positive

relationship with average surprisal. Humor was

also found to be a significant predictor of iconicity

ratings where high humor ratings correlated with
high iconicity. In another way, words associated

with humor like oomph (Humor = 3.93; Average

Surprisal = 6.26; Iconicity = 6.92) are made up of
unpredictable bigrams and are iconic while words

that are not associated with humor like cancer

(Humor = 1.46; Average Surprisal = 3.62; Iconicity

= 2.83) are less surprising and less iconic.

All models thus far were then reconstructed
except the emotions were included as an

independent variable and the dependent variable

for each model was the memory recall accuracy

results. First, we reconstructed the valence models
(Table 4) and found that negative valence was

associated with improved memory recall; however,

this relationship was only significant in the NRC
emotion lexicon model (p < 0.001). For both

models, increased average surprisal was associated

with increased memory recall.

The pattern between negative valence and
memory recall was also exhibited in the models

constructed using the NRC emotion lexicon

emotions (Table 5). Here, Disgust, Fear, and
Negative were significant predictors of increased

memory recall while a significant negative

correlation was observed between positive

Variable Humor

(Intercept) 38.202***

Average_Surprisal 3.125**

Iconicity_Rating 18.006***

Phoneme_Length -1.368

Morpheme_Length -6.374***

PoS_Adverb -0.813

PoS_Interjection 1.497

PoS_Name -0.768

PoS_Noun 2.449*

PoS_Number -1.823

PoS_Preposition 0.593

PoS_Verb -1.386

Table 3: Results of the humor model. Asterisks denote

significance (* p < 0.05, ** p < 0.01, *** p < 0.001).

Variable G_Valence NRC_Valence

(Intercept) 29.581*** 15.168***

Valence -1.009 -5.154***

Average_Surprisal 4.899*** 7.098***

Iconicity_Rating 1.707 2.582**

Phoneme_Length -2.833** -2.645**

Morpheme_Length -2.345* -3.637***

PoS_Adverb -0.347 -0.973

PoS_Interjection 0.371

PoS_Name 2.581** 2.64**

PoS_Noun 6.666*** 5.657***

PoS_Number -1.774 0.481

PoS_Preposition -0.936 -1.034

PoS_Verb -7.083*** -10.398***

Table 4: Results of the two memory/valence models.

Asterisks denote significance (* p < 0.05, ** p < 0.01,

*** p < 0.001).

 Negative Emotions Positive Emotions

 Anger Disgust Fear Negative Sadness Anticipation Joy Positive Surprise Trust

(Intercept) -1.305 0.043 -0.909 0.251 0.447 3.298*** 2.718** 7.781*** -2.732** 6.267***

Average_Surprisal 0.247 2.574* -0.69 1.543 0.085 -3.029** -1.989* -1.926 0.902 -1.523

Iconicity_Rating 6.495*** 5.499*** 7.169*** 9.963*** 4.062*** 0.804 2.749** -3.43*** 6.431*** -5.886***

Phoneme_Length 3.181** 1.416 2.593** 2.911** 1.057 1.277 1.679. 4.395*** 3.436*** 2.854**

Morpheme_Length 0.685 0.347 0.611 1.847. 3.142** 0.668 -0.689 0.481 -1.399 0.179

PoS_Adverb -2.606** -2.539* -2.148* -3.869*** -1.294 -0.019 -0.759 -1.353 1.132 -0.989

PoS_Determiner -0.301 -0.441 -0.312 -0.696 -0.335 -0.23 -0.306 -0.533 -0.163 -0.255

PoS_Interjection -1.391 -0.893 -1.393 -0.197 -1.367 0.586 -1.012 0.149 0.469 -0.384

PoS_Name -1.45 -2.683** -0.18 -3.909*** -1.657. -0.553 -0.442 -1.651. -1.444 0.257

PoS_Noun -2.205* -7.132*** 0.745 -9.067*** -3.462*** 0.378 -3.275** -7.027*** 0.176 0.556

PoS_Number -1.163 -1.621 -1.15 -2.623** -1.398 -0.918 -1.1 -2.278* -0.54 -1.213

PoS_Preposition 0.798 -1.517 -1.112 -1.118 -1.288 -0.881 -1.065 -0.708 -0.577 -1.192

PoS_Pronoun -0.414 -0.554 -0.431 -0.917 -0.455 -0.39 -0.469 -0.879 -0.212 -0.477

PoS_Unclassified -0.55 -0.792 1.645 -1.212 -0.555 2.488* -0.433 1.228 -0.368 -0.188

PoS_Verb 1.704. -6.244*** -0.269 -3.253** -1.014 2.619** -1.759. -4.875*** 1.616 1.242

Table 2: Results of the models run using the one-tailed NRC emotion variables. Asterisks denote significance (*

p < 0.05, ** p < 0.01, *** p < 0.001).

5

emotions, Anticipation, Positive, and Surprise. In

all models, high average surprisal was a significant
predictor of high memory accuracy.

Lastly, the humor model was reconstructed

(Table 6). It revealed that humor follows the same

pattern as negative emotions, where words

associated with humor are recalled with greater

accuracy than humorless words.

4 Discussion

In this study, we explore the hypothesis that humor
may be linked to high phonemic bigram surprisal

and improved memory recall. High phonemic

bigram surprisal, plays a role in cognitive
processing (Kilpatrick and Bundgaard-Nielsen,

2024) where words with higher surprisal are more

difficult to process but also more likely to be

recalled in memory tasks. Negatively valanced
words are both more surprising and more

memorable (Kilpatrick, Under Review),

suggesting that the negativity bias is encoded in

language. Humorous words follow this exact trend
despite being—at least stochastically—associated

with positive valence. In the present study, we

explored this contradiction and seek to explain why

humorous words behave like negative words
despite being generally positive.

 The findings that humor follows the same patterns

as negative valence suggests that humor may
exploit similar cognitive mechanisms. Just as

negative stimuli demand attention and leave a

lasting impression, humor, which often subverts

expectations or highlights absurdities, may trigger
heightened cognitive engagement through surprise

or incongruity. While both humor and negativity

utilize elements of unpredictability, humor
diverges in its social function. Suls’s Two-Stage

Model (1972) for the Appreciation of Jokes

provides a useful framework for understanding

this. In the first stage, the punch line of a joke is
surprising, incongruous, and may be perceived as

threatening due to its unexpected nature, eliciting a

response akin to the cognitive engagement seen
with negative stimuli. In the second stage, the

listener resolves the incongruity, leading to a sense

of relief and the recognition of humor, which
ultimately results in a positive emotional response.

This aligns with our findings that humor, while

engaging cognitive processes similar to those of

negative stimuli, also embodies a transition from
initial surprise to positive social outcomes, such as

connection and bonding. Unlike negative stimuli,

which may trigger responses tied to alertness or
threat, humor’s playful disruption fosters a social

and positive emotional environment.

Dingemanse and Thompson's (2020) work

further illuminates these dynamics, proposing that
structural markedness, including phonological

markedness, underpins perceptions of both humor

Variable Humor

(Intercept) 15.168***

Humor 17.628***

Average_Surprisal 5.371***

Iconicity_Rating -4.625***

Phoneme_Length -2.203*

Morpheme_Length -1.402

PoS_Adverb -1.949.

PoS_Interjection -0.053

PoS_Name 1.872.

PoS_Noun 3.563***

PoS_Number 1.474

PoS_Preposition -1.437

PoS_Verb -5.353***

Table 6: Results of the humor model. Asterisks denote

significance (* p < 0.05, ** p < 0.01, *** p < 0.001).

 Negative Emotions Positive Emotions

 Anger Disgust Fear Negative Sadness Anticipation Joy Positive Surprise Trust

(Intercept) 29.556*** 29.71*** 29.569*** 29.615*** 29.511*** 29.662*** 29.442*** 29.697*** 29.515*** 29.444***

Emotion 1.348 5.729*** 1.392 3.346*** 2.074* -2.787** 0.887 -2.842** -2.282* -0.578

Average_Surprisal 5.495*** 5.191*** 5.464*** 5.377*** 5.503*** 5.436*** 5.505*** 5.489*** 5.526*** 5.485***

Iconicity_Rating 2.098* 1.832. 2.083* 1.71. 2.107* 2.154* 2.214* 2.017* 2.357* 2.131*

Phoneme_Length -3.801*** -3.946*** -3.832*** -3.926*** -3.812*** -3.753*** -3.754*** -3.631*** -3.656*** -3.734***

Morpheme_Length -4.209*** -4.108*** -4.199*** -4.149*** -4.214*** -4.19*** -4.197*** -4.247*** -4.293*** -4.228***

PoS_Adverb -1.699. -1.661. -1.7. -1.657. -1.688. -1.607 -1.741. -1.665. -1.719. -1.689.

PoS_Interjection 0.251 0.305 0.252 0.174 0.259 0.23 0.245 0.221 0.394 0.241

PoS_Name 2.084* 2.162* 2.027* 2.165* 2.133* 2.078* 2.084* 2.002* 2.095* 2.077*

PoS_Noun 2.15* 2.555* 2.121* 2.467* 2.258* 2.09* 2.174* 1.895. 2.09* 2.133*

PoS_Number 0.009 0.063 0.009 0.056 0.021 -0.018 0.009 -0.045 -0.01 -0.004

PoS_Verb -10.183 -9.798*** -10.165 -9.975*** -10.092*** -10.087*** -10.146*** -10.297*** -10.14*** -10.136

Table 5: Results of the models run using the memory recall results and the one-tailed NRC emotion variables. Asterisks

denote significance (* p < 0.05, ** p < 0.01, *** p < 0.001).

6

and iconicity. This aligns with our findings that

humor and negative valence share cognitive
engagement mechanisms, suggesting that both

types of words are marked in ways that enhance

memorability. Playful and performative elements

like increased surprisal or other markedness
strategies inherent in humorous language may

interact with the cognitive mechanisms associated

with negativity bias, drawing attention to their
phonological structure and making them more

memorable. Surprisal serves as an objective

measure of phonological markedness by

quantifying the predictability of linguistic units
based on their transitional probabilities within a

given context. Unlike subjective judgments that

can vary among speakers or listeners, surprisal
provides a statistical framework for assessing the

complexity of markedness in iconic words. Words

or sounds that exhibit higher surprisal values are

often those that are less predictable, indicating a
higher degree of markedness. This objective

measure allows researchers to analyze the

cognitive processing of language without relying
on potentially biased human assessments. In the

context of humor and sentiment analysis, surprisal

might play a role in detecting subtle shifts in
emotional and cognitive states, such as humor or

irony, which often elude traditional sentiment

analysis models. By incorporating surprisal, humor

models can better capture deviations from
predictability, signaling the incongruity and

surprise inherent in humor. Integrating

phonological surprisal with existing humor-
processing frameworks may lead to more

sophisticated models that account for the context-

dependent nature of humor, paving the way for

more nuanced and context-aware humor analysis.

Future research should investigate languages

other than American English which might reveal

cross-linguistic patterns. If the patterns observed in
this study are observed in other languages, then this

would suggest that they are innate, rather than

cultural, further enhancing our understanding of

the interplay between language, emotion, and
cognitive processing. Another direction of research

is differentiating different types of humor: (1)

humor based on use of highly colloquial language
highly saturated with iconic words (as words from

the original study of Engelthaler & Hills (2018), (2)

farcial humor or comedy of situation (e.g.,
Shakespeare’s Much Ado about Nothing) where

ridiculous dramatic situations fall into category of

“highly improbable events” discussed in

Ranganath & Rainer (2003), or (3) dark humor and
sarcasm (which is a mixture of negativity (see

above) and low probability, both of which should,

theoretically, increase memorability.

In conclusion, our findings suggest that
negativity bias is reflected in the phonological

surprisal of words, with negatively valenced words

comprising more improbable sequences of sounds
and demonstrating greater memorability.

Interestingly, humor subverts this trend, exhibiting

both increased surprisal and memorability,

highlighting its unique role in language.

Acknowledgments

We wish to thank the researchers who made their
data publicly available so that we could conduct

this analysis. This project was funded by the Japan

Society for the Promotion of Science (#

20K13055).

References

Baumeister, R. F., Bratslavsky, E., Finkenauer, C., &

Vohs, K. D. 2001. Bad is stronger than good.

Review of general psychology, 5(4), 323-370.

Brysbaert, M., & New, B. 2009. Moving beyond

Kučera and Francis: A critical evaluation of current

word frequency norms and the introduction of a

new and improved word frequency measure for

American English. Behavior Research Methods,

41(4):977-990.

Brysbaert, M., New, B., & Keuleers, E. 2012. Adding

part-of-speech information to the SUBTLEX-US

word frequencies. Behavior Research Methods,

44:991-997.

Chen, P. Y., & Soo, V. W. 2018. Humor recognition

using deep learning. In Proceedings of the 2018

conference of the North American chapter of the

association for computational linguistics: Human

language technologies, 2, 113-117.

Cortese, M. J., Khanna, M. M., & Hacker, S. 2010.

Recognition memory for 2,578 monosyllabic

words. Memory, 18(6), 595-609.

Dingemanse, M. 2017. Expressiveness and system

integration: On the typology of ideophones, with

special reference to Siwu. In STUF. Language

Typology and Universals 70(2). 363–384.

Dingemanse, M. & Akita, K. 2017. An inverse relation

between expressiveness and grammatical

integration: on the morphosyntactic typology of

7

ideophones, with special reference to Japanese.

Journal of Linguistics, 53(3). 501–532.

Dingemanse, M., & Thompson, B. 2020. The playful

nature of language: Humor, iconicity, and structural

markedness. Language, Cognition and

Neuroscience, 35(9), 1133-1150.

https://doi.org/10.1080/23273798.2020.1752716.

Engelthaler, T., & Hills, T. T. 2018. Humor norms for

4,997 English words. Behavior research methods,

50, 1116-1124.

Flaksman, M. 2017. Iconic treadmill hypothesis: the

reasons behind continuous onomatopoeic coinage.

In M. Bauer, Angelika Zirker, Olga Fischer, and

Christine Ljungberg (eds.) Dimensions of Iconicity

[Iconicity in Language and Literature 15]. 15–38.

Amsterdam: John Benjamins.

Flaksman. M. & Kilpatrick, A. In Press. Against the

tide: How language-specificity of imitative words

increases with time (as evidenced by Surprisal). In

M. Flaksman and P. Akumbu (eds.) SKASE Journal

of Theoretical Linguistics.

Kensinger, E. A. 2007. Negative emotion enhances

memory accuracy: Behavioral and neuroimaging

evidence. Current Directions in Psychological

Science, 16(4):213-218.

Kilpatrick, A. (2023). Sound Symbolism in Automatic

Emotion Recognition and Sentiment Analysis. In P.

L. Villagrá, & X. Li (Eds.), Proceedings of the

International Workshop on Cognitive AI 2023 co-

located with the 3rd International Conference on

Learning & Reasoning.

Kilpatrick, A. (Under Review). The Negativity Bias is

Encoded in Language.

Kilpatrick, A. & Bundgaard-Nielsen R, L. (2024).

Decoding Informativity and Iconicity in American

English. Proceedings of the 19th Australasian

International Conference on Speech Science and

Technology.

LaBar, K. S., & Cabeza, R. 2006. Cognitive

neuroscience of emotional memory. Nature

Reviews Neuroscience, 7(1), 54-64.

https://doi.org/10.1038/nrn1825.

Mohammad, S. M., & Turney, P. D. 2013. NRC

emotion lexicon. National Research Council,

Canada, 2, 234.

Phelps, E. A. 2004. Human emotion and memory:

Interactions of the amygdala and hippocampal

complex. Current Directions in Psychological

Science, 13(3), 102-105.

https://doi.org/10.1111/j.0963-7214.2004.00293.x.

Ranganath, C., & Rainer, G. 2003. Neural mechanisms

for detecting and remembering novel events.

Nature Reviews Neuroscience, 4(3):193-202.

https://doi.org/10.1038/nrn1052.

Rozin, P., & Royzman, E. B. 2001. Negativity bias,

negativity dominance, and contagion. Personality

and Social Psychology Review, 5(4), 296-320.

https://doi.org/10.1207/S15327957PSPR0504_2.

Sánchez-Gutiérrez, C. H., et al. 2018. MorphoLex: A

derivational morphological database for 70,000

English words. Behavior Research Methods,

50:1568-1580.

Scott, G. G., Keitel, A., Becirspahic, M., Yao, B., &

Sereno, S. C. 2019. The Glasgow Norms: Ratings

of 5,500 words on nine scales. Behavior Research

Methods, 51, 1258-1270.

Shannon, C. E. 1948. A mathematical theory of

communication. Bell System Technical Journal,

27(3), 379-423.

Sidhu, D. M., Vigliocco, G., & Pexman, P. M. 2020.

Effects of iconicity in lexical decision. Language

and cognition, 12(1), 164-181.

Sidhu, D. M., Khachatoorian, N., & Vigliocco, G.

2023. Effects of Iconicity in Recognition Memory.

Cognitive Science, 47(11), e13382.

Suls, J. M. 1972. A two-stage model for the

appreciation of jokes and cartoons: An information-

processing analysis. The psychology of humor:

Theoretical perspectives and empirical issues, 1,

81-100.

Voeltz, F. F., & Kilian-Hatz, M. (Eds.). 2001.

Ideophones. John Benjamins Publishing Company.

https://doi.org/10.1075/tsl.45.

Weide, R. 1998. The Carnegie Mellon pronouncing

dictionary. Release 0.6.

Winter, B., et al. 2023. Iconicity ratings for 14,000+

English words. Behavior Research Methods, 1-16.

8

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 9–17
January 19, 2025. ©2025 Association for Computational Linguistics

Text Is Not All You Need:
Multimodal Prompting Helps LLMs Understand Humor

Ashwin Baluja
Northwestern University

baluja@u.northwestern.edu

Abstract

While Large Language Models (LLMs) have
demonstrated impressive natural language un-
derstanding capabilities across various text-
based tasks, understanding humor has remained
a persistent challenge. Humor is frequently
multimodal, relying not only on the meaning
of the words, but also their pronunciations, and
even the speaker’s intonations. In this study,
we explore a simple multimodal prompting ap-
proach to humor understanding and explana-
tion. We present an LLM with both the text and
the spoken form of a joke, generated using an
off-the-shelf text-to-speech (TTS) system. Us-
ing multimodal cues improves the explanations
of humor compared to textual prompts across
all tested datasets.

1 Introduction

Despite remarkable advances in Natural Language
Processing, particularly with Large Language Mod-
els (LLMs), the computational understanding of
humor remains an elusive goal. Humor operates on
multiple levels simultaneously, drawing on cultural
context, current events, common sense, phonetic
nuances, and rhythm to evoke a comedic response
(Bucaria, 2004; Attardo and Pickering, 2011; War-
ren et al., 2021). Recent studies have focused on
analyzing the performance of large language mod-
els for understanding cultural norms (Hendrycks
et al., 2021a,b), knowledge of current events (White
et al., 2024), and common sense reasoning (Zellers
et al., 2019; Shao et al., 2024). Yet, the unique
challenge posed by computational humor, requir-
ing a combination of all these tasks and information
often conveyed through audio, has received com-
paratively little attention.

A fundamental aspect of verbal humor, particu-
larly evident in puns, lies in linguistic ambiguity.
Puns rely on homographs (words that are spelled
identically with different meanings) and hetero-
graphs (words that are spelled differently but pro-

nounced the same) (Miller et al., 2017). Traditional
text-based LLMs, constrained by their token-based
processing architecture, struggle to capture these
subtle linguistic features that yield essential clues
into understanding a joke’s underlying mechanics.

Our approach builds on prior research into hu-
mor understanding abilities present in LLMs (Xu
et al., 2024) and demonstrates significant improve-
ments over baseline textual prompting strategies for
humor explanation. Our analysis examines both
macro-level performance across humor datasets
and micro-level effects through investigation of the
model’s internal representations and effects of text-
to-speech (TTS) parameters.

2 Related Work

LLM-based humor classification. In Wu et al.
2024, pre-trained language models, from early
BERT-like models to modern LLMs like LLaMa-
3, were fine-tuned or prompted using Chain-of-
Thought (CoT) and few-shot strategies for humor
classification. Similarly, in Xu et al. 2024, CoT and
few-shot example prompting were used for punch-
line detection and humor explanation. In both, hu-
mor specific examples for fine-tuning proved bene-
ficial for humor understanding.
Fused multimodality features. Most directly re-
lated to our work, several studies have developed
multimodal features for humor detection (Hasan
et al., 2021; Aggarwal et al., 2023). Each has im-
proved the performance of their task by incorpo-
rating non-text information into a fused represen-
tation, validating the importance of other multiple
modalities. In contrast to our approach, these stud-
ies were conducted using BERT-like models and
required training from scratch. We propose a sim-
pler approach that does not require training and is
fully compatible with pre-trained LLMs.
Training on paired modality datasets. In do-
mains outside of humor, copious research has been

9

Figure 1: Multimodal prompting strategy overview. Left - separate text and audio explanations are generated, then
aggregated. Right - combined text and audio are processed together for a single explanation. Aggregation refers to
prompting intended to ensure a coherent output that does not represent the multiple input modalities.

conducted using datasets with multiple representa-
tions of the same items. These have been critical to
the creation of multimodal language models. For
example, LLaVa, a vision+language model, used
detailed captions of images to generate question
and response pairs from a language-only LLM in
order to train a vision-adapter (Liu et al., 2023).

3 Methods

We propose using multimodal (text + audio)
prompts and audio synthesis to improve a model’s
ability to capture the phonetic elements essential
to understanding humor, specifically puns. The
framework, shown in Figure 1, has two key compo-
nents: generating audio from text and a prompting
strategy that combines both the audio and text into
a single prompt.

3.1 Audio generation

The most effective comedians rely on not only their
material but also on carefully controlled and exag-
gerated cadence changes, volume and tonality of
their words, as well as myriad more nuanced fea-
tures. For replicability and breadth of trials, we use
a simple, reproducible approach: text-based jokes
are first converted into audio using OpenAI’s tts-
1-hd, an off-the-shelf text-to-speech (TTS) model.
This procedure is broadly applicable and does not
require existing audio datasets or the collection
of human speech. This method will be directly
compared to only using text-based prompting on
a diverse set of large data sets. Note that no addi-
tional ground-truth information (e.g., emphasis or
timing), is provided to the LLM.

3.2 Prompt configuration

Each prompt is composed of general task defini-
tions, chain-of-thought reasoning prompting, exam-
ples (for few-shot, in-context learning), and both
input modalities (Fig 2).
Definitions and Instructions: Each prompt begins
with a concise definition of puns versus non-puns,

accompanied by instructions for humor detection.
The instructions request that the model identify
whether the input is a pun or not. We explicitly did
not ask for an explanation at this point; Xu et al.
2024 found this helps reduce hallucinated evidence
of non-existent puns.
Few-Shot Examples and chain-of-thought: Each
prompt includes examples; this improved perfor-
mance (Brown et al., 2020). As suggested by
(Xu et al., 2024), each example included chain-
of-thought reasoning along with the detection re-
sult. In total, each prompt included six examples of
pun explanation pairs, including both homographic
and heterographic puns, selected from each dataset
tested. Including few-shot examples also ensured
a consistent output tone, making the results more
directly comparable with ground-truth human pro-
vided explanations.

To obtain an explanation of what makes the joke
funny and why, we use prompts that encourage
chain-of-thought reasoning (Xu et al., 2024). In
this configuration, the reasoning for why a pun
was detected as a pun or non-pun is used directly
as the explanation. This format guides the model
to accurately understand the task while avoiding
biasing it towards interpreting the input as a pun.
Multimodal Aggregation: In our multimodal
setup, both text and audio are provided to the LLM.
Two approaches were tested. First, to mitigate the
chances of the LLM exclusively using either the
text or the audio, we ran two parallel explanation
processes. Each only had access to a single modal-
ity. Then, an aggregation prompting step was run,
combining the two outputs into the final, single,
output (Figure 1-Left).

Second, we provided both the audio and text to
the model within a single prompt (Figure 1-Right).
In both setups, the prompt was carefully crafted to
instruct the LLM to actively avoid discussing the
source modality that it used to answer. This was
required as the target explanations in the datasets
do not have any reference to modality (as they only

10

Figure 2: Multimodal prompting strategy where the
LLM has both audio and text passed in at once.

had text). We found that the latter method out-
performed the first; it will be used going forward.
More details are in the ablation experiments.

4 Experimental Setup

4.1 Datasets

We evaluate our multimodal prompting approach
using three datasets.
SemEval 2017 Task 7: This set contains 810 & 647
puns (homographic & heterographic), and 1077
non-puns. It contains human annotations: noting
the pun-word and the spelling or definition of the
pun-word in both interpretations of the pun. Addi-
tionally, this set contains human explanations: each
pun has a human-provided, sentence-form explana-
tion (Miller et al., 2017).
Context-Situated Puns: This consists of 821 &
1739 puns (homographic & heterographic) with hu-
man annotations (Sun et al., 2022). It has the same
pun-word and spelling/definition annotations as Se-
mEval. It does not contain human explanations.
ExplainTheJoke: This broad collection of jokes
was scraped from the ExplainTheJoke.com web-
site, containing 350 jokes. This dataset does
not have human annotations. Instead, each entry
has human explanations in paragraph-form, which
themselves have high variability in style, length,
quality and accuracy (theblackcat102).

4.2 Models

For generating explanations, we utilized Gemini-
1.5-Flash (Gemini Team, 2024). At the time of the
study, only the Gemini family of models offered
API-based audio input, and Gemini-1.5-Flash of-
fered the best balance between performance and
affordability. This allowed us to effectively lever-
age the multimodal prompts central to our study,
ensuring that the model could process auditory cues

alongside textual data.
To avoid human biases in evaluating the qual-

ity of the generated free-form text explanations, a
separate LLM was used. Recently, using LLMs
as judges have been assessed favorably (Zheng
et al., 2024). Further, the presence of structured
annotations for both pun datasets gave the judge
ground-truth, so that it did not rely on its own un-
derstanding of the joke; details are provided in the
next section.

We chose GPT-4o (OpenAI, 2024) as the judge.
We did not use Gemini-1.5-Flash or Gemini-1.5-
Pro to avoid potential biases from using the same
model family for generation and evaluation. Addi-
tionally, at the time of our research, GPT-4o was the
strongest available model (Chiang et al., 2024).1

5 Results

We present our results on the three datasets. Inter-
estingly, there is a wide disparity in the understand-
ing and detection of humor using LLMs. While
previous studies have shown close to saturated re-
sults in the simpler problem of detecting humor (Xu
et al., 2024), an LLMs explanation of the humor
is often incorrect. Our results demonstrate the im-
provements in understanding that are possible with
multimodal inputs.

5.1 SemEval

To evaluate our system, Gemini-1.5-Flash’s gen-
erated explanation for each pun was paired with
the human-provided explanations from the dataset.
The judge, GPT-4o, was then asked to output
whether explanation 1 was better than explanation
2, explanation 2 was better than explanation 1, or
whether both explanations were of equal quality.
The full judging prompt is included in Appendix
A.1.2. This process was repeated twice - once
for baseline textual prompting, and once for mul-
timodal prompting, where the LLM was provided
with both the text and audio. The judge was pro-
vided with the annotations each time, ensuring that
the judgement considered the ground truth meaning.
Win rate is reported as percent of times the model’s
explanation was preferred over the human’s.

1The final score was based on pairwise comparisons of
each test sample. However, LLM-as-a-judge has been found
to have strong positional bias, a priori preferring the first
element in each pair. To account for this, we run pairwise
comparison twice, swapping the order of each pair. Final win
rates are determined by averaging swapped and un-swapped
win rates (Zheng et al., 2024; Wang et al., 2024).

11

Heterograph Homograph
Win % Tie % Win % Tie %

Baseline 47.76 5.64 68.89 8.40
with audio 51.74 4.56 72.59 6.36

Table 1: Results for SemEval comparing baseline and
multimodal prompting vs. human explanations.

Table 1 shows that incorporating audio signifi-
cantly improves performance over baseline across
both homographs and heterographs. Performance
increased in both by approximately 4%.

5.2 Context-Situated Puns

Unlike the previous dataset, with no human expla-
nations available, we cannot compare each LLM
output to a human baseline. Instead, we compare
the LLM outputs (created with and without audio
input) directly with each other. To ensure that the
judge-LLM is given the correct context, the anno-
tations that were provided in the dataset are also
given as input. Here, win-rate is reported as the per-
cent of times the result of one prompting strategy
was preferred over the other.

Heterograph Homograph
Win % Tie % Win % Tie %

Baseline 33.87
29.65

35.08
28.08with audio 36.49 36.85

Table 2: Results for Context-Situated Puns dataset com-
paring baseline vs multimodal prompting.

As shown in Table 2, the addition of audio cues
again provided improvements in both homographic
and heterographic cases.

5.3 ExplainTheJoke

Here, we evaluated the model’s ability to gener-
ate detailed joke explanations in domains outside
of puns. As this dataset lacked detailed annota-
tions and only included inconsistent-quality expla-
nations, we attempted to generate a more normal-
ized explanation by first asking GPT to summarize
the provided human explanations. This summary
was then used as the relevant context to the judge-
LLM. The remainder of the evaluation proceeded in
the same manner as the Context-Situated Puns; we
performed pairwise comparison directly between
the results of baseline and multimodal prompting.

Table 3 reveals that even with jokes that are not
puns, using the mutli-modal prompting improves

Win % Tie %
Baseline 12.81

71.75with audio 15.44

Table 3: Results for ExplainTheJoke dataset comparing
baseline vs multimodal prompting.

performance. While phonetic ambiguity likely ex-
plains many of the performance gains for the pre-
viously studied datasets, these results suggest that
other more nuanced effects are successfully con-
veyed by including audio.

5.4 Analysis

Due to space constraints, details of our three analy-
ses are in the Appendix. Summaries are provided
here. First, in an ablation study, we tested vari-
ous details of multimodal prompting, finding that
pure audio-only prompting performs far worse than
pure textual prompting (Appendix A.3). Second,
we analyzed whether incorporating audio genuinely
preserved phonetic ambiguity. Through a detailed
examination of the logits of an LLM transcribing
puns, we observed that the model assigned signif-
icant probability to both potential spellings of the
pun-word (e.g., “weight” vs. “wait”), indicating
that the phonetic cues were captured in its internal
representations (Appendix A.2). Finally, we ex-
plored the sensitivity to voice parameters, but found
no significant evidence that variations in voice type
systematically affected the results (Appendix A.4).

6 Conclusion and Future Work

In this study, we demonstrated that incorporat-
ing auditory cues into multimodal prompts signif-
icantly improves Large Language Models’ ability
to understand and explain humor, particularly in
cases involving phonetic ambiguity. Our approach,
leveraging readily available APIs and open-source
models, offers a straightforward yet effective en-
hancement to existing LLM capabilities.

There are several avenues for extending this re-
search. A deeper study into the effects of voice
characteristics on humor interpretation could re-
veal how tone, pitch, or speaker identity affects
comedic understanding. Although our TTS-based
approach was effective, it did not capture nuances
like timing and rhythm that human recordings may
convey. Finally, the addition of video analysis may
reveal the speaker’s facial expressions and other
essential cues for humor.

12

7 Limitations

Prompt Sensitivity: The success of our multi-
modal prompting approach depends heavily on
prompt design. LLMs, particularly those using
the Gemini architecture, are highly sensitive to the
phrasing and structure of prompts. Small varia-
tions can lead to significant differences in output
quality, necessitating extensive tuning to optimize
performance. This reliance on precise prompt craft-
ing limits the scalability and generalization of the
approach to new tasks.
Nuances Beyond Phonetic Ambiguity: While
our method demonstrated improved understanding
of phonetic ambiguity in humor, it falls short in
capturing more nuanced comedic elements such
as timing, cadence, and rhythm. Our TTS-based
approach does not fully convey the subtleties of real
human speech, which are critical for interpreting
humor beyond wordplay. This limitation suggests
the need for richer audio models or the integration
of additional modalities, such as video, to capture
non-verbal cues.
Evaluation Challenges: Our evaluation relied on
automated LLM-based judging, which, while effi-
cient, may not fully capture the nuanced quality of
humor explanations. Future studies should incor-
porate more robust evaluation strategies, such as
human assessments, or using stronger models as
they are released, to better gauge the effectiveness
of these approaches in real-world scenarios.

8 Ethics Statement

Large Large Language Models can produce offen-
sive and incorrect statements. In the process of
explaining comedy, they may frequently encounter
harmful stereotypes and offensive content. Both
correct and incorrect explanations can result in
an LLM outputting potentially hurtful answers.
It is advisable for users to exercise caution and
avoid prompting the LLM with potentially offen-
sive jokes, so as to avoid the output perpetuating
incorrect stereotypes. This work is released with
the intent of research purposes only.

References
Sajal Aggarwal, Ananya Pandey, and Dinesh Kumar

Vishwakarma. 2023. Multimodal sarcasm recogni-
tion by fusing textual, visual and acoustic content
via multi-headed attention for video dataset. In 2023
World Conference on Communication & Computing
(WCONF), pages 1–5.

Salvatore Attardo and Lucy Pickering. 2011. Timing in
the performance of jokes. HUMOR, 24(2):233–250.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Chiara Bucaria. 2004. Lexical and syntactic ambigu-
ity as a source of humor: The case of newspaper
headlines. HUMOR, 17(3):279–309.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E.
Gonzalez, and Ion Stoica. 2024. Chatbot arena: An
open platform for evaluating llms by human prefer-
ence. Preprint, arXiv:2403.04132.

Gemini Team. 2024. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. Preprint, arXiv:2403.05530.

Md Kamrul Hasan, Sangwu Lee, Wasifur Rah-
man, Amir Zadeh, Rada Mihalcea, Louis-Philippe
Morency, and Ehsan Hoque. 2021. Humor knowl-
edge enriched transformer for understanding multi-
modal humor. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pages 12972–
12980.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2021a. Aligning ai with shared human values. Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021b. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Chris Hua. 2024. Gazelle v0.2.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. In NeurIPS.

Tristan Miller, Christian Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 task 7: Detection
and interpretation of English puns. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 58–68, Vancouver,
Canada. Association for Computational Linguistics.

OpenAI. 2024. Gpt-4o system card. Preprint,
arXiv:2410.21276.

13

Minghao Shao, Abdul Basit, Ramesh Karri, and
Muhammad Shafique. 2024. Survey of different large
language model architectures: Trends, benchmarks,
and challenges. IEEE Access, pages 1–1.

Jiao Sun, Anjali Narayan-Chen, Shereen Oraby,
Shuyang Gao, Tagyoung Chung, Jing Huang, Yang
Liu, and Nanyun Peng. 2022. Context-situated pun
generation. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 4635–4648, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

theblackcat102. Theblackcat102/joke_explaination -
datasets at hugging face.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei
Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
Qi Liu, Tianyu Liu, and Zhifang Sui. 2024. Large lan-
guage models are not fair evaluators. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9440–9450, Bangkok, Thailand. Association
for Computational Linguistics.

Caleb Warren, Adam Barsky, and A. Peter McGraw.
2021. What makes things funny? an integrative
review of the antecedents of laughter and amusement.
Personality and Social Psychology Review, 25(1):41–
65. PMID: 33342368.

Colin White, Samuel Dooley, Manley Roberts, Arka
Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
Neel Jain, Khalid Saifullah, Siddartha Naidu, Chin-
may Hegde, Yann LeCun, Tom Goldstein, Willie
Neiswanger, and Micah Goldblum. 2024. Livebench:
A challenging, contamination-free llm benchmark.
Preprint, arXiv:2406.19314.

Shih-Hung Wu, Yu-Feng Huang, and Tsz-Yeung Lau.
2024. Humour classification by fine-tuning llms:
Cyut at clef 2024 joker lab subtask humour classifi-
cation according to genre and technique. In Working
Notes of the Conference and Labs of the Evaluation
Forum (CLEF 2024). CEUR Workshop Proceedings,
pages 1933–1947.

Zhijun Xu, Siyu Yuan, Lingjie Chen, and Deqing
Yang. 2024. "a good pun is its own reword": Can
large language models understand puns? Preprint,
arXiv:2404.13599.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2024. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

A Appendix

A.1 Prompts

These prompts are based on those used in (Xu et al.,
2024), modified for use with multimodal prompting

A.1.1 Explanation
The prompts used for generating explanations are
shown in Figure 5.

A.1.2 Judging
The prompts used for judging are shown in Fig-
ure 6.

A.2 Phonetic Ambiguity

In order to test whether phonetic ambiguity is pre-
served by including an audio version of the joke,
we directly analyze the logits of a transcription
task. Following the same pattern as in the joke
explanation task, we convert the text to audio using
OpenAI’s tts-1-hd model. As publicly available
LLM APIs do not provide logit outputs, we use
(Hua, 2024), an open-source model available on
Hugging Face.

As a simplified task, we converted the word,
"Where," to audio, and asked the LLM to transcribe
the file. If phonetic ambiguity is preserved, the
model would output homophones for "where" as
highly probably alternatives. As shown in A.2, this
is the case: "wear," "ware," "here," and "there," are
all present in the top ten highest probabilities.

Figure 3: Logits of transcribing an audio file containing
the word, "Where".

Further, we test the logits in a realistic pun
scenario. We tested on the pun, "Patience is a
heavy weight," where the pun-word is "weight,"
and the alternate spelling is "wait." As shown in
A.2, "weight" and "wait" are the top two tokens
with the highest probability. Notably, "weight" is
a close third; this is not contradictory to the claim

14

that including audio preserves the ambiguity of a
pun. Although the pun had two intended interpre-
tations of the pun word ("weight" and "wait"), the
possible transcriptions are intended to be a super-
set—it is up to the LLM to decide which of the
alternatives are relevant.

Figure 4: Logits of transcribing an audio file containing
a pun, focusing on the pun-word, "Weight".

A.3 Ablation Study
To assess the impact of various prompting config-
urations, we conducted an ablation study (Table
4) using audio-only prompting, and no wording to
prevent addressing modality in the answer. Results
are shown in Table 4.

Heterograph Homograph
Model Win % Model Win %

No text, Audio Only 25.50 55.86
No aggregation wording 48.61 71.05

Our System 51.74 72.59

Table 4: Ablation results comparing results for different
prompting strategies.

Additionally, we extensively tested how the sep-
arate prompting strategy shown in Figure 1-Left
worked in comparison to the combined audio-text
strategy employed. In every test performed, the
separate strategy was significantly worse than the
combined strategy.

A.4 Effects of Choice of Voice
Comedic perception may be influenced by the ac-
tual voice of the comedian. Table 5 presents a
comparison of performance across different TTS
voice types on the SemEval dataset using the full
multimodal prompting strategy. The results show
some variations in win rates, particularly for hetero-
graphs, but no clear pattern emerges that suggests
a statistically significant advantage for any specific
voice type. Although the androgynous voice (Al-
loy) slightly outperformed overall, the differences
were not substantial enough to draw definitive con-
clusions regarding the impact of voice characteris-
tics on the model’s performance. Alloy was chosen
for consistency throughout the experiments. This
remains open for future study.

Heterograph Homograph
Win % Tie % Win % Tie %

Nova (female) 44.59 5.25 71.48 6.30
Onyx (male) 45.44 5.65 73.33 6.42

Alloy (androgynous) 51.74 4.56 72.59 6.36
Onyx + Alloy 47.91 3.79 73.09 5.74

Table 5: Performance on SemEval for different OpenAI
TTS voice types. Alloy is used throughout the experi-
ments in this study. "Onyx + Alloy" had two different
audio files, along with text, passed in to the LLM at
once.

15

<*Definition*> Puns are a form of wordplay exploiting different meanings of a word or similar-
sounding words, while non-puns are jokes or statements that don’t rely on such linguistic ambiguities.
<*Instruction*> Determine whether the given text and audio is a pun. The audio provided is spoken
version of the input text. It is provided in 1 different voice(s). Please see if hearing the pun aloud
helps you determine whether the text is a pun, and if so, why. Give your reasons first, then make
your final decision clearly. You should either say "The text input is a pun" or say "The given text is a
non-pun", despite the fact that you are given both text and audio. Do not reference the fact that you
are given both text and audio. Only use the most likely explanation, taking into account information
from both formats. You must output the current status in a parsable JSON format. An example output
looks like: "Reason": "XXX", "Choice": "The given text is a XXX"
<*Examples*> Text: When the waiter told me they were out of corn I said , ’ That really shucks .
’ Output: "Reason": "The text plays on the double meaning of the word ’shucks’. ’Shucks’ refers
to both the act of removing the husk from corn and is a homophone for ’sucks’, which is used
colloquially to express disappointment.", "Choice": "The given text is a pun"
Text: Desperate times call for desperate measures . Output: "Reason": "The text is an idiomatic
expression meaning that one may need to take drastic actions in difficult situations. It does not exploit
different meanings of a word or similar-sounding words.", "Choice": "The given text is a non-pun"
Text: A tangled bell ringer tolled himself off . Output: "Reason": "The text plays on the homophones
’tolled’ and ’told’, using the word ’tolled’ in the context of a bell ringer (which relates to the ringing
or tolling of bells) and ’told’ as in scolding oneself (told sb off). This creates a humorous double
meaning.", "Choice": "The given text is a pun"
Text: Don’t bite the hand that feeds you . Output: "Reason": "The text is an idiomatic expression
meaning one should not act ungratefully towards those who provide for them. It does not rely on a
play on words or different meanings of the same word.", "Choice": "The given text is a non-pun"
Text: An illiterate fisherman was lost at c "Reason": "The text is an idiomatic expression that
suggests it’s better to be cautious than to get into trouble. It does not rely on the ambiguity of words
or similar-sounding words for a humorous effect.", "Choice": "The given text is a non-pun"
<*Your Response*> Text: Patience is a virtue heavy in wait Audio: <audio> Output:

Figure 5: Explanation prompt for an LLM, including examples and an example input pun.

16

<*Definition*> Puns are a form of wordplay exploiting different meanings of a word or similar-
sounding words.
<*Instruction*> Below is a pun text, double meanings of the pun and two corresponding explanations.
Please carefully judge which explanation is of better quality. Any explanation that fails to indicate
the correct pun, misses the potential phonetic similarity between pun-alternative word pair, misses
a layer of correct meaning in the pun or contains other errors is a worse explanation. Meanwhile,
explanations without the above errors are better explanations. To complete the task, you must
cautiously choose from one of the three answers: "Explanation 1 is much better", "Explanation 2 is
much better", "Explanation 1 and 2 are of similar quality". Additionally, You must output the current
status in a parsable JSON format. An example output looks like: "Choice": "XXX"
<*Your Response*> Text: Hockey players are always terrible chess players since they arent́ handy.
Double Meanings of the Pun: 1. pun word and its meaning: handy <useful and convenient>. 2.
alternative word and its meaning: hand <the (prehensile) extremity of the superior limb>. Explanation
1: The text plays on the double meaning of h́andy.́ H́andyćan refer to being skilled with oneś hands,
which is relevant to hockey players, but it can also mean ńearbyór ćonvenient,́ which is relevant
to chess players. The joke lies in the contrast between the two meanings, suggesting that hockey
players are not good at chess because they are not h́andyín the sense of being close to the chessboard.
Explanation 2: The text plays on the double meaning of the word h́andy.́ H́andyćan refer to being
skilled or useful, but in the context of hockey, it also refers to the use of oneś hands, which is not
allowed in chess. Output:

Figure 6: Judging prompt for an LLM, including an example annotation and two potential explanations.

17

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 18–22
January 19, 2025. ©2025 Association for Computational Linguistics

Rule-based Approaches to the Automatic Generation of Puns Based on
Given Names in French

Mathieu Dehouck
Lattice, CNRS, ENS-PSL,

Université Sorbonne Nouvelle
mathieu.dehouck@cnrs.fr

Marine Delaborde
LT2D, CY Cergy Paris Université

marine.delaborde@cyu.fr

Abstract

Humor is a cornerstone of human interactions.
Because puns and word plays lie in the mar-
gins of phonology, syntax and semantics, large
language models struggle with their generation.
In this paper, we present two versions of a tool
designed to create a typical kind of French joke
known as "Monsieur et Madame" jokes. We
then discuss the main challenges and limita-
tions rule-based systems face when creating
this kind of puns.

1 Introduction

As of 2024, large language models are able to make
jokes and explain them (Jentzsch and Kersting,
2023), but are still limited with certain types of
jokes. Indeed, jokes and especially puns target a
very specific aspect of language and cause a "depar-
ture from norms of usage" (Crystal, 2002) which
may confuse neural models. Furthermore, some
jokes are based on phonetic criteria, and most large
language models are still not trained to incorporate
phonetic information. This paper focuses on this
kind of sound-based jokes.

Of course, jokes are plentiful on the Internet
and some are even explained, for example the En-
glish Wikipedia1 has an article about "Monsieur
et Madame" jokes. Thus, large language models
are likely to have encountered some jokes during
their training and will likely be able to tell them
back when prompted to do so. However, they have
difficulties generalizing and creating new ones.

French has a templatic form of joke similar to
the English "Knock-knock jokes" called the "Mon-
sieur et Madame" jokes derived from earlier birth
announcement or in memoriam jokes. In English,
these jokes follow a real-life scenario (Bugheşiu,
2015) where someone knocks on a door in order to
enter and when asked to identify themself, answer

1https://en.wikipedia.org/wiki/Monsieur_et_
Madame_jokes

with a first name/family name pair that makes a
punchline or the beginning of a song. In French,
they also follow a fixed order but in a one ques-
tion and one answer format. First, the punster says
something along the following line: "Mr. and Mrs.
X, have n children. What are their names?" where
X is a made-up family name and n is a number,
usually one also tells whether they are daughters
or sons. Then the audience tries to solve the riddle,
giving the appropriate number of first names, but
often gives up eventually. The punster then reveals
the actual names of the children which when said
with their family name usually makes a somewhat
comic sentence. The children’s names must either
be said independently as in (1) or in sequence as
in (2). The pronunciation of the underlying sen-
tence can be sloppy and the sloppiness is often an
important part of the pun.

It is worth mentioning here that the riddle format
is mostly formal and that the audience is hardly
ever expected to actually find the answer. There
are actually other French joke types that also rely
on the riddle strategy in order to involve the audi-
ence. A side effect of this strategy, is that people
who already know the answer, because they have al-
ready heard the joke before, may start to be amused
before the answer is revealed.

In order to acknowledge the diversity of family
structures and to make these jokes more inclusive,
we actually replaced the traditional "Mr. and Mrs.
X" by "Family X" in our tool. However, for the
sake of simplicity, we use the traditional "Mr. and
Mrs. X" in this paper.

We want to study the ability of language mod-
els to interpret, solve and then create this kind
of pronunciation based jokes. However, current
models are far from being able to move from writ-
ten language’s token space to pronunciation space
and back. Even more so as French orthography is
highly idiosyncratic and that French family names
have broader spelling conventions than the standard

18

(1) Monsieur et Madame Térieur ont deux fils. Comment s’appellent-ils ?
Mr. and Mrs. Térieur have two sons. What are their names?

Alain et Alex, car, Alain Térieur (à l’intérieur) et Alex Térieur (à l’extérieur).
[a.lẼ tEK.jœK] [a l Ẽ< .tEK.jœK] [a.lEks tEK.jœK] [a l e< .kstEK.jœK]

Alain and Alex, because, Alain Térieur (inside) and Alex Térieur (outside).

(2) Monsieur et Madame Cale ont trois enfants. Comment s’appellent-ils ?
Mr. and Mrs. Cale have three children. What are their names?

Anna, Lise et Mehdi, car, Anna Lise Mehdi Cale (analyse médicale).
[a.na liz me.di kal] [a.na.liz me.di.kal].

Anna, Lise and Mehdi, because, Anna Lise Mehdi Cale (medical analysis).

written language.

So as a first step, we present a series of meth-
ods used to generate first names based sentences.
The different methods have their own strengths and
weaknesses. The trade-off usually lies between the
amount of jokes produced and the comicalness (or
even meaningfulness) of jokes.

2 Why a Rule-Based approach in the AI
era?

In the age of large language models, rule-based
models are no longer widely used for text genera-
tion. However, in some specific tasks they may still
be relevant.

2.1 State of the art

Humor can be hard to detect even for humans,
so it’s not surprising that it’s the same for ma-
chines. However, automatic classification systems
dedicated to the detection of humor, notably with
the 2017 and 2021 SemEval (Potash et al., 2017;
Meaney et al., 2021) focusing on tweets in En-
glish, or the HAHA challenges focusing on tweets
in Spanish (Castro et al., 2018; Chiruzzo et al.,
2019, 2021). Morales and Zhai (2017) use a gener-
ative language model to predict humoristic online
reviews.

As for automatic generation of humor, this task
is still relatively unexplored. Amin and Burghardt
(2020) have produced a state-of-the-art for this task,
listing 12 systems published between 1994 and
2020.

2.2 Automatic generation of puns based on
names

There are currently two versions of our
tool2(Dehouck and Delaborde, 2023). The
first version of the generator is based on phonetic
criteria to automatically generate simple puns. The
list of French terms from the English Wiktionary3

and their pronunciation(s) (in IPA, the International
Phonetic Alphabet) are used to align with a list of
French names4 and their pronunciation(s), also
taken from the Wiktionary. This list of names is
progressively enriched as users can enter their
own name with an IPA keyboard. Alignments
are made using tries (prefix trees) to find the
terms whose pronunciation is compatible with
the pronunciation of a name. Figure 1 shows an
example of trie with pronunciations along the
branches and written forms at the leaves. To find
the puns, our generator identifies and shows the
first names whose pronunciation in French matches
the rest of the term. Then, the puns are displayed
in the canonical form: a question with an answer
in first(s) name(s) + last name format. This version
only displays lemmas in order to avoid too much
results for one pun.

The puns thus generated are displayed on a web-
site5. The current version of the tool generate puns
based on one first name, such as (1). Two more
playful features are also being proposed. The first

2The first version is downloadable at the following address:
https://github.com/MathieuDehouck/AliGator

3https://en.wiktionary.org/wiki/Category:
French_terms_with_IPA_pronunciation

4https://en.wiktionary.org/wiki/Category:
French_given_names

5https://tools.lattice.cnrs.fr/aligator/main.
html

19

$

alis

(Alice) a# (Alyssa)

m

a

ksim# (Maxime) KtẼ# (Martin)

iKEj# (Mireille)

Figure 1: A trie for the given names Alice, Alyssa, Maxime, Martin and Mireille. $ represents the beginning of a
string, # the end of a string and the remaining characters are plain characters. To each leaf, whose internal string
contains a # character, we also associate orthographic representations for the name whose pronunciation corresponds
to the path from the root to this leaf.

one, which is already available, is the generation
of puns from randomly picked names. The second
one is a list of the funniest puns. This one is mostly
ready, but we wait to have received enough feed-
back from users before making it actually available.

2.3 Generation of French proper names
On our website, the user can enter a first name and
ask to generate puns containing that first name6. If
the proposed first name is not found in our database,
the user can add it in IPA with its spelling variant,
and thus obtain any puns that contain this name.

To display the pun in its canonical form, we
created a finite-state-transducer that reads an IPA
strings from the end to the beginning, applying a
list of phonological rules, specific to the French
language7, that generate surnames with different
levels of complexity.

For the example (1), here are some of the proper
names generated: Téryœur, Téryœurs, Théryœurt,
Thérryœurd or Thérryœurre. The pun generator
currently uses the first form returned by the trans-
ducer, which is usually not too complex, here it
would be Théryœur, but we are working on a pro-
cess to add more diversity while avoiding forms
with too many silent and double letters.

3 V2: work in progress

The first version of the tool already generates a
great number of puns, but it is limited in several
aspects. It is limited in term of phonological vari-
ations. And it can only generate jokes based on

6For the moment, we only display 5 of them, for further
annotation and because there are sometimes too many outputs

7https://fr.wiktionary.org/wiki/Annexe:
Prononciation/français

a fixed stock of words and expressions. In this
section, we present how we plan on tackling these
limitations.

3.1 Phonological relaxation
There are several reasons to allow imperfections in
the phonological alignments in our tool.

As is the case for many languages, spoken and
written French are quite different. At the phono-
logical level, written French preserves a number
of distinctions that are not maintained in many ac-
cents, such as the [e/E] distinction in open syllables.
Likewise, the close-mid/open-mid vowel distinc-
tion is strongly linked to the presence of a following
coda, which leads to vowel alternation8 in many
French verbal or adjectival paradigms.

We also would like to point out that we used
the transcriptions from descriptive resources as a
starting point. For some of the words or first names,
several pronunciations are proposed but they do
not always represent all possible realizations in
French. In the case of several variants, we have
chosen to use the first transcription and to relax the
phonological constraints in order to compensate for
the absence of some variations.

To give the reader an idea of the impact of phono-
logical relaxation, we have computed the number of
puns generated by the fixed-vocabulary rule-based
generator with and without the close-mid/open-mid
vowel distinction. With the mid-vowel distinction
enforces, out system generates 2093 puns repre-
senting 1922 lemma9. When the mid-vowel dis-

8X-Sampa even has a dedicated / character to represent the
archiphonemic status of vowels involved in this phenomenon.

9Note that a few lemma can appear with different first
names. For example, anaphore can lead to Anne Afaure or

20

tinction is relaxed, the system generates 2728 puns
(a 30% increase) representing 2382 lemma (a 24%
increase). Some first names, such as Eve even go
from generating 0 puns to 51 after the relaxation.

By taking this approach a step further, the release
of constraints could also enable the production of
more puns, such as: Gordon Zola [gOK.dOn zo.la],
for gorgonzola [gOK.gOn’(d)zo.la].

As expected, relaxing phonological constraints
increases the number of generated puns. However,
if the pronunciations are so different that the audi-
ence has no chance of guessing the actual answer,
the pun has to be really funny for the joke to work.
There is a strong trade-off between the quality of
the pun and the divergence from the expected pro-
nunciation. This is in fact a place where users’
feedback will indeed be valuable.

3.2 Ups and Downs of Syntax

For the second version of the generator, we want to
go beyond the Wiktionary’s words and expressions
with IPA pronunciation and create new pun phrases
using morphosyntax.

We use the Morphalou lexicon (ATILF, 2023) as
a source for pronunciation and morphological infor-
mation. This lexicon consists of french word forms
annotated with pronunciation (in X-SAMPA) and
morphological information. In this version, puns
are no longer restricted to a single lemma, but span
whole phrases (such as determiner + noun + ad-
jective) and must thus respect gender and number
agreement rules (using the information from Mor-
phalou). First names are still extracted from the
Wiktionary in this version.

We create morphologically annotated tries (pre-
fix trees), associating their pronunciation with or-
thographic forms. In this way, we can find words
whose pronunciation is compatible with the pro-
nunciation of a given name while controlling for
part-of-speech and morphological features.

Morphosyntactic backbones, that are sequences
of parts-of-speech with agreement information, are
extracted from Universal Dependencies treebanks
(Zeman et al., 2022) in order not to generate purely
random strings of words.

This method indeed generates many syntacti-
cally correct sentences which start with strings of
sounds matching given names. However, they are
often far from semantically acceptable, if meaning-
ful at all, and therefore rarely make for funny jokes.

Anna Faure.

For example, we generate puns such as the one in
figure (3) which, while being syntactically correct,
does not really make sense.

Implementing semantic consistency by using
only rules is inconceivable. Lists of well-known
movies, songs or expressions can also be useful,
but seem insufficient.

This is the stage where large language models
can actually be very useful. As they have been
trained to mimic human language, they can produce
semantically consistent sentences.

3.3 Annotation
Visitors are already invited to rate the puns directly
on the website. They can also annotate these puns
with tags such as "explicit content", "unintelligi-
ble" or a degree of humor (from not funny to very
funny). For example, this is also the case on the
JokerJudger platform used by Winters et al. (2018)
to evaluate their system. In the future, a formal
annotation campaign is envisioned for this task.

4 Conclusion

The first version of our generator uses rules to au-
tomatically produce puns based on one given name
and one word or locution, respecting a well-known
canonical form in French. This version is acces-
sible online and the code is available on Github
under MIT license.

We then consider three improvements for the
second version. First, the phonological constraints
relaxation in order to cover different variants of spo-
ken French. Secondly, the use of a large language
model for the semantic consistency of the sentence
generation. Third, the annotation campaign for the
degree of humor.

Limitations

Humor generation is a complex task and as we
have discussed earlier in this paper our tools have
a number of limitations.

The first version of our tool uses a fixed vocab-
ulary of words and expressions, so it is limited in
this direction.

The second version generates new phrases and
is thus less limited, but has a semantic consistency
problem.

Ethical Considerations

We do not see any direct way this work could be
used unethically.

21

(3) Monsieur et Madame Golaux ont deux enfants. Comment s’appellent-ils ?
Mr. and Mrs. Golaux have two children. What are their names?

Laura et Valérie, car, Laura Valérie Golaux (l’or avalé rigolo).
[lo.Ka va.le.Ki go.lo] [l OK a.va.le Ki.go.lo].

Laura and Valérie, because, Laura Valérie Golaux (the swallowed funny gold).

We actually work on making our website and
tools more inclusive as we mentioned in the intro-
duction, by removing the pun presentation from its
traditional family setting.

However, we should mention that both versions
of our tools are currently semantically unfiltered.
For example, the first version uses any French word
or expression that is annotated with its pronunci-
ation in the Wiktionary, as source for puns. This
could include all sorts of offensive terms, including
and not limited to, racial, sexual or disability based
slurs.

We are working on this problem. One way would
be to parse the whole Wiktionary article to see
if any indication is given about the offensive or
derogatory nature of a word.

Since we are aware of this problem, users can
actually tag puns as being offensive, if it ever was
the case that our tools generated such puns.

References
Miriam Amin and Manuel Burghardt. 2020. A survey

on approaches to computational humor generation.
In Proceedings of the The 4th Joint SIGHUM Work-
shop on Computational Linguistics for Cultural Her-
itage, Social Sciences, Humanities and Literature,
pages 29–41, Online. International Committee on
Computational Linguistics.

ATILF. 2023. Morphalou. ORTOLANG
(Open Resources and TOols for LANGuage)
–www.ortolang.fr.

Alina Bugheşiu. 2015. Knock-knock jokes, proper
names, and referentiality. BAS British and Ameri-
can Studies, (21):183–191.

Santiago Castro, Luis Chiruzzo, and Aiala Rosá. 2018.
Overview of the haha task: Humor analysis based
on human annotation at ibereval 2018. In IberEval@
SEPLN, pages 187–194.

Luis Chiruzzo, Santiago Castro, Mathias Etcheverry,
Diego Garat, Juan José Prada, and Aiala Rosá. 2019.
Overview of haha at iberlef 2019: Humor analysis
based on human annotation. In IberLEF@ SEPLN,
pages 132–144.

Luis Chiruzzo, Santiago Castro, Santiago Góngora,
Aiala Rosá, JA Meaney, and Rada Mihalcea. 2021.
Overview of haha at iberlef 2021: Detecting, rating
and analyzing humor in spanish. Procesamiento del
Lenguaje Natural, 67:257–268.

David Crystal. 2002. The English Language. London:
Penguin Books.

Mathieu Dehouck and Marine Delaborde. 2023. Généra-
tion automatique de jeux de mots à base de prénoms.
In Actes de CORIA-TALN 2023. Actes de la 30e Con-
férence sur le Traitement Automatique des Langues
Naturelles (TALN), page 1.

Sophie Jentzsch and Kristian Kersting. 2023. Chatgpt
is fun, but it is not funny! humor is still challenging
large language models. Preprint, arXiv:2306.04563.

Julie-Anne Meaney, Steven Wilson, Luis Chiruzzo,
Adam Lopez, and Walid Magdy. 2021. SemEval
2021 task 7: HaHackathon, detecting and rating hu-
mor and offense. In Proceedings of the 15th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2021), pages 105–119, Online. Association for Com-
putational Linguistics.

Alex Morales and Chengxiang Zhai. 2017. Identify-
ing humor in reviews using background text sources.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
492–501, Copenhagen, Denmark. Association for
Computational Linguistics.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. SemEval-2017 task 6: #HashtagWars: Learn-
ing a sense of humor. In Proceedings of the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 49–57, Vancouver, Canada.
Association for Computational Linguistics.

Thomas Winters, Vincent Nys, and Daniel De Schreye.
2018. Automatic joke generation: Learning humor
from examples. In Distributed, Ambient and Perva-
sive Interactions: Technologies and Contexts, pages
360–377, Cham. Springer International Publishing.

Daniel Zeman, Joakim Nivre, and al. 2022. Universal
dependencies 2.11. LINDAT/CLARIAH-CZ digital
library at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

22

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 23–31
January 19, 2025. ©2025 Association for Computational Linguistics

Homophonic Pun Generation in Code Mixed Hindi English

Yash Sarrof

Saarland University

ysarrof@lst.uni-saarland.de

Abstract

In this study, we investigate Hinglish—a blend

of Hindi and English commonly found in infor

mal online communication—with a particular

focus on automated pun generation. Our work
1 examines the applicability and adaptability

of existing English pun generation pipelines

to Hinglish. We assess the pun generation ca

pabilities of Large Language Models (LLMs),

particularly GPT3.5. By employing Chain of

Thought prompting and SelfRefine techniques,

we identify crosslinguistic homophone detec

tion as a central difficulty. To address this, we

propose a novel algorithm for crosslingual ho

mophone identification and develop a Latinto

Devanagari transliteration module to leverage

the widespread use of Latinscript Hindi in on

line settings. Building on existing frameworks

for pun generation, we incorporate our homo

phone and transliteration modules to improve

output quality. Crowdsourced human evalua

tions validate the effectiveness of our approach.

1 Introduction

Codemixing has becomewidespread in written dig

ital communication, evolving from a phenomenon

primarily seen in spoken language (Winata et al.,

2022). Similarly, the blend of Hindi and English,

commonly known as Hinglish, is now prevalent

across both spoken and written mediums.

While computational humor generation receives

extensive attention in monolingual settings, espe

cially in English, existing methods often struggle in

codemixed contexts. Puns based on homographs,

for instance, tend to lose their impact when ap

plied across languages. Homophonic puns, how

ever, hold unique potential in codemixed settings,

as identical sounds can convey entirely different

meanings in different languages.

Large Language Models (LLMs), such as those

in the GPT series, demonstrate proficiency in gener

1Code: https://github.com/yashYRS/HinglishPun

ating English puns, largely due to their training on

extensive datasets like Common Crawl. However,

as noted by Jentzsch and Kersting (2023), while

GPT4 can produce puns, it frequently lacks diver

sity in its outputs—a challenge further amplified in

codemixed environments.

This work examines the performance of GPT

3.5 in generating homophonic puns within the

Hinglish context. Using Chain of Thought prompt

ing (Wei et al., 2023) and the SelfRefine frame

work (Madaan et al., 2024)—techniques designed

to enhance creative text generation—we find that

a key difficulty in pun generation lies in reliably

identifying crosslinguistic homophones. To ad

dress this, we propose an algorithm that detects

homophones across languages.

Native Hindi speakers, who often use English

as a second language, prefer the Latin script for

online communication due to the complexities of

the Devanagari script, which includes conjunct con

sonants, vowel diacritics, and a large character set.

This, combined with the familiarity of the QW

ERTY keyboard, has led to the widespread adop

tion of Latin script for Hindi (WolfSonkin et al.,

2019). To quantify this shift, we compare Hindi

word counts in Devanagari and Latin scripts across

datasets like The Pile and C4, finding a substantial

preference for Latin script. This discrepancy under

scores the need for transliteration to leverage pho

netic similarities across scripts, essential for gen

erating homophonic puns in Hinglish. Therefore

we introduce a lightweight LatintoDevanagari

transliteration module to take advantage of this fact.

Building on He et al. (2019)’s hybrid pipeline

for pun generation, we adapt it to integrate our ho

mophone generation and transliteration modules.

Results show that providing these homophones as

input markedly enhances the quality of generated

puns. A crowdsourced evaluation validates these

findings, providing robust evidence of the improve

ments.

23

Vanilla Prompting Example

Input: Generate a Hindi English mixed

pun.

Output: Why did the Hindi teacher bring a

ladder to class?

Because he wanted to teach बंदर [bənd̪ər]
(bandar), how to climb the बांस [bãːs] (bam
boo).

Figure 1: Vanilla Prompting leads to grammatical but

incoherent statements. The IPA provided in all prompts

from hereon is only for the paper readability and they

are not a part of the prompt.

Finally, we discuss the limitations of our ap

proach and suggest directions for future research

to advance humor generation in codemixed lan

guages further.

2 Related Work

The field of computational humor has long explored

the creation and understanding of puns. Early work

by Lessard and Levison (1992) focused on gen

erating humor through an antonymbased system

designed to create Tom Swifties. The Joke Analy

sis and Production Engine (JAPE), a pun generator,

produced novel outputs and was later formalized

(Ritchie, 2003). Researchers have called for more

formal computational models of humor, emphasiz

ing the need for experimental validation and ad

vocating for the formalization of humor theories

(Brône et al., 2006).

Over time, approaches to computational humor

have evolved. Modern methods now include neu

ral models (Yu et al., 2018), surprisalbased tech

niques (He et al., 2019), and generative adversar

ial networks (Luo et al., 2019). The exploration

of codemixed puns, particularly those combin

ing Hindi and English, is a more recent develop

ment in the field. Efforts to create datasets for

codemixed HindiEnglish include notable contri

butions from Singh et al. (2018), who curated a

POStagged Hinglish corpus by scraping Twitter.

Aggarwal et al. (2018) made pioneering efforts in

identifying HindiEnglish codemixed puns. Uti

lizing advertisement datasets, they determined the

language of each word, then identified potential

pun locations using a combination of ngram mod

els, smoothing techniques, and phonetic similar

ity. Their goal was to minimize contextual differ

Criteria for SelfRefine

Pun Present: Does the text have a pun?

Algorithm followed: Was the algorithm de

scribed, if any followed?

Coherence: Is the text coherent?

Funny: Is the text funny?

Figure 2: Criteria used to apply the SelfRefine frame

work to each of our designed prompts.

ences between the word altered to create the pun

and the original word, thereby maximizing contex

tual appropriateness. Agarwal and Narula (2021)

focused on generating jokes in codemixed Hindi

English using Hinglish word embeddings. They

used deep learning approaches to generate jokes in

English, which were then transformed into code

mixed HindiEnglish by converting selective parts

of the text or using a pretrained encoder and trans

fer learning method. Their work primarily focused

on general joke generation. However, to the best

of our knowledge, our work on generating homo

phonic puns in codemixed EnglishHindi is novel.

3 CoT prompting to generate puns reveals

problems with finding Homophones

Chain of Thought prompting (Wei et al., 2023) has

proven to be a simple yet effective technique for

enhancing outputs and identifying where LLMs

struggle most in performing a given task.

Posthoc refinement is a common strategy to fix

mistakes, and some popular strategies suggested

recently focus on automated feedback that tries to

selfcritique (Xu et al., 2024; Madaan et al., 2024;

Akyürek et al., 2023) and improve its output itera

tively. The SelfRefine (Madaan et al., 2024) frame

work has been shown to be effective in various

settings and has been adapted to various contexts to

improve performance (Wadhwa et al., 2024; Tian

et al., 2024; Shridhar et al., 2023). The idea is

to assess the generated output by the same LLM

with certain criterion (see Figure : 2), and then

feed the assessment back to the LLM to refine the

prompt, and keep doing this iteratively. For all our

generated puns, we report our final answers after

going through each stage iteratively at least 3 times.

We stop early in case, the pun generated does not

differ in terms of Levenshtein distance from the

previously generated pun or if a positive automated

assessment is made by the LLM.

24

LLMs struggling to find homophones

Step 1: EN: pen, HI: पेन (pen) [pɛn],
HIToEN: pen

Step 2: Since pen == pen, go back to step 1.

Step 1 (redo): EN: apple, HI: एप्प्ल (apple)

[ˈæpəl], HIToEN: apple
Step 2: Since apple == apple, go back to

step 1.

Step 1 (redo): EN: ball, HI:बॉल (ball) [bɔl],
HIToEN: ball

Step 2: Since ball == ball, go back to step

1.

...

Figure 3: Model output stuck in a recursive loop, repeat

ing steps due to failure in finding distinct homophones.

While the model detects incorrect homophones, it fails

to correct them, leading to repeated attempts. This ex

cerpt illustrates the pattern; the full trace included 70

retries. Most cases where HIToEN equals EN occur due

to loan words in Hindi.

Step 1: EN: doctor, HI: डाक्टर (doctor)

[ˈdɒktə], HIToEN: doctor
Step 2: Since doctor == doctor, go back

to step 1.

Step 1 (redo): EN: dude, HI: दूध (milk)

[d̪ud̪ʱɐ], HIToEN:milk

Step 2: Sincemilk != dude, proceed to step

3.

Figure 4: Illustrative trace showing rejected homo

phones and the selection process for acceptable ones.

When using vanilla prompting to generate code

mixed puns, the outputs typically result in grammat

ically correct but incoherent sentences that do not

attempt to make puns (see Figure 1). To further un

derstand this, we provided instructions based on the

algorithm suggested by He et al. (2019) for creating

puns, and tested the model in zeroshot, oneshot,

and fewshot settings (with 2, 4, and 6 examples).

Across all settings, the prompt included instructions

to encourage CoT reasoning to help identify the

bottleneck. The generation temperature was varied,

and between 10 to 20 samples were generated and

manually analysed for each configuration.

The general framework of the prompts designed

is illustrated in Figure 5. This framework forced the

model to regenerate its output until it successfully

identified homophones. In zeroshot and oneshot

learning settings, the model often incorrectly iden

tified homophones, resulting in statements rather

than actual attempts at puns.

Prompt for confirming the homophone be

fore proceeding

Instruction: Construct a codemixed

HindiEnglish pun based on the steps

below.

Steps:

Step 1. Create a triplet of:

a. English word EN

b. Hindi word HI, homophone to EN

c. HI translated to English, labeled

HIToEN

Step 2. If HIToEN == EN, redo step 1.

Otherwise, proceed to step 3

Step 3. Construct short sentences (less than

10 words) with EN as the object of the

sentence.

Step 4. Replace EN with HI.

Step 5. Replace the noun phrase at the start

of the sentence with a contextualized phrase

that is closely related to the HIToEN word.

Example:

Step 1: EN: dude, HI: दूध [d̪ud̪ʱɐ] (milk),
HIToEN:milk

Step 2: Since milk != dude, proceed to

step 3.

Step 3: Construct sentence with EN as the

object: “Jack asked What’s up dude?”

Step 4: Replace EN with HI: “Jack asked

What’s up दूध [d̪ud̪ʱɐ] (dude)?”
Step 5: Replace the noun phrase with a

contextualized phrase: “The cow asked

What’s up दूध [d̪ud̪ʱɐ] (dude)?”

Figure 5: Prompt structure to guide the model to confirm

the homophone before proceeding. This input prompt

contains instructions that are modeled on the basis of

the algorithm suggested by He et al. (2019) to generate

puns in English with necessary modifications to fit the

current context

25

However, the fewshot settings included exam

ples with negative samples of homophones, fol

lowed by the rejection of these negative homo

phones to focus on actual homophones. A sample

of this approach is shown in Figure 4. Including

such examples in fewshot settings led to interest

ing cases where the model got stuck in a recursive

loop, unable to progress beyond the initial step of

identifying homophones. This often resulted in the

maximum token limit being reached, with the API

output oscillating between the first two steps for up

to 70 turns. A portion of these recursive outputs is

shown in Figure 3. We hypothesize that one of the

reasons these models struggle to create convincing

puns is their inability to move beyond the initial

step of even identifying homophones.

4 Homophone Identification

The Epitran package 2 available in Python can be

used to convert orthographic text into their Inter

national Phonetic Alphabet (IPA) forms, and its

efficacy has been well studied and reported in this

regard (Mortensen et al., 2018). The most common

words found in English as well as Hindi are col

lected from various sources, and these words are

converted into their IPA forms using Epitran. The

resulting values are compared with each other and

by using Minimum edit distance as a measure, sim

ilar IPAs (lower minimum edit measures) across

the 2 languages are grouped with each other. This

simple yet effective technique can be used to get ho

mophones between any of the 61 languages that are

supported at the moment by Epitran. However, it

must be noted that some post processing is required

to remove unnecessary and extramatches that might

occur. Borrowed words from the same language

need to be weeded out so that we are not left with

simple inflections of the same word in the 2 lan

guages. Therefore, the Hindi words are translated

as well as transliterated into English. If the mini

mum edit distance of the translation and translitera

tion is low as well, then that implies that the word in

Hindi was in all likelihood a borrowed word from

English, and hence that word is discarded. Words

with less than 3 characters are discarded as well,

since they are most likely to be filler words and

would not be interesting candidates for pun genera

tion.

2https://github.com/dmort27/epitran

5 Transliteration from Devanagari Script

to Latin Script

0 20 40 60
Tokens

0

200K

400K

600K

800K

To
ke

n
C

ou
nt

Common Crawl

0 20 40 60
Tokens

0

10K

20K

30K

40K

50K

60K
The Pile

Devanagari Latin

Figure 6: Comparing the count of tokens in the Devana

gari script vs the same token in the Latin script for the

100 most common words in Hindi across both the Com

mon Crawl and the Pile

To understand the prevalence and distribution of

Hindi words in Devanagari and Latin scripts, we

applied the What’s In My Big Data? (WIMBD)

framework (Elazar et al., 2024) to systematically

analyze two large datasets: C4 (used to train T5

(Raffel et al., 2020)) and The Pile (Gao et al., 2020),

both commonly used to train large language models

(LLMs). WIMBD provides an accessible suite of

tools designed to facilitate exploration and analysis

of large language datasets. We specifically used

the count functionality to compare the exact oc

currences of Hindi words in both the scripts and

found a substantially higher representation of the

Latin script (see Figure: 6). This discrepancy likely

results from a combination of factors, such as the

dominance of Latin script in informal communica

tion, presence of the same homographic English

word, all of which align with our goal of finding

homophones for pun generation. The Latin script’s

higher token counts increase the likelihood of iden

tifying phonetically similar words, thus facilitating

effective pun creation. Therefore to support our ho

mophone generation step, we propose a rulebased

transliteration algorithm.

The algorithm involves individual character map

pings for the 42 extended consonants, 12 vowels,

and 12 vowel markers of the Devanagari script to

their Latin script counterparts. These mappings are

stored locally. For any given word in Devanagari

script, the algorithm iterates over each character. If

a character is a raw vowel (not a vowel marker),

the corresponding Latin equivalent is added directly

from the stored mappings. If the next character is a

vowel marker, it is combined with the current char

acter. The subsequent character is then checked,

26

Data: devng: Word in Devanagari script

Result: latin: Word in Latin script

Initialize latin as an empty string; for

each character c in devng do

if c has a following vowel marker then
c = c + vowel marker

end

if c is a vowel then
Append the Latin equivalent to

latin;
end

if c is a consonant then
if there is a consonant following c

and it also has a vowel marker

then
Append the Latin equivalent of c

to latin;
end

else
Append the Latin equivalent

along with ‘a’ to handle the

schwa sound to latin;
end

end

end

Algorithm 1: Transliteration Algorithm for De

vanagari to Latin

effectively creating a lookahead of 2.

If the following character is a consonant with a

vowel marker, the current character’s mapping is

appended with an “a” to denote the schwa sound

typically associated with Hindi consonants. This

process accounts for the rule inHindi where a conso

nant is assumed to endwith a schwa unless followed

by another vowel. However, since two schwas do

not appear consecutively in natural language, this

lookahead prevents unnecessary additions of the

schwa sound. If the subsequent character lacks a

vowel marker, the “a” is omitted.

Word IPA Variation 1 Variation 2

भूख [bʱuːkʰ] bhook bhuk

�बजली [bɪdʒ͡lɪ] bijli bijlee

Table 1: Examples of Variations that are considered

acceptable by native speakers owing to a lack of tran

scription standard

The proposed transliteration system achieves

64% accuracy on the Dakshina dataset (Roark et al.,

2020), which, while lower than the 72.4% accuracy

of the current stateoftheart (Madhani et al., 2023)

Word IPA Present Actual

इनके [ɪnkɛ] unke inke

में [meːn] be mein

है [hɛ] ahai hai

Table 2: Examples of Mistakes in the annotation of

Google’s Dakshina dataset, along with the correct

transliterations

which are based on neural architectures, offers a

computationally efficient alternative. Through er

ror analysis, we identified issues within the dataset

itself, including errors in ground annotations (see

Table 2).

Additionally, the lack of standard spellings in the

Latin script for transliterated Hindi poses a chal

lenge. Since the script isn’t native, multiple correct

spellings often exist, yet most datasets, including

those available today, only account for one varia

tion. This results in perfectly acceptable alternative

spellings being incorrectly marked as errors (see

Table 1).

In conclusion, while transliteration significantly

aids in processing Hinglish datasets and is crucial

for the postprocessing needed in homophone gen

eration for Hinglish pun creation, its development

is not without fundamental challenges. Addressing

these challenges, such as handling spelling varia

tions and inaccuracies in datasets, would make it

easier to integrate transliteration systems into mod

els like ours more effectively.

6 Modifying Pun Generation with

Surprise

A stripped down version of the methodology

suggested in He et al. (2019) is recreated for the

current context. Given a pair of homophones (w1,

w2), candidate sentences are found from a corpus

(Brown corpus found in the NLTK chosen in our

case). Sentences where the w1 appears at the end

is retained, since puns are generally considered

funnier if there is an element of surprise, and

the pun word appearing at the end increases the

likelihood of the same. In the candidate sentences,

we replace the w1 with w2 and subsequently try to

replace the noun phrase at the start of the sentence

with a topic that is related to the w2 word instead

of the w1 word. The modified phrase results

in a pun after post processing that checks for

grammaticality. Since, in our case the w2 is from a

different language, we translate w2 into English,

27

before trying to find an appropriate topic for the

same (through GLoVe Embeddings or other such

distributional semantic similarity mechanisms).

A sample execution

• Homophone pairs: city , seeti (whistle)

• Find short candidate sentences from the

Brown corpus where city appears at the end.
The man lives in the heart of the city

• Replace city with the homophonic pair

The man lives in the heart of the seeti

• Find apt topic to replace the subject.

The referee lives in the heart of the seeti

Although the resulting phrase can lead to a pun, a

filtration mechanism is required that can remove

phrases / puns that don’t make sense due to the

change in language and can handle the grammati

cality requirements of both the languages in ques

tion. This is a major limitation of this method while

applying it in CodeMixed Settings which will need

to be improved upon in future extensions of this

work.

7 Prompting LLMs by appending

pregenerated list of Homophones

Since the cause of failure in GPT3.5 during pun

generations was shown to be identification of ho

mophones, the modules introduced in Sections 3 &

4 are leveraged and locally generated transliterated

homophones are appended to the end of standard

ised prompts. Astandard prompt structure is created

for Zero shot, one shot, 4 shot (see Figure 7 as an

example), 8 shot and finally 16 shot settings. In all

cases, the input homophones are always appended

at the end, and each input is run in a separate ses

sion without any history except for the examples in

the few shot settings. This modified hybrid prompt

setting improves the output drastically with many

of the outputs generated fulfilling all criterion of

being qualified as puns. Even, when the outputs

generated are not funny, they are at least attempts

at making a pun out of the given inputs.

Survey to Evaluate Hybrid Approach

A small survey was conducted to assess the qual

ity of puns generated by our system across various

settings. Fiftysix participants volunteered to rate

the puns on a scale of 1 (not funny) to 5 (extremely

Example Prompt for Hybrid Approach

Task: Generate a codemixed Hindi

English pun based on the homophones

provided as input. Some example input

output pairs are provided as reference.

Input: ‘Submit’, ‘Sab Mit’ (everything

gets erased)

Output: “Exam ki answer sheet return

karte hi SUBMIT jata hai”

Input: <EnWord>, <HiTransliteratedHo

mophone><(EnglishTranslation)>

Figure 7: Example prompt for the hybrid approach. This

sample has been truncated to show the most relevant

parts of the prompt. The final line of input is dynamically

modified at runtime.

funny). Given the voluntary nature of the survey,

we evaluated 45 random samples per category. To

ensure data integrity and prevent biased participa

tion, we included humangenerated puns from joke

websites.

Each participant received the puns in a random

order, presented via Google Forms. To minimize

bias, participants were unaware of the pun’s origin.

All participants were bilingual in Hindi and English,

aged 2030.

After the survey concluded, we calculated the

mean ratings for each category: Human, Zero Shot,

One Shot, 4 Shot, 8 Shot, and 16 Shot. Submissions

with a mean rating below 1 for humangenerated

puns were discarded, as they likely indicated a lack

of engagement. Additionally, submissions with all

puns rated 5 were removed to eliminate potentially

casual or insincere participation. Following this

filtration, 39 submissions remained. The results

presented in all graphs are based on these 39 sub

missions.

Mean Ratings per Category

Since humour is subjective, even the human gen

erated puns do not always get a full score, and the

mean ratings across all the samples and participants

turned out to 4.32 (see Figure 8). Compared to the

same, the ratings of all the other categories were

pretty decent, with even Zero shot getting an aver

age of 3.31with slight increase in averages resulting

in a 3.61 for 16 shot settings. Although these means

28

Human Shot16 Shot8 Shot4 Shot1 Shot0
0

1

2

3

4

5
M

ea
n

R
at

in
gs

Overall Top 2 Bottom 2

Figure 8: Mean ratings given overall, achieved by top 2

and achieved by bottom 2 puns per category of prompts

are high, the reason for the differences in the mean

with the human ratings was analysed. The top 2

puns that got the highest mean scores in each cate

gory were taken, and for each category this mean

turned out to be a perfect score (see Figure 8). Con

versely, while trying to plot the same thing for the

puns with the lowest scores, the main difference

between the human generated ones get highlighted.

The mean rating for Humans drops to a 3.4 which

can still be considered a pretty decent score. How

ever, for the generated puns, the score drops down

significantly (see Figure 8). Thus, although our

model can generate good puns, there is a lack of

consistency in the generation.

7.1 Comparing Against Human Benchmarks

Abox plot (see Figure 9) is created to show the vari

ability between different samples and participants

in each category. When raw ratings are considered,

the scores Shot 16, Shot 4 show lower variance

in their scores compared to the variances shown

by the one shot and zero shot settings. As shown

from the survey, it is unlikely for the mean to be a

perfect 5 even for a set of human generated puns

due to the subjectivity of humour. Therefore we

compare the scores generated automatically against

the benchmarks set by human performance. We cal

culate the mean rating given by each participant to

the human generated jokes and per participant, we

normalise the scores for all other categories based

on this value. The resulting normalised scores are

plotted as a box plot in Figure 10. It can be seen that

Shot4, Shot8 and Shot16 perform the best. Zero

Shot setting performs better than One shot settings,

although they are both clearly inferior to the Few

shot settings. All in all, the performance of such

models in such hybrid settings is encouraging and

further proves that LLMs can perform exceedingly

well on highly specialised tasks such as generat

ing puns in code mixed settings, provided they are

leveraged aptly and their weaknesses are well un

derstood.

Human Shot16 Shot8 Shot4 Shot1 Shot0
Category

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
at

in
gs

Raw Pun Ratings

Figure 9: Box Plot with Mean Scores Per category of

Prompts

Shot16 Shot8 Shot4 Shot1 Shot0
Category

1

2

3

4

5

R
at

in
gs

Normalised Pun Ratings Per Category

Figure 10: Box Plot with Normalised ratings according

to Human Benchmarks

8 Limitations and Future Work

• Our homophone generation is constrained to

single whole words. I will see vsAalsi (lazy)
are homophonic but span multiple words.

Leveraging such multi word homophones

could enhance the creativity of the generated

content.

• The prompting experiments were conducted

exclusively using gpt − 3.5 − turbo. Our

current strategies do not cover the full range

of possible prompts, and future work could

expand on this.

29

• Our pun generation using Surprisal focuses on

replacing individual nouns, rather than entire

noun phrases. This may result in contextu

ally weaker replacements. Finetuning em

beddings on Hinglish data to better handle the

semantics of noun phrases could lead to more

contextually appropriate and higherquality

puns.

• The survey included only a small number of

samples per method, as participants volun

teered without compensation. A larger sample

size would be needed to draw more robust

conclusions.

• The pun generation methodology is not

languagespecific. Future work could apply

the framework to other codemixed languages,

such as Spanglish (SpanishEnglish) or Ara

bizi (ArabicEnglish), to assess its broader ap

plicability.

Additionally, it must be mentioned that publicly

available datasets of Hinglish often suffer from

various shortcomings, including inadequate main

tenance, annotation issues, and insufficient scale.

These limitations hinder their suitability for training

and evaluating AI models effectively. Addressing

these challenges and improving their quality, avail

ability and out of the box usability is essential.

9 Conclusion

This study presents a novel exploration of ho

mophonic pun generation within the codemixed

Hinglish context. By analyzing and adapting

Englishbased humor generation techniques, par

ticularly through hybrid prompting approaches

with Large Language Models (LLMs), we demon

strate the feasibility of creating Hinglish puns that

align with native humoristic nuances. Feeding

crosslingual homophones as well as incorporating

transliteration techniques improved the pun genera

tion capability of LLMs in the given setting, mak

ing the outputs more contextually relevant. Our

findings, supported by crowdsourced evaluations,

suggest that while hybrid prompting strategies can

generate engaging Hinglish puns, challenges re

main, especially in achieving consistently high hu

mor quality. Future work will benefit from expand

ing homophone recognition to multiword phrases,

refining the selection of humoroptimized LLMs,

and developing more robust code mixed datasets

to enhance the accuracy and cultural relevance of

computational humor in multilingual contexts.

Ethical Statement

The evaluation survey was conducted anonymously

and no private data of any individual was col

lected. External datasets, packages used have been

attributed to the original authors and were used only

after confirming that they were distributed under

licenses that permit research work.

Acknowledgments

I thank Michael Hahn, Alexander Koller and the

anonymous reviewers for helpful comments.

References

Kaustubh Agarwal and Rhythm Narula. 2021. Humor
generation and detection in codemixed hindienglish.
In Proceedings of the Student Research Workshop
Associated with RANLP 2021, pages 1–6.

Srishti Aggarwal, Kritik Mathur, and Radhika Mamidi.
2018. Automatic target recovery for hindienglish
code mixed puns. arXiv preprint arXiv:1806.04535.

Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan,
A. Kalyan, Peter Clark, D. Wijaya, and Niket Tan
don. 2023. Rl4f: Generating natural language feed
back with reinforcement learning for repairing model
outputs. In Annual Meeting of the Association for
Computational Linguistics.

Geert Brône, Kurt Feyaerts, and Tony Veale. 2006. In
troduction: Cognitive linguistic approaches to humor.

Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson,
Abhilasha Ravichander, Dustin Schwenk, Alane Suhr,
Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini,
Sameer Singh, et al. 2024. What’s in my big data?
In The Twelfth International Conference on Learning
Representations.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, et al. 2020. The
pile: An 800gb dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027.

He He, Nanyun Peng, and Percy Liang. 2019. Pun
generation with surprise. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1734–1744, Minneapolis, Minnesota.
Association for Computational Linguistics.

Sophie Jentzsch and Kristian Kersting. 2023. Chat
gpt is fun, but it is not funny! humor is still chal
lenging large language models. arXiv preprint
arXiv:2306.04563.

30

G Lessard and M Levison. 1992. Computational model
ling of linguistic humour: Tom swifty. In Paper
Delivered at the ALLC/ACH Joint Annual Conference.
Christ Church, Oxford.

Fuli Luo, Shunyao Li, Pengcheng Yang, Baobao Chang,
Zhifang Sui, Xu Sun, et al. 2019. Pungan: Gener
ative adversarial network for pun generation. arXiv
preprint arXiv:1910.10950.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Selfrefine: Iterative refinement with
selffeedback. Advances in Neural Information Pro
cessing Systems, 36.

Yash Madhani, Sushane Parthan, Priyanka Bedekar,
Gokul Nc, Ruchi Khapra, Anoop Kunchukuttan,
Pratyush Kumar, and Mitesh Khapra. 2023. Aksha
rantar: Open indiclanguage transliteration datasets
and models for the next billion users. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 40–57, Singapore. Association
for Computational Linguistics.

David R. Mortensen, Siddharth Dalmia, and Patrick Lit
tell. 2018. Epitran: Precision g2p for many languages.
In Proceedings of the International Conference on
Language Resources and Evaluation.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim
its of transfer learning with a unified texttotext
transformer. Journal of machine learning research,
21(140):1–67.

Graeme Ritchie. 2003. The jape riddle generator: tech
nical specification. Institute for Communicating and
Collaborative Systems.

Brian Roark, Lawrence WolfSonkin, Christo Kirov,
Sabrina J. Mielke, Cibu Johny, Işın Demirşahin, and
Keith Hall. 2020. Processing south asian languages
written in the latin script: the dakshina dataset. In
Proceedings of The 12th Language Resources and
Evaluation Conference (LREC), pages 2413–2423.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu
Wang, Ping Yu, Ramakanth Pasunuru, Mrinmaya
Sachan, Jason Weston, and Asli Celikyilmaz. 2023.
The art of llm refinement: Ask, refine, and trust. In
North American Chapter of the Association for Com
putational Linguistics.

Kushagra Singh, Indira Sen, and Ponnurangam Ku
maraguru. 2018. A twitter corpus for hindienglish
code mixed pos tagging. In Proceedings of the sixth
international workshop on natural language process
ing for social media, pages 12–17.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self
improvement of llms via imagination, searching, and
criticizing. ArXiv, abs/2404.12253.

Manya Wadhwa, Xinyu Zhao, Junyi Jessy Li, and Greg
Durrett. 2024. Learning to refine with finegrained
natural language feedback. ArXiv, abs/2407.02397.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chainofthought prompting elic
its reasoning in large languagemodels. arXiv preprint
arXiv:2201.11903.

Genta Indra Winata, Alham Fikri Aji, ZhengXin Yong,
and Thamar Solorio. 2022. The decades progress
on codeswitching research in nlp: A systematic
survey on trends and challenges. arXiv preprint
arXiv:2212.09660.

LawrenceWolfSonkin, Vlad Schogol, Brian Roark, and
Michael Riley. 2019. Latin script keyboards for south
asian languages with finitestate normalization. In
Proceedings of the 14th International Conference on
FiniteState Methods and Natural Language Process
ing, pages 108–117.

Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj
Juraska, Biao Zhang, Zhongtao Liu, William Yang
Wang, Lei Li, and Markus Freitag. 2024. Llmrefine:
Pinpointing and refining large language models via
finegrained actionable feedback. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 1429–1445.

Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. 2018. A neural
approach to pun generation. In Proceedings of the
56th Annual Meeting of the Association for Compu
tational Linguistics (Volume 1: Long Papers), pages
1650–1660.

31

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 32–57
January 19, 2025. ©2025 Association for Computational Linguistics

Bridging Laughter Across Languages:
Generation of Hindi-English Code-mixed Puns

Likhith Asapu Prashant Kodali Ashna Dua
Kapil Rajesh Kavitha Manish Shrivastava

International Institute of Information Technology Hyderabad
{likhith.a, prashant.kodali}@research.iiit.ac.in

{ashna.dua, kapil.rajesh}@students.iiit.ac.in, m.shrivastava@iiit.ac.in

Abstract

Puns, as a linguistic phenomenon, hold signif-
icant importance in both humor and language
comprehension. While extensive research has
been conducted in the realm of pun generation
in English, there exists a notable gap in the ex-
ploration of pun generation within code-mixed
text, particularly in Hindi-English code-mixed
text. This study addresses this gap by offering a
computational method specifically designed to
create puns in Hindi-English code-mixed text.
In our investigation, we delve into three dis-
tinct methodologies aimed at pun generation
utilizing pun-alternate word pairs. Furthermore,
this novel dataset, HECoP, comprising of 2000
human-annotated sentences serves as a foun-
dational resource for training diverse pun de-
tection models. Additionally, we developed a
structured pun generation pipeline capable of
generating puns from a single input word with-
out relying on predefined word pairs. Through
rigorous human evaluations, our study demon-
strates the efficacy of our proposed models in
generating code-mixed puns. The findings pre-
sented herein lay a solid groundwork for future
endeavors in pun generation and computational
humor within diverse linguistic contexts.

1 Introduction

Puns, as a form of wordplay, play a central role in
humor and language comprehension by exploiting
phonetic or semantic ambiguity to create humor
through dual interpretations (Charina, 2017; Miller
et al., 2017). Puns are a linguistic tool that boosts
engagement and have a broad application in enter-
tainment, advertising, and literature (Korák, 2011;
Shanaieva-Tsymbal, 2021; Bulut and Almabrouk,
2020).

Although computational approaches have made
strides in pun generation and detection in English,
especially with recent advancements in Large Lan-
guage Models (Tian et al., 2022; Zeng et al., 2024),
pun generation remains largely unexplored in low-

resource languages. Code-mixed text, a com-
mon phenomenon in bilingual communities, is one
such low-resource setting that presents unique chal-
lenges. Bilingual speakers code-mix for a range of
sociolinguistic and pragmatic purposes, including
the expression of emotions such as anger, humor,
and sarcasm, among other motivations (Viscaíno,
2011; Williams et al., 2019). Given the utility
of code-mixing in expressing humor and a range
of emotions, the computational analysis of code-
mixed puns offers an intriguing challenge. Effec-
tive pun generation in this context requires models
that can align phonetic similarities and interpret
contextual cues across both languages to produce
coherent and meaningful humor, making it even
more challenging than pun generation in a standard
multilingual setting.

Our work addresses the gap in code-mixed pun
generation by presenting a novel computational ap-
proach for generating Hindi-English code-mixed
puns. We propose three methodologies for generat-
ing puns in code-mixed text, each designed to cre-
ate puns from phonetically similar Hindi-English
word pairs. All three approaches utilize a founda-
tional Large Language Model (LLM). Our findings
reveal that: a) LLMs when directly prompted (base-
line method), do not perform well for generating
code-mixed puns (19.8% pun success rate); b) Our
innovative method surpasses basic baseline prompt-
ing, achieving pun success rates of 38.8%, 62.6%,
and 43%.

Further, leveraging these techniques our research
introduces a new dataset, HECoP (Hindi English
CodeMixed Puns), containing 2,000 machine-
generated sentences designed for training and eval-
uating code-mixed pun generation. For every sam-
ple, we gather human assessments on whether it
is a pun, along with its level of funniness and nat-
uralness. We also tested and compared various
pre-trained multilingual models, such as XLM-R
and mBERT, on HECoP, highlighting their effec-

32

tiveness in detecting puns in code-mixed contexts.
Additionally, we developed a structured pun gen-

eration pipeline that creates puns from a single
input word, using phonetic matching, compatibility
scoring, and sentence filtering to ensure humor and
contextual relevance. Human evaluations confirm
that our approach significantly outperforms base-
line models, delivering high-quality Hindi-English
code-mixed puns.

To the best of our knowledge, this is the first
study to explore pun generation in a code-mixed
setting, providing a novel dataset with human anno-
tations and a framework for detecting and creating
valid code-mixed puns.1

2 Related Work

Pun generation has evolved from template-driven
approaches to sophisticated Transformer-based
models. Early systems, such as JAPE-1 (Binsted
and Ritchie, 1994), used fixed templates to gener-
ate puns, leveraging phonetic or semantic similar-
ity in structured formats, but these methods were
limited by their reliance on manually crafted tem-
plates. Later approaches, like T-PEG (Agustini
and Manurung, 2012) and T-Peg (Hong and Ong,
2008), automated the extraction of linguistic pat-
terns from human-generated puns, creating tem-
plates with moderate success but still constrained
by template rigidity.

Recent research has explored various neural ap-
proaches for automatic pun generation. Yu et al.
2018 proposed a neural language model to generate
homographic puns without requiring pun-specific
training data. He et al. 2019a applied the surprisal
principle in an unsupervised model, achieving a
30% success rate in human evaluations. Luo et al.
2019 introduced Pun-GAN, an adversarial gen-
erative network designed to generate puns with
multiple word senses simultaneously, improving
both quality and diversity compared to template-
based methods. Other works focused on generat-
ing context-situated puns, where Sun et al. 2022
proposed a pipeline system including a pun word
retrieval module and a pun generation module. Mit-
tal et al., 2022 introduced AmbiPun, an approach
that generates puns by creating ambiguous con-
texts using dictionary search and one-shot GPT3,
achieving a 52% success rate. Expanding on these
methods, our work introduces pun generation in

1The code and data proposed in this paper can
be found at https://github.com/Likhith-Asapu/
Codemix-Pun-Generation

a code-mixed setting. It also moves away from
the need for pre-defined pairs of alternate and pun
words required in prior approaches through our
proposed pipeline.

3 Task Formulation

Given a list of homophonic pairs of pun word Pw

and alternative word Aw across two language pairs
here namely Hindi and English, we seek to gener-
ate a list of Hindi-English code-mixed puns using
different methods. We follow the definition of pun
presented in Miller et al. (2017) where “A pun is a
form of wordplay in which one sign (e.g., a word
or a phrase) suggests two or more meanings by
exploiting polysemy, homonymy, or phonological
similarity to another sign, for an intended humor-
ous or rhetorical effect.” An example of a pun
following this definition is “My watch is stuck be-
tween 2 and 2.30. It’s a do or dhai situation” where
the pun word Pw is dhai and the alternative word
Aw is die. In this case, the humor arises from the
phonetic similarity between the Hindi word dhai
(which means two and a half, referencing 2:30 in
this context) and the English word die, creating a
playful twist on the phrase do or die.

4 Pun Generation

We adopt a three-step approach for generating
Hindi-English code-mixed puns: 1) Identification
of similar sounding words across a language pair,
2) Generation of candidate sentences with alternate
word Aw, 3) Replacement of Aw with Pw within
these candidate sentences.

4.1 Pun - Alternate Word List Collection

The first step in generating puns is to compile a
list of English and Hindi words that are phoneti-
cally similar but semantically distinct. While this
is straightforward in a monolingual setting as the
words share a common phonological system, code-
mixed scenarios require a novel approach to iden-
tify phonetically similar words across two distinct
languages.

To achieve this, we extracted English and Hindi
words from existing large-scale news monolin-
gual corpora of both languages (Goldhahn et al.,
2012). These words were subsequently converted
into their respective International Phonetic Alpha-
bet (IPA) representations using the epitrans library
(Mortensen et al., 2018), which implements a rule-
based system for phonetic transcription. However,

33

Hindi IPA English IPA Edit

पीपल (pīpal) /pi:p@l/ people /pi:p@l/ 0
िदल (dil) /dil/ deal /di:l/ 0
िबक (bik) /bik/ big /big/ 0
शौक (shock) /SO:k/ shack /Sæk/ 1
गुस्से (gusse) /gusse/ goose /gu:s/ ∞

Table 1: Examples of Hindi and English words with
their IPA transcriptions and Custom Levenshtein edit
distances between IPA forms.

as epitrans generates American English transcrip-
tions for English words, we employed a dictionary-
based mapping to convert these transcriptions into
their corresponding Indian English IPA symbols,
leveraging prior studies on Indian English phonol-
ogy (Jain et al., 2021; Grolman et al., 2021). Us-
ing Indian English IPA symbols, which align more
closely with Hindi phonology than American En-
glish, enhances the accuracy of phonetic matches
between English and Hindi words, thereby improv-
ing the relevance of generated puns.

To quantify the phonetic similarity between
Hindi and English words, we employed the Leven-
shtein edit distance (Ahmed et al., 2021). This dis-
tance measures the minimal number of operations-
substitutions, insertions, and deletions required to
convert one word into another. We use custom costs
for these operations. The substitution cost csub is
adjusted based on phonetic similarities, while the
insertion and deletion costs are set to infinity (∞) to
ensure comparisons are only made between words
with the same number of phonemes.

We define the custom substitution cost between
phones x and y as follows:

csub(x, y) =

0, if x and y are same phones ,
0, if x and y are allophones,
0, if x and y are long/short vowel pairs,
0, if x and y are voiced/unvoiced pairs,
1, otherwise.

Aspirated sounds (e.g., [th] and [t]) and breathy-
voiced variants (e.g., [d

¨
] and [d]) are treated as

allophones with a substitution cost of 0. Similarly,
long-short vowel pairs (e.g., [i:] and [i]) are as-
signed a cost of 0.2 This approach integrates lin-
guistic features like allophonic variation, vowel
length distinctions, and voicing contrasts, enabling
a more nuanced comparison of phonetic similarity
between Hindi and English word pairs.

2More examples can be found in Appendix A

We generated an initial candidate set S of Hindi-
English word pairs, denoted as (Pw, Aw), using a
custom edit distance, with the condition that the
phonetic distance is less than or equal to 1:

S = {(Pw, Aw) | d(p(Pw), p(Aw)) ≤ 1}

Here, Pw represents the Hindi pun word, Aw rep-
resents the English alternate word, and p(w) is the
IPA transcription of w. Subsequently, we manually
filtered this set to exclude cognates such as car
and कार (kaar) to arrive at a list of 500-word pairs
with distinct meanings. This filtered list serves
as the foundation for our pun generation exper-
iments, highlighting the crucial role of phonetic
alignment in creating effective puns, as empha-
sized in prior cross-linguistic pun studies (Zhou
et al., 2020; Jaech et al., 2016).

4.2 Candidate Sentence Generation

To incorporate homophonic word pairs into code-
mixed sentences, we developed three methodolo-
gies for pun generation: a) Contextually Aligned
Pun Generation (Sec. 4.2.1), b) Question-Answer
Pun Generation (Sec. 4.2.2), and c) Subject-
Masked Pun Generation (Sec. 4.2.3). We compare
these approaches against a Baseline Pun Genera-
tion method, which serves as a reference for evalu-
ating the effectiveness of each technique. All four
methods utilize GPT-4o with few-shot learning to
generate puns, leveraging its ability to produce con-
textually relevant outputs3. By employing varied
sentence formats, these methodologies help in gen-
erating diverse and engaging puns.

4.2.1 Contextually Aligned Pun Generation
In this approach, GPT-4o is prompted to gener-
ate five sentences, each ending with the English
word Aw. Furthermore, each sentence must in-
clude a context word Cw, the English translation
of Pw, serving as a contextual anchor to support
the pun word placed at the sentence’s end. For in-
stance, given the tuple (Aw, Pw, Cw), the prompt
is structured as follows: “Generate 5 creative Hindi-
English code-mixed sentences ending with the En-
glish word {Aw}. Include the English word {Cw}
as context in each sentence.” By specifying word
placement and contextual inclusion, this prompt fa-
cilitates the generation of sentences that align with
the desired structure.

3For illustrative examples of the prompts used in these
methodologies, refer to Appendix B

34

Pw/Aw Method Generated Sentence Label

भय/bye

Baseline ‘When fear knocks at your door, send faith to answer. कहो भय-भय, बाई-बाई!” 0
Contextually Aligned ‘मेरी लड़की की fear of heights ने हमारे adventure plan को भय कह िदया।” 1
Question-Answer ‘What do you call it जब तुम अपने डर को अलिवदा कहते हो?भय” 1
Subject-Masked ‘The डरपोक लड़की waved goodभय with a smile.” 1

लाश/lush

Baseline ‘The garden was so beautifully green, it was a लाश paradise!” 1
Contextually Aligned ‘जगंल में एक िनज�व dead body िमली, surrounded by एक लाश forest” 1
Question-Answer ‘What do you call a garden जो लाशों से भरा हो?लाश garden” 1
Subject-Masked ‘The भू�तया कि�स्तान was filled with लाश greenery” 1

Table 2: Illustrative examples of code-mixed puns generated using four distinct methods. The table presents the
word pair, method, generated sentence, and the corresponding label (0 for non-pun and 1 for pun). Detailed glosses
for Hindi words are provided in Table 13 in the Appendix for reference.

We add an additional filtering phase to confirm
that the sentences produced by the LLM in the
previous step qualify as puns and are fluent. The
filtering stage refines the outputs to identify the
most appropriate candidate where Pw can replace
Aw while maintaining grammatical and contextual
coherence. This process involves two stages: (1)
Part-of-Speech (POS)4 compatibility: ensuring Pw

and Aw share the same POS tag, which safeguards
grammatical consistency and if no sentences meet
this criterion, all generated sentences are retained
for the subsequent stage; (2) The pun word Pw

replaces Aw in the sentence, and candidates are
prioritized based on the placement of Pw at the sen-
tence’s end, as puns are typically more impactful
when positioned at the end of a sentence (Shahaf
et al., 2015; Mittal et al., 2022). This method en-
sures that the final output meets both POS compati-
bility and optimal pun placement criteria, maximiz-
ing the effectiveness of the generated puns.

For instance, given the tuple (Pw, Aw, Cw) =
(डेढ़, dead, one and a half), the process yields the
following sequence of transformations to generate
the pun:5

Prompt: Generate 5 creative Hindi-
English sentences ending with the word
‘dead’. Have the word ‘one and a half’
as a context in each of these sentences.
Final Pun: "मनेै one and a half litre
दधू ख़रीदा, but when i opened it, it was
already डेढ़."

4.2.2 Question-Answer Pun Generation
This method employs a structured approach to sys-
tematically generate puns in a question-answer for-

4Refer to Appendix C to see POS tagger details
5More detailed example provided in table 9 in Appendix

mat. The process consists of three key stages: gen-
erating a short phrase containing Aw, replacing Aw

with Pw in the generated phrase, and formulating a
question based on the transformed phrase.

The first stage involves generating a short phrase
that naturally incorporates Aw. This initial phrase
serves as the foundation for the subsequent trans-
formation. In the second stage, Aw in the generated
phrase is replaced by Pw. Replacement of Aw with
Pw introduces the pun, leveraging the linguistic
similarity or contextual contrast between the two
words, enabling the generated phrase to exploit
dual meanings or humor.

The third and final stage involves generating a
question that corresponds to the modified phrase,
completing the pun. GPT-4o is again employed
for this task, using its understanding of the context
to generate a question that makes the pun explicit
and amusing. Additionally, to cater to the code-
mixed nature of the task, a Hindi translation of the
question is produced. These steps are essential for
framing the pun within a question-answer format,
which not only heightens the humor but also adds
an element of surprise.

For instance, given the word pair (Pw, Aw) =
(गाय, guy), the process yields the following se-
quence of transformations to generate the pun:

Generated Small Phrase: A cool guy
Replaced Pun Word: A cool गाय
Generated Question: What do you call
a cow wearing sunglasses?
Generated Translated Question: Sun-
glasses पहने हुए cow को आप क्या कहते हैं?
Final Pun: Sunglasses पहने हुए cow को
आप क्या कहते हैं?A cool गाय

35

Model Suc(%) Fun. Accep.

Contextually Aligned 38.8 2.32 4.32
Question-Answer 62.6 2.59 4.28
Subject-Masked 43 2.24 4.54
Baseline 19.8 2.17 4.48

Table 3: Comparison of Success percentage(Suc%),
Mean Funniness score rated out of 5(Fun.), and Mean
Acceptability score rated out of 5(Accep.) for different
pun generation methods in Section 4.2.

4.2.3 Subject-Masked Pun Generation

This approach enhances the generation of code-
mixed Hindi-English puns by incorporating a
subject-masking step, which refines the contex-
tual alignment of the sentence subject with the
pun word, thereby improving coherence and hu-
mor. This approach unfolds in three key stages:
sentence generation, alternate word replacement,
and subject replacement.

The process begins by providing the language
model with a prompt designed to generate a short
sentence that ends with the alternate word Aw. Sub-
sequently, the alternate word Aw in the generated
sentence is replaced with the pun word Pw. This
substitution introduces the pun, similar to the pro-
cess in Section 4.2.2. The third and final stage
involves modifying the subject or noun phrase of
the sentence to enhance the relevance of the subject
and the pun word. This is achieved by masking the
original subject and replacing it with a noun phrase
generated in Hindi, thus, generating a pun with
a highly relevant subject. Additionally, replacing
the noun phrase with a translation in the alternate
language, such as Hindi, yields higher-quality code-
mixed sentences as noted in prior studies (Gupta
et al., 2018, 2020).

For instance, given the word pair (Pw, Aw) =
(लाख, luck), the process yields the following se-
quence of transformations to generate the pun:

Generated Short Sentence: The man
attributed all his success to luck
Replaced Alternate Word: The man
attributed all his success to लाख
Masked Subject: [MASK] attributed all
his success to लाख
Final Pun Sentence: The lucky अमीर
businessman attributed all his success to
लाख

4.2.4 Baseline Pun Generation
For the baseline model, we utilized GPT-4o with
few-shot prompting to generate puns based on
given word pairs (Pw, Aw). This method served as
a foundational approach for pun generation and pro-
vided a benchmark against which the performance
of other methods could be evaluated.

5 Annotation and Dataset Analysis

To ensure the development of a high-quality dataset
for pun detection, a structured annotation frame-
work was designed, enabling human annotators
to evaluate each generated pun across multiple di-
mensions, with particular emphasis on linguistic
coherence and humor quality. Four undergradu-
ate students participated in the annotation process.
Collecting these human judgments serves two pur-
poses: to assess and compare the performance of
the pun generation methods discussed above, and
to compile datasets for Pun Detection. To maintain
data quality, an initial pilot annotation phase was
conducted using 150 samples. During this phase,
annotators engaged in discussion and consensus-
building to resolve disagreements, which helped
establish standardized criteria and procedures be-
fore commencing full-scale annotation.

5.1 Annotation Guidelines

Each pun was evaluated on three criteria: (1) Pun
Success, (2) Funniness, and (3) Acceptability, fol-
lowing annotation guidelines adapted from prior
research (He et al., 2019b).

• Pun Success: This metric evaluates whether
the sentence successfully incorporates word-
play, measured on a binary scale with an ad-
ditional option for instances where the in-
tended pun is not constructed using the speci-
fied word pair. This assessment ensures that
the primary objective of creating a pun is
achieved.

• Funniness: The degree of humor elicited by
the pun is measured using a 5-point Likert
scale, ranging from “Not Funny” to “Hilari-
ous.” This metric captures the inherently sub-
jective nature of humor and assesses the effec-
tiveness of the pun in generating amusement.

• Acceptability: This metric evaluates the
grammatical accuracy and fluency of the code-
mixed text on a 5-point scale, from “Definitely

36

Model Validation Test

F1 Precision Recall Accuracy F1 Precision Recall Accuracy

1. Task-Specific Fine Tuning

XLM-R (Conneau et al., 2020) 67.81.18 69.51.16 69.00.96 69.00.96 67.11.12 68.01.14 69.01.25 69.01.25
mBERT (Devlin et al., 2019) 65.281.82 65.41.79 66.02.01 66.02.01 63.41.78 63.51.82 64.01.66 64.01.66
IndicBERT (Kakwani et al., 2020) 61.740.73 62.30.71 62.90.83 62.90.83 62.03.11 62.42.77 63.52.59 63.52.59

2. Transfer Learning + Task-Specific Fine Tuning

Hing-mBERT (Nayak and Joshi, 2022a) 64.52.22 65.31.57 65.21.65 65.21.65 65.11.74 66.40.64 65.42.19 65.42.19
Hing-Roberta (Nayak and Joshi, 2022a) 64.100.30 64.50.56 64.40.24 64.40.24 63.91.25 65.00.81 64.11.46 64.11.46
GCM-XLMR (Kodali et al., 2024) 61.632.00 63.22.12 63.91.59 63.91.59 60.11.27 62.20.69 62.60.63 62.60.63
GCM-mBERT (Kodali et al., 2024) 62.631.22 63.01.56 62.80.71 62.80.71 61.30.70 61.70.98 61.30.48 61.30.48
ACL-XLMR (Das et al., 2023) 64.010.79 64.20.43 64.90.52 64.90.52 63.32.05 63.82.11 64.52.15 64.52.15
ACL-mBERT (Das et al., 2023) 59.973.65 60.43.43 61.63.02 61.63.02 61.32.55 61.72.23 62.61.46 62.61.46

3. NLI-Based Models

BART-large-nli (Lewis et al., 2020) 64.901.42 65.51.79 66.21.95 66.21.95 62.01.92 62.52.11 63.62.28 63.62.28
roberta-large-nli (Liu et al., 2019) 62.732.29 62.72.40 63.32.76 63.32.76 63.11.59 63.11.65 63.61.27 63.61.27

4. Few-Shot Learning

IndicBART (Dabre et al., 2022) 54.51.71 54.51.71 55.81.78 55.81.78 53.61.69 53.11.65 53.91.70 53.91.70
mBART (Liu et al., 2020) 55.51.81 55.21.74 54.31.73 54.31.73 54.31.73 54.01.71 54.61.74 54.61.74
Llama-3.2-1B (Touvron et al., 2023) 50.52.09 50.12.46 53.52.09 53.52.09 51.52.98 52.21.85 56.51.89 56.51.89
Airavata (Gala et al., 2024) 51.92.79 51.84.27 56.72.41 56.72.41 60.53.11 60.72.36 61.12.34 61.12.34

Table 4: Performance comparison of different models for pun detection, grouped by model type. Class Weighted
Metrics (F1, Precision, Recall, Accuracy) are presented for both Validation and Test datasets, with subscripts
indicating standard deviation.

Unacceptable” to “Definitely Acceptable and
Very Fluent.” Ensuring linguistic coherence
and readability is critical particularly in the
context of code-mixed text.

To ensure the reliability and consistency of the
annotations, inter-annotator agreement was mea-
sured using Fleiss Kappa coefficient(Fleiss and
Cohen, 1973)(κ = 0.487), suggesting moderate
agreement. We also calculated the Average Pair
Wise Percentage Agreement to be 72.2% which
shows a high degree of agreement.

5.2 Pun Generation Evaluation

In Section 4.2 we described various methods to
generate Hindi-English code-mixed puns. To un-
derstand which methods fare well in generating
good puns we evaluated the generated puns using
three quantitative metrics: (1) Success Percentage
(Percentage of successful puns generated by the
method), (2) Mean Funniness Score (out of 5), and
(3) Mean Acceptability Score (out of 5), as shown
in Table 3.

The Baseline method exhibited the lowest per-
formance, achieving a Success Percentage of 19.8%
and a Mean Funniness Score of 2.17, frequently
failing to effectively utilize the pun-alternate word
pair and often producing nonsensical outputs. The

Question-Answer method achieved the highest
Success Percentage (62.6%) and Mean Funniness
Score (2.59), due to its structured question-answer
format, which naturally highlights wordplay and
humor while maintaining contextual relevance.
The Subject-Masked method scored highest in Ac-
ceptability (4.54) by ensuring contextual coherence
through subject adjustment, but achieved a lower
Success Percentage (43%) as it sometimes con-
strained humor to only the subject and pun word.
The Contextually Aligned method, which required
generating sentences with two specific words, faced
complexity in maintaining coherence, leading to
lower Success (38.8%) and Acceptability (4.32)
scores.

Overall, our proposed methods significantly out-
performed the baseline, with structured approaches
like Question-Answer excelling in humor gener-
ation, while methods such as Subject-Masked,
achieved superior grammatical coherence.

6 Pun Detection

Having created the dataset, we wanted to evaluate
if language models can be trained to detect code-
mixed pun sentences. To this end, we trained vari-
ous pre-trained multilingual language models. The
annotated dataset was split into training (70%), de-
velopment (20%), and test (10%) sets. Each model

37

was evaluated using standard class-weighted met-
rics (F1 score, precision, recall, and accuracy).

6.1 Models and Methodologies
Four principal methodologies were applied for pun
detection:

• Task-specific Fine-tuning for Encoder-
based Models: Encoder-based models, such
as XLM-R and mBERT, were fine-tuned
specifically for the pun detection task, lever-
aging their pre-trained multilingual features
to distinguish pun structures effectively.

• Transfer Learning + Task-Specific Fine-
tuning: Encoder-based models continued pre-
trained on large scale code-mixed corpora pre-
sented by Nayak and Joshi, 2022b (Hing mod-
els), Das et al., 2023 (ACL Models) and Ko-
dali et al., 2024 (GCM models) were further
fine-tuned for pun detection. This approach
aimed to transfer relevant linguistic and con-
textual knowledge to enhance the detection of
code-mixed puns.

• Natural Language Inference (NLI) for NLI-
based Models: NLI-based models, including
BART-nli, were assessed for their capacity
to produce sentence embeddings, which may
help capture semantic nuances crucial for un-
derstanding puns, especially in code-mixed
contexts.

• Few-shot Learning for Decoder and
Encoder-Decoder Models: Both decoder-
only models (e.g., Airavata, LLaMA) and
encoder-decoder models (e.g., IndicBART,
mBART) were employed using few-shot learn-
ing to detect puns, leveraging minimal labeled
data and generative capabilities.

6.2 Performance Evaluation
Model performances were evaluated on both de-
velopment and test sets, with results presented in
Table 4. Each model was evaluated three times
on shuffled datasets constructed from 3 random
seeds, and the scores were averaged with standard
deviations shown as subscripts.

The Task-Specific Fine-tuning approach
demonstrated superior performance across most
metrics, with XLM-R achieving the highest F1
scores and accuracy on both validation (67.8%)
and test sets (67.1%). Transfer learning combined

with task-specific fine-tuning also produced
competitive results, particularly for Hing-mBERT,
which achieved an F1 score of 64.5% on the
validation set and 65.1% on the test set.

For NLI-based models, BART-large-nli outper-
formed other models in this category, with a vali-
dation F1 score of 64.9%. However, it fell slightly
short on the test set (62.0%). Few-shot learning
approaches, while effective in resource-scarce set-
tings, exhibited comparatively lower performance.

7 Automating Code-Mixed Pun
Generation

Methods outlined in Section 4.2 are effective for
producing code-mixed puns. However, a constraint
is that the procedure presumes that phonetically
similar word pairs have already been identified and
compiled. Such a constraint might limit the ex-
tension of this approach to additional code-mixed
language pairs or multilingual contexts. Hence, to
further refine and partially automate the pun gener-
ation process, we propose a pipeline that generates
code-mixed Hindi-English puns given only an in-
put Hindi pun word. This pipeline comprises three
key stages: (1) Selection of phonetically similar
English candidates, (2) Compatibility scoring of
pun-alternate word pairs, and (3) Sentence genera-
tion and filtering.

7.1 Phonetically Similar Word Selection
The pipeline begins by identifying English words
phonetically similar to the input Hindi pun word
Pw, as detailed in Section 4.1. Using the custom
phonetic edit distance metric described, the model
retrieves the top 5 English candidates from a large-
scale lexicon, selecting those with the lowest scores.
This ensures that the alternate words Aw are pho-
netically aligned with Pw, enabling the generation
of natural and contextually humorous puns.

7.2 Training a Compatibility Scoring Model
The next stage involves identifying the most com-
patible English alternate word Aw for a given Hindi
pun word Pw. To do this we trained a scoring
model to compute a compatibility score for pun-
alternate word pairs. We trained the scoring model
on the 500 pairs obtained in Section 4.1 where the
compatibility score ranged from 0 to 4 indicating
the number of methods from section 4.2 that were
successful in generating a pun for a given pair.

The compatibility model employs a feature set
that includes:

38

Figure 1: Overview of the proposed code-mixed pun generation pipeline, comprising of: (1) Word Pair Selection,
which identifies phonetically similar English candidates for the input Hindi pun word and selects the most compatible
pair (2) Pun Generation, which creates, filters, and selects the most contextually humorous sentence

• BERT Embedding: Contextualized word em-
beddings for both Pw and Aw, capturing se-
mantic relationships essential for humor.

• POS Compatibility: Part-of-speech tags en-
coded as one-hot vectors, based on the univer-
sal POS tag set.

The outputs for the two words are concatenated
and fed into a neural regression model with two hid-
den layers (dimensions: 512 and 256) optimized for
mean squared error (MSE). This model evaluates
compatibility scores to identify the most suitable
English alternate word (Aw) to serve as the pun
counterpart for Pw.

7.3 Sentence Generation and Filtering

Once a compatible word pair (Pw, Aw) is identi-
fied, we generate candidate sentences incorporating
this pair using the methods described in Section 4.2.
After generation, the candidate sentences undergo
a filtering process to select the most effective pun.
Specifically, we use the XLM-R model, trained on
the pun classification task from section 6, to assign
a confidence score to each candidate sentence, with
the sentence receiving the highest confidence score
chosen as the final pun candidate.

7.4 Evaluation

To assess the efficacy of our pun generation
pipeline, we compared it with a baseline model
in which GPT-4o is prompted directly to generate a
pun using only the given pun word Pw, without ad-
ditional contextual constraints. The outputs of our
proposed pipeline and the baseline were directly
compared in a human evaluation, where the annota-
tors were asked to rate the funniness of each output
and determine which sentence was the better pun
overall.

Model Win Rate (%) Avg. Funniness

Proposed Model 67.65 1.79
Baseline Model 32.35 0.91

Table 5: Human evaluation results comparing the pro-
posed pipeline with the baseline model. Average Funni-
ness was rated out of 5.

As shown in Table 5, human evaluation demon-
strates that the proposed pipeline significantly out-
performed the baseline, achieving a win rate of
67.65% over 50 evaluated samples. The win rate
(Wrate) is calculated as:

Wrate =
Nmodel

Npun
× 100

39

Where Nmodel represents the number of instances
where the model’s output was preferred, and Npun
denotes the total instances where at least one model
produced a valid pun. The baseline struggles to
generate quality puns even when constrained to
a single pun word and often produces sentences
where the pun word is not used as a pun. In con-
trast, our method consistently avoids such errors,
ensuring humor and contextual coherence in Hindi-
English code-mixed puns, further highlighting the
utility of HECoP.

8 Conclusion and Future Work

This study proposed a structured approach for
generating Hindi-English code-mixed puns by
leveraging phonetic similarity matching between
Hindi and English words. These pairs were in-
tegrated into structured sentence generation tech-
niques, such as context-aligned, question-answer,
and subject-masked prompts, embedding humor
naturally in code-mixed contexts.

For pun detection, we evaluated multiple mod-
els, with encoder-based approaches like XLM-R
and mBERT performing strongly, highlighting the
effectiveness of fine-tuning for humor recogni-
tion. Additionally, our automated pun generation
pipeline, combining phonetic matching, compat-
ibility scoring, and sentence filtering, produced
contextually relevant puns. Human evaluation
confirmed that this approach significantly outper-
formed the baseline, demonstrating its potential for
high-quality code-mixed pun generation.

Future work could explore expanding the dataset
to cover additional code-mixed language pairs and
incorporating advanced multilingual LLMs to fur-
ther enhance pun quality and detection perfor-
mance.

Limitations

The reliance on robust models like GPT-4o may
be less effective for low-resource languages, and
adapting the approach to other language pairs could
be challenging due to issues like unavailable pho-
netic transcriptions or script-to-IPA mappings. Ad-
ditionally, our focus on specific pun techniques
does not cover subword-level puns or more com-
plex wordplay.

References
Try Agustini and Ruli Manurung. 2012. Automatic

evaluation of punning riddle template extraction. In

International Conference on Innovative Computing
and Cloud Computing.

Tafseer Ahmed, Muhammad Nizami, Muham-
mad Yaseen Khan, and Alessandro Bogliolo. 2021.
Discovering lexical similarity using articulatory
feature-based phonetic edit distance. IEEE Access,
10:1533 – 1544.

Kim Binsted and Graeme D. Ritchie. 1994. An imple-
mented model of punning riddles. ArXiv, abs/cmp-
lg/9406022.

Turkay Bulut and Najah A. Almabrouk. 2020. The
functions of puns in "alice’s adventures in wonder-
land". The Reading Matrix : an International Online
Journal, 20:172–185.

Intan Nur Charina. 2017. Lexical and syntactic ambi-
guity in humor. International Journal of Humanity
Studies (IJHS).

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsuper-
vised cross-lingual representation learning at scale.
Preprint, arXiv:1911.02116.

Raj Dabre, Himani Shrotriya, Anoop Kunchukuttan,
Ratish Puduppully, Mitesh Khapra, and Pratyush Ku-
mar. 2022. Indicbart: A pre-trained model for indic
natural language generation. In Findings of the As-
sociation for Computational Linguistics: ACL 2022.
Association for Computational Linguistics.

Richeek Das, Sahasra Ranjan, Shreya Pathak, and
Preethi Jyothi. 2023. Improving pretraining tech-
niques for code-switched NLP. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1176–1191, Toronto, Canada. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Joseph L. Fleiss and Jacob Cohen. 1973. The equiva-
lence of weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educational
and Psychological Measurement, 33(3):613–619.

Jay Gala, Thanmay Jayakumar, Jaavid Aktar Husain,
Aswanth Kumar M, Mohammed Safi Ur Rahman
Khan, Diptesh Kanojia, Ratish Puduppully, Mitesh M.
Khapra, Raj Dabre, Rudra Murthy, and Anoop
Kunchukuttan. 2024. Airavata: Introducing hindi
instruction-tuned llm. Preprint, arXiv:2401.15006.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at the
Leipzig corpora collection: From 100 to 200 lan-
guages. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation

40

(LREC’12), pages 759–765, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Marina Borisovna Grolman, Zubayda Albertovna, Bik-
tagirova, Olimjon Habibovich, and Kasimov. 2021.
Phonetic peculiarities of the english language in in-
dia.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
2267–2280, Online. Association for Computational
Linguistics.

Deepak Gupta, Pabitra Lenka, Asif Ekbal, and Push-
pak Bhattacharyya. 2018. Uncovering code-mixed
challenges: A framework for linguistically driven
question generation and neural based question an-
swering. In Proceedings of the 22nd Conference on
Computational Natural Language Learning, pages
119–130, Brussels, Belgium. Association for Compu-
tational Linguistics.

He He, Nanyun Peng, and Percy Liang. 2019a. Pun
generation with surprise. In North American Chapter
of the Association for Computational Linguistics.

He He, Nanyun Peng, and Percy Liang. 2019b. Pun
generation with surprise. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1734–1744, Minneapolis, Minnesota.
Association for Computational Linguistics.

Bryan Anthony Hong and Ethel Ong. 2008. Generating
punning riddles from examples. 2008 Second Inter-
national Symposium on Universal Communication,
pages 347–352.

Aaron Jaech, Rik Koncel-Kedziorski, and Mari Osten-
dorf. 2016. Phonological pun-derstanding. pages
654–663.

Shelly Jain, Aditya Yadavalli, Ganesh Mirishkar, Chi-
ranjeevi Yarra, and Anil Kumar Vuppala. 2021. IE-
CPS lexicon: An automatic speech recognition ori-
ented Indian-English pronunciation dictionary. In
Proceedings of the 18th International Conference
on Natural Language Processing (ICON), pages
195–204, National Institute of Technology Silchar,
Silchar, India. NLP Association of India (NLPAI).

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M.
Khapra, and Pratyush Kumar. 2020. IndicNLP-
Suite: Monolingual corpora, evaluation benchmarks
and pre-trained multilingual language models for
Indian languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4948–4961, Online. Association for Computational
Linguistics.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. GLUECoS: An evaluation benchmark for
code-switched NLP. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3575–3585, Online. Association
for Computational Linguistics.

Prashant Kodali, Anmol Goel, Likhith Asapu,
Vamshi Krishna Bonagiri, Anirudh Govil, Monojit
Choudhury, Manish Shrivastava, and Ponnurangam
Kumaraguru. 2024. From human judgements to pre-
dictive models: Unravelling acceptability in code-
mixed sentences. Preprint, arXiv:2405.05572.

Jan Korák. 2011. Word play in advertising: A linguistic
analysis.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Fuli Luo, Shunyao Li, Pengcheng Yang, Lei Li, Baobao
Chang, Zhifang Sui, and Xu Sun. 2019. Pun-gan:
Generative adversarial network for pun generation.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Tristan Miller, Christian Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 task 7: Detection
and interpretation of English puns. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 58–68, Vancouver,
Canada. Association for Computational Linguistics.

Anirudh Mittal, Yufei Tian, and Nanyun Peng. 2022.
AmbiPun: Generating humorous puns with ambigu-
ous context. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1053–1062, Seattle, United States.
Association for Computational Linguistics.

David R. Mortensen, Siddharth Dalmia, and Patrick
Littell. 2018. Epitran: Precision G2P for many lan-
guages. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation

41

(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Ravindra Nayak and Raviraj Joshi. 2022a. L3cube-
hingcorpus and hingbert: A code mixed hindi-
english dataset and bert language models. Preprint,
arXiv:2204.08398.

Ravindra Nayak and Raviraj Joshi. 2022b. L3cube-
hingcorpus and hingbert: A code mixed hindi-
english dataset and bert language models. ArXiv,
abs/2204.08398.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald.
2011. A universal part-of-speech tagset. ArXiv,
abs/1104.2086.

Dafna Shahaf, Eric Horvitz, and Robert Mankoff. 2015.
Inside jokes: Identifying humorous cartoon captions.
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing.

L. Shanaieva-Tsymbal. 2021. A persuasive force of
puns in british advertising. Mìnarodnij fìlologìnij
asopis.

Jiao Sun, Anjali Narayan-Chen, Shereen Oraby,
Shuyang Gao, Tagyoung Chung, Jing huan Huang,
Yang Liu, and Nanyun Peng. 2022. Context-situated
pun generation. ArXiv, abs/2210.13522.

Yufei Tian, Divyanshu Sheth, and Nanyun Peng. 2022.
A unified framework for pun generation with hu-
mor principles. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
3253–3261, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

María José García Viscaíno. 2011. Humor in code-
mixed airline advertising. Pragmatics, 21:145–170.

Aya Williams, Mahesh Srinivasan, Chang Liu, Pearl
Lee, and Qing Zhou. 2019. Why do bilinguals code-
switch when emotional? insights from immigrant
parent-child interactions. Emotion, 20(5):830–841.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. Preprint, arXiv:1910.03771.

Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. 2018. A neural
approach to pun generation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1650–1660, Melbourne, Australia. Association for
Computational Linguistics.

Jingjie Zeng, Liang Yang, Jiahao Kang, Yufeng Diao,
Zhihao Yang, and Hongfei Lin. 2024. barking up the
right tree, a gan-based pun generation model through
semantic pruning. In International Conference on
Language Resources and Evaluation.

Yichao Zhou, Jyun-Yu Jiang, Jieyu Zhao, Kai-Wei
Chang, and Wei Wang. 2020. “the boating store had
its best sail ever”: Pronunciation-attentive contextu-
alized pun recognition. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 813–822, Online. Association for
Computational Linguistics.

42

A Phonetic Substitution Rules

The phonetic substitutions outlined in the three ta-
bles American English to Indian English Substitu-
tion Table, Vowel Substitution Table and Consonant
Substitution Table were integral to the methodol-
ogy described in Section 4.1. The phone pairs in
the vowel and consonant table have a substitution
cost of 0 as described in Section 4.1.

American English to Indian English The Amer-
ican English to Indian English Substitution Table
(Table 6) addressed differences between American
and Indian English phonologies. By converting
American English IPA transcriptions into Indian
English IPA symbols, which align more closely
with Hindi phonology, this mapping enhanced the
relevance of phonetic comparisons and ensured
consistency with Indian English pronunciations.

Vowel Substitution The Vowel Substitution Ta-
ble (Table 7) provided mappings for vowel vari-
ations based on shared phonetic features, such
as vowel length distinctions, nasalization, and
stress differences. These substitutions reduced mis-
matches caused by phonological variations across
the two languages.

Consonant Substitution Finally, the Consonant
Substitution Table (Table 8) accounted for varia-
tions in voicing and aspiration. Substitutions be-
tween voiced and unvoiced pairs (e.g., [p] and [b],
[t] and [d]) and allophones (e.g., [th] and [t]) were
assigned a substitution cost of 0. This approach
allowed us to capture phonetically similar word
pairs while respecting linguistic variations.

By integrating these substitution rules into the
custom Levenshtein edit distance, we ensured a nu-
anced comparison of phonetic similarity, enabling
the identification of Hindi-English word pairs suit-
able for pun generation.

B Implementation Details for Pun
Generation Methods

The prompts and the examples of candidate sen-
tences generated by each of the methods in Sec-
tion 4.2 are given in Table 9 for Contextually
Aligned Pun Generation (Section 4.2.1), Table 10
for Question-Answer Pun Generation (Section 10),
Table 11 Subject-Masked Pun Generation (Section
4.2.3) and Table 12 for Baseline Pun Generation
(Section 4.2.4). Refer to the System prompts in
these tables to understand the pun generation pro-

cess for Question-Answer and Subject-Masked Pun
Generation.

For generating code-mixed text in all three meth-
ods, we initially experimented with several mul-
tilingual and code-mixed text generation models,
including Airavata, LLaMA, Gemma, Gemini, and
GPT-4o. Among the models evaluated, GPT-4o
demonstrated superior performance in generating
coherent and linguistically appropriate code-mixed
text, making it the preferred choice for our experi-
ments. This model was used for all pun generation
methods in Section 4.2. The generation process
used a temperature setting of 1.0 to balance creativ-
ity and coherence in the outputs.

C POS Tagger Details

To ensure grammatical consistency in our pun gen-
eration pipeline, we developed a Part-of-Speech
(POS) tagger specifically tailored for Hindi-English
code-mixed text. The tagger was trained on the
GLUECoS benchmark dataset (Khanuja et al.,
2020), which provides high-quality annotations
for POS tagging in code-mixed language. For the
model architecture, we employed a base XLM-
RoBERTa (XLMR) model, leveraging its strong
multilingual capabilities to handle the intricacies
of code-mixed Hindi-English data.

The training process was conducted over five
epochs, optimizing the model to recognize and clas-
sify tokens into the Universal POS tag set (Petrov
et al., 2011). This tag set, with its standardized
categories, ensures compatibility and consistency
across linguistic resources. The trained model
achieved an accuracy of 91% on the GLUECoS
benchmark, demonstrating its effectiveness in ac-
curately tagging code-mixed text.

D Annotation Guidelines

We include a screenshot of the annotation page (Fig-
ure 2) corresponding to the guidelines described
in Section 5.1. Additionally, a screenshot of the
annotation page (Figure 3) used for the evaluation
process described in Section 7.4 is also provided.

E Pun Classifier Implementation Details

We fine-tuned multiple pre-trained multilingual
language models for the task of detecting code-
mixed pun sentences. The models employed in this
study included XLM-R, mBERT, IndicBERT, nat-
ural language inference (NLI)-based models such
as BART-large-nli and roberta-large-nli, as well as

43

generation-based models like Airavata, LLaMA,
and IndicBART. Model checkpoints were accessed
and managed using the HuggingFace Transformers
library (Wolf et al., 2020). All experiments were
conducted using 4 NVIDIA GeForce RTX 2080 Ti
GPUs to ensure computational efficiency.

Task-Specific Fine-Tuning For encoder-based
models (e.g., XLM-R, mBERT, IndicBERT) and
NLI-based models (e.g., BART-large-nli, roberta-
large-nli), we fine-tuned the models using a batch
size of 16 for training and 32 for evaluation. The
training process involved a warmup phase of 500
steps, a weight decay rate of 0.01, and mixed-
precision training (fp16) to optimize computational
performance. Models were trained for 30 epochs,
and the checkpoint with the highest accuracy on
the development set was selected for inference on
the test set.

Few-Shot Learning for Generative Models For
decoder-only models (e.g., Airavata, LLaMA)
and encoder-decoder models (e.g., IndicBART,
mBART), we employed few-shot learning method-
ologies. The models were provided with prompts
containing labeled examples as input. During infer-
ence, we utilized beam search with a beam size of
5, temperature sampling (temperature = 1.0), and
nucleus sampling (top-p = 0.9) to generate predic-
tions.

Dataset Splits and Evaluation Metrics The an-
notated dataset was divided into training (70%),
development (20%), and test (10%) sets. Model
performance was evaluated using class-weighted
F1-score, precision, recall, and accuracy metrics.
To address the class imbalance in the dataset, a
weighted loss function was employed during train-
ing. Specifically, higher weights were assigned to
the minority class (pun) by computing the weight
as NnotPun/Npun, where Npun and NnotPun de-
note the number of samples in the pun and non-pun
classes, respectively. Each model was evaluated
on the dataset split using three different random
seeds. The models were trained and tested three
times, and the scores were averaged to ensure the
robustness of the results. We report the mean and
standard deviation of these scores in Table 4.

F Compatibility Scorer Implementation
Details

The compatibility scoring model was trained to
compute the compatibility score for pun-alternate

word pairs, as detailed in Section 4.1. The train-
ing dataset comprised 500 pairs, annotated with
scores ranging from 0 to 4, representing the num-
ber of methods from Section 4.2 that successfully
generated a pun for the given pair.

Model Architecture The model’s input features
included contextualized embeddings for Pw and
Aw, extracted using a pretrained BERT model. Ad-
ditionally, part-of-speech (POS) tags for both Pw

and Aw were encoded as one-hot vectors based on
the universal POS tag set. The embeddings and
POS features were concatenated into a single fea-
ture vector of size 1550 (775 dimensions for each
word embedding - 768 from BERT and 7 for POS).

The neural architecture of the compatibility
model consisted of two fully connected hidden lay-
ers. The first hidden layer contained 512 units,
followed by a second hidden layer with 256 units,
both employing ReLU activation functions. The fi-
nal output layer was a single unit that predicted the
compatibility score using a regression approach.
Mean squared error (MSE) was used as the loss
function to optimize the model’s performance.

Training Hyperparameters Training was per-
formed using a total of 100 epochs. An early stop-
ping mechanism was employed with a patience of
5 epochs and a threshold of 0.001. The dataset was
split into 90% training and 10% testing subsets, and
the model was trained using the Adam optimizer
with a batch size of 32.

Other Experimented Models We explored var-
ious feature representations and architectures to
identify the optimal configuration for compatibility
scoring. These included using BERT embeddings
alone, combining static FastText word embeddings
with POS tags, and employing a Siamese network
architecture on BERT + POS embeddings. Among
all approaches, the standard BERT + POS feature
set achieved the best performance, with a minimum
MSE loss of 0.82 on the validation set.

44

American English IPA Indian English IPA

eI e:
oU, ow o:
A O
2 a
D d

¨E e
h H
i i:
I i
ô r
t ú
T th

u u:
U u
w v
N Ng

Table 6: American English to Indian English Substitutions.

45

Original IPA Vowel Mapped IPA Vowel

@, a:, ã, ã:, 6, 6:, 2 a
æ, æ: ae
e:, ẽ, E, E: e
i:, I, y i
O:, O, o: o
U, u: u

Table 7: Vowels Mapping Table.

46

Original IPA Mapped IPA
h .
H h
p b
b
¨

b
T, t, ú d
D, ã, ó, d

¨
d

k, q, x g
å, G, g

¨
g

w, f v
S, Z

¨
Z

>
Ã,

>
Ã
¨

,
>
tS Z

J, ç j
s z
ï, ñ, ñ, N, ð n
l, í l
R, ô, õ, ô

"
, r

"
r

Table 8: Consonant Mapping Table. The first phone aspirated [h] is mapped to an empty phone hence . is present in
it place

47

Contextually Aligned Pun Generation
Prompt for tu-
ple (Pw, Aw, Cw)

Generate 5 creative Hindi-English code-mixed pun-style sentences ending with the
english word ‘{Aw}’. Have the english word ‘{Cw}’ as a context in each of these
sentences. Ensure the word ‘{Aw}’ occurs after the word ‘{Cw}’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.

Prompt Examples
for few shot gener-
ation

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’share’. Have the english word ’lion’ as a context in each of these
sentences. Ensure the word ’share’ occurs after the word ’lion’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.
Assistant: 1. Jungle में lion का status high ह,ै पर उसकी fame को भी एक अच्छा सा
share चािहए! 2. Lion अपने territory को protect करता ह,ै लेिकन कभी-कभी उसको अपनी

success का share भी देना पड़ता ह.ै 3. अगर lion के साथ photo �खचनी ह,ै तो उसके साथ

share भी करना पडे़गा! 4. Lion की leadership को challenge करना ह,ै तो उसका power

share भी जरूरी ह!ै 5. Lion की roar की आवाज सुनी ह,ै तो उसका impact share करना भी

तो पडे़गा!

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’bat’. Have the english word ’chair’ as a context in each of these
sentences. Ensure the word ’bat’ occurs after the word ’chair’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.
Assistant: 1. उसने कहा, "When I have enough money in my pocket, it feels like

my luck is always on my side." 2. मेरे friend ने मजाक में कहा, "Money can buy you

almost everything, but you still need a bit of luck." 3. आजकल money की कमी तो

सबको ह,ै पर luck से सब कुछ िमलता ह।ै 4. �जतना भी invest करो, कभी न कभी तो िमलेगी

तुम्हें money with a bit of luck! 5. अगर तुम्हारे पास money नहीं ह,ै तो बस तुम्हें चािहए

थोड़ा सा luck!

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’bat’. Have the english word ’chair’ as a context in each of these
sentences. Ensure the word ’bat’ occurs after the word ’chair’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.
Assistant: 1. जब वह अपनी comfy chair पर बठैा, उसने सोचा, "I really need a better

bat to improve my game." 2. उसने अपनी favorite chair पर बठैते हुए कहा, "This chair

is perfect, but I could really use a new bat." 3. Chair पर आराम करते हुए उसने कहा,

"Yaar, I wish I had a bat like that for my cricket matches." 4. उसने अपनी chair पर

बठैते हुए कहा, "This chair is great for relaxing, but I'm missing a good bat." 5. जसेै

ही वह chair से उठा, उसने अपने भाई से पूछा, "Have you seen my cricket bat around

here?"

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’book’. Have the english word ’hunger’ as a context in each of these
sentences. Ensure the word ’book’ occurs after the word ’hunger’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.

48

Assistant: 1. जब भी late-night की hunger शुरू होती ह,ै मैं तुरतं अपने favorite snack

ideas book को open कर लेता हँू। 2. Office के काम के बाद, जब hunger मुझसे िमलती

ह,ै तो मैं always अपनी comfort food recipe book देखता हँू। 3. िदनभर की मेहनत के बाद,

hunger से deal करने के �लए मैंने एक खास meal prep book खरीदी। 4. अगर weekend पर

hunger strike कर,े तो एक quick fixes की book मेरे पास हमेशा ready रहती ह।ै 5. शाम की

hunger को curb करने के �लए, मैंने recently एक new healthy eating book buy की ह।ै

User: Generate 5 creative Hindi-English code-mixed pun-style sentences ending with
the english word ’deal’. Have the english word ’heart’ as a context in each of these
sentences. Ensure the word ’deal’ occurs after the word ’heart’. Avoid providing
English translations. Make sure to write the English words in roman script and Hindi
words in Devanagari. Maintain a balanced 1:1 ratio between hindi and english words.
Assistant: 1. जब भी late-night की hunger शुरू होती ह,ै मैं तुरतं अपने favorite snack

ideas book को open कर लेता हँू। 2. Office के काम के बाद, जब hunger मुझसे िमलती

ह,ै तो मैं always अपनी comfort food recipe book देखता हँू। 3. िदनभर की मेहनत के बाद,

hunger से deal करने के �लए मैंने एक खास meal prep book खरीदी। 4. अगर weekend पर

hunger strike कर,े तो एक quick fixes की book मेरे पास हमेशा ready रहती ह।ै 5. शाम की

hunger को curb करने के �लए, मैंने recently एक new healthy eating book buy की ह।ै

Example Pun Fil-
tering Process for
(Pw, Aw, Cw) =
(डेढ़, dead, one and
a half)

Prompt: Generate 5 creative Hindi-English code-mixed pun-style sentences ending
with the english word ’dead’. Have the english word ’one and a half’ as a context in
each of these sentences. Ensure the word ’dead’ occurs after the word ’one and a half’.
Avoid providing English translations. Make sure to write the English words in roman
script and Hindi words in Devanagari. Maintain a balanced 1:1 ratio between hindi
and english words.
Response after POS filtering:
"उसने one and a half ghante सोच समझकर नया laptop खरीदा, और वो बाद में एक और

आधा डेढ़ हो गया।",

"मनेै one and a half litre दधू ख़रीदा, but when i opened it, it was already डेढ़.",

"उसने one and a half ghante तक �चता की, और िफर पता चला िक उसका plan पहले ही

डेढ़ हो गया था।"

Pun: मनेै one and a half litre दधू ख़रीदा, but when i opened it, it was already डेढ़.

Rating: 4 - Quite Funny

Table 9: Example prompts for few shot learning and Example filtering process for the Contextually Aligned Pun
Generation Process, demonstrating the steps for generating Hindi-English code-mixed puns using a combination of
pun words, alternate words, and contextual meanings as outlined in Section 4.2.1.

49

Question-Answer Pun Generation
System Prompt Follow these steps to generate a pun: First generate a very short phrase(which can

be a response to questions such as Noun Phrase) with the given alternate word. For
example if the alternate word is ’guy’ the generated sentence is "A cool guy". Then
replace the alternate word with the pun word. For example if the pun word is 'गाय'
the new sentence would become "A cool गाय". Then generate a pun question for this
"What do you call a cow wearing sunglasses?". Write it in the below format ill give
pairs of pun words and alternate word

Generated Small Phrase: A cool guy
Replace Pun Word: A cool गाय
Generated Question: What do you call a cow wearing sunglasses?
Generated Translated Question: What do you call a cow जो sunglasses पहनती ह?ै

Prompt for tu-
ple (Pw, Aw, Cw)

The pair is Pun Word = ‘{Pw}’(meaning {Cw}) and Alternate Word = ‘{Aw}’

Prompt Examples
for few shot gener-
ation

User: The pair is Pun Word = ‘लाख’(meaning lakh) and Alternate Word = luck
Assistant: Generated Small Phrase: A stroke of luck
Replace Pun Word: A stroke of लाख

Generated Question: What do you call a huge fortune that strikes suddenly?

Generated Translated Question: What do you call a huge fortune जो suddenly

हा�सल होता हे?

Pun: What do you call a huge fortune जो suddenly हा�सल होता हे? A stroke of लाख

User: The pair is Pun Word = ‘पीपल’(meaning tree) and Alternate Word = people
Assistant: Generated Small Phrase: A group of people

Replace Pun Word: A group of पीपल

Generated Question: What do you call a gathering under a sacred tree?

Generated Translated Question: What do you call a समूह under a sacred पेड़?

Pun: What do you call a समूह under a sacred पेड़? A group of पीपल

User: The pair is Pun Word = ‘िबक’(meaning sold) and Alternate Word = big
Assistant: Generated Small Phrase: A big sale

Replace Pun Word: A िबक sale

Generated Question: What do you call a huge sale where everything is sold out?

Generated Translated Question: What do you call a huge sale जहां सब कुछ िबक

जाता ह?ै

Pun: What do you call a huge sale where everything is sold out? A िबक sale

User: The pair is Pun Word = ‘वन’(meaning Forest) and Alternate Word = won
Assistant: Generated Small Phrase: He won the game

Replace Pun Word: He वन the game

Generated Question: What do you call it when someone conquers a forest in a

game?

Generated Translated Question: What do you call it जब कोई खेल में जगंल conquer

करता ह?ै

Pun: What do you call it जब कोई खेल में जगंल conquer करता ह?ै He वन the game

User:The pair is Pun Word = ’धन’(meaning money) and Alternate Word = done

50

Assistant: Generated Small Phrase: All done

Replace Pun Word: All धन

Generated Question: What do you call it when you've earning making a lot of

money?

Generated Translated Question: What do you call it जब तुमने बोहोत सारा पसेै कमा

�लया हो?

Pun: What do you call it जब तुमने बोहोत सारा पसेै कमा �लया हो? All धन

Example Pun Fil-
tering Process for
(Pw, Aw, Cw) =
(खो, co, lost)

Prompt: The pair is Pun Word = ‘खो’(meaning lost) and Alternate Word = co
Response:
Generated Small Phrase: Co-worker

Replace Pun Word: खो-worker

Generated Question: What do you call a colleague who is often hard to find?

Generated Translated Question: What do you call a सहकम� जो अक्सर ढँूढने में मु��कल

होता ह?ै

Pun: What do you call a सहकम� जो अक्सर ढँूढने में मु��कल होता ह?ै A खो-worker

Rating: 5 - Hilarious

Table 10: System Prompt, Generic Prompt Template, Example prompts for few shot learning, and Example filtering
process for the Question-Answer Pun Generation method, demonstrating the steps for generating Hindi-English
code-mixed puns using a combination of pun words, alternate words, and contextual meanings as outlined in Section
4.2.2.

51

Subject-Masked Pun Generation
System Prompt Given a pair of pun words and alternate words use the following steps to generate

a Hindi-English codemixed pun. First generate a short sentence ending with the
alternate word. Then replace the alternate word with the pun word. Then replace
the subject of the sentence to add relevance to the pun. Then translate the subject to
codemixed Hindi-English version.
Example: The pair is Pun Word = ‘लाख’(meaning lakh) and Alternate Word = luck

Short Sentence: The man attributed all his success to luck
Replace Alternate Word: The man attributed all his success to लाख
Mask the Subject: [MASK] attributed all his success to लाख
Pun Sentence: The lucky rich businessman attributed all his success to लाख
Translated Sentence: The lucky अमीर businessman attributed all his सफलता to लाख.

Prompt for tu-
ple (Pw, Aw, Cw)

The pair is Pun Word = ‘{Pw}’(meaning {Cw}) and Alternate Word = ‘{Aw}’

Prompt Examples
for few shot gener-
ation

User: The pair is Pun Word = ‘िबक’(meaning sold) and Alternate Word = big
Assistant: Generated Small Phrase: The event was a big success.

Replace Pun Word: The event was a िबक success.

Mask the Subject: [MASK] was a िबक success.

Pun Sentence: The sold-out concert was a िबक success.

Translated Sentence: The sold-out संगीत सभा was a िबक success.

User: The pair is Pun Word = ‘सच’(meaning truth) and Alternate Word = such
Assistant: Generated Small Phrase: She was never faced with such challenges

before.

Replace Pun Word: She was never faced with सच challenges before.

Mask the Subject: [MASK] was never faced with सच challenges before.

Pun Sentence: The dishonest lawyer was never faced with सच challenges before.

Translated Sentence: The dishonest वकील was never faced with सच challenges

before.

User: The pair is Pun Word = ‘पीपल’(meaning tree) and Alternate Word = people
Assistant: Generated Small Phrase: The park was filled with people enjoying the
evening.

Replace Pun Word: The park was filled with पीपल enjoying the evening.

Mask the Subject: [MASK] was filled with पीपल enjoying the evening.

Pun Sentence: The forest was filled with पीपल enjoying the evening.

Translated Sentence: The जगंल was filled with पीपल enjoying the evening.

User: The pair is Pun Word = ‘पीपल’(meaning tree) and Alternate Word = people
Assistant: Generated Small Phrase: The park was filled with people enjoying the
evening.

Replace Pun Word: The park was filled with पीपल enjoying the evening.

Mask the Subject: [MASK] was filled with पीपल enjoying the evening.

Pun Sentence: The forest was filled with पीपल enjoying the evening.

Translated Sentence: The जगंल was filled with पीपल enjoying the evening.

52

Example Pun Fil-
tering Process for
(Pw, Aw, Cw) =
(दौरा,dora, seizure)

Prompt: The pair is Pun Word = ‘दौरा’(meaning seizure) and Alternate Word = dora
Response:
Short Sentence: The child loves watching Dora the Explorer.

Replace Alternate Word: The child loves watching दौरा the Explorer.

Mask the Subject: [MASK] loves watching दौरा the Explorer.

Pun Sentence: The अस्पताल के मरीज loves watching दौरा the Explorer.

Pun: The अस्पताल के मरीज loves watching दौरा the Explorer.

Rating: 5 - Hilarious

Table 11: System Prompts, Generic Prompt Template, Example prompts for few shot learning, and Example filtering
process for the Subject-Masked Pun Generation method, demonstrating the steps for generating Hindi-English
code-mixed puns using a combination of pun words, alternate words, and contextual meanings as outlined in Section
4.2.3.

53

Baseline Pun Generation
Prompt for tu-
ple (Pw, Aw, Cw)

Generate a hinglish pun where the pun word is the hindi word ‘{Pw}’ and the alternate
word is english word ‘{Aw}’. Maintain a balanced ratio between english and hindi
words. Make sure to write the English words in roman script and Hindi words in
Devanagari.

Prompt Examples
for Few-Shot Gen-
eration

User: Generate a hinglish pun where the pun word is the hindi word ‘ढाई’ and the
alternate word is english word ‘die’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari. .
Assistant: मेरा watch 2 and 2.30 के बीच stuck ह.ै It's a do or ढाई situation.

User: Generate a hinglish pun where the pun word is the hindi word ‘दधू’ and the
alternate word is english word ‘dude’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari. .
Assistant: American milk ने Indian milk से क्या कहा? "What's up दधू?"

User: Generate a hinglish pun where the pun word is the hindi word ‘बेटा’ and the
alternate word is english word ‘beta’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari.
Assistant: A daughter is the perfect child. A son is just a बेटा version.

User: Generate a hinglish pun where the pun word is the hindi word ‘स्नान’ and the
alternate word is english word ’none’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari.
Assistant: I really don't care िक कौन प्र�तिदन bath करता ह।ै...Its स्नान of my business...

Example Puns Fil-
tering Process for
(Pw, Aw, Cw) =
(वन, one, forest)

Prompt Generate a hinglish pun where the pun word is the hindi word ‘वन’ and the
alternate word is english word ’one’. Maintain a balanced ratio between english and
hindi words. Make sure to write the English words in roman script and Hindi words in
Devanagari.

Pun: Why did the tree go to therapy? Because it had too many वन-sided

conversations.

Rating: 5 - Hilarious

Table 12: Generic Prompt Template, Example prompts for few-shot learning, and Example filtering process for the
Baseline Pun Generation method, demonstrating the generation of Hindi-English code-mixed puns with a balanced
mix of Hindi and English words, as outlined in Section 4.2.4.

54

Pw/Aw Method Generated Sentence with Gloss, Transliteration, and Translation Label

भय (fear)/
bye

Baseline

“When fear knocks at your door, send faith to answer. कहो भय-भय, बाई-बाई!
Gloss: कहो = say, भय-भय = fear-fear, बाई-बाई = bye-bye
Transliteration: When fear knocks at your door, send faith to answer, Kaho
bhay-bhay, bai-bai!
Translation: When fear knocks at your door, send faith to answer. Say fear-fear
bye-bye”

0

Contextually Aligned

“मेरी लड़की की fear of heights ने हमारे adventure plan को भय कह िदया।

Gloss: मेरी = my, लड़की = girl, की = 's, भय = fear, कह िदया = turned into
Transliteration: Meri ladki ki fear of heights ne hamaare adventure plan ko
bhay kah diyaa.
Translation: My daughter’s fear of heights turned our adventure plan into
’fear’.”

1

Question-Answer

“What do you call it जब तुम अपने डर को अलिवदा कहते हो? कहो भय
Gloss: जब = when, तुम = you, अपने = your, डर = fear, को = to, अलिवदा
= goodbye, कहते = say, हो = do

Transliteration: Jab tum apne ar ko alavidaa kahte ho? Kaho bhay.
Translation: What do you call it when you say goodbye to your fear? Say
’fear’.”

1

Subject-Masked

“The डरपोक लड़की waved goodभय with a smile.
Gloss: डरपोक = cowardly, लड़की = girl, goodभय = good-fear
Transliteration: The arpok ladki waved good-bhay with a smile.
Translation: The cowardly girl waved good-fear with a smile.”

1

लाश

(corpse)/
lush

Baseline

“The garden was so beautifully green, it was a लाश paradise!
Gloss: लाश = corpse, paradise = paradise
Transliteration: The garden was so beautifully green, it was a laash paradise.
Translation: The garden was so beautifully green, it was a corpse paradise.”

1

Contextually Aligned

“जगंल में एक िनज�व dead body िमली, surrounded by एक लाश forest
Gloss: जगंल = forest, में = in, एक = a, िनज�व = lifeless, लाश = corpse, िमली
= found

Transliteration: Jangal men ek nirjiv dead body milii, surrounded by ek lash
forest.
Translation: A lifeless dead body was found in the forest, surrounded by a
corpse forest.”

1

Question-Answer

“What do you call a garden जो लाशों से भरा हो? A लाश garden
Gloss: जो = which, लाशों = corpses, से = with, भरा = full, हो = is
Transliteration: What do you call a garden jo lashon se bhara ho? A lash
garden.
Translation: What do you call a garden full of corpses? A corpse garden.”

1

Subject-Masked

“The भू�तया कि�स्तान was filled with लाश greenery
Gloss: भ�ूतया = haunted, कि�स्तान = cemetery, लाश = corpse
Transliteration: The bhutiyaa kabristaan was filled with lash greenery.
Translation: The haunted cemetery was filled with corpse greenery.”

1

Table 13: Examples of code-mixed Hindi-English puns generated using four different methods: Baseline, Contextu-
ally Aligned, Question-Answer, and Subject-Masked. For each word pair (Pw/Aw), the table presents a generated
sentence along with its gloss, transliteration, translation, and label. The label column indicates whether the generated
sentence contains a pun (0) or not (1). The examples illustrate the use of alternate words (Aw) and pun words (Pw)
to create humorous and contextually relevant sentences.

55

Figure 2: Example of the annotation interface used to evaluate puns generated by methods in Section 4.2. The
evaluation focuses on three criteria: Pun Success, Funniness, and Acceptability. Annotators classify puns as
successful or unsuccessful, rate humor on a 5-point Likert scale, and asses Acceptability based on sentence fluency
and grammatical correctness rated on a 5-point scale, following guidelines. An additional option was given for pun
success where annotators could rate if a pun was formed without the specified pun-alternate word pair.

56

Figure 3: Example of annotation interface used to compare the funniness and quality of puns generated by the
proposed pun generation pipeline (Section 7) versus the baseline model. Annotators rated each pun for funniness on
a scale and selected the better pun overall.

57

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 58–62
January 19, 2025. ©2025 Association for Computational Linguistics

Testing Humor Theory Using Word and Sentence Embeddings

Stephen Skalicky
Victoria University of Wellington

Wellington, New Zealand
scskalicky@gmail.com

Salvatore Attardo
East Texas A&M University

Commerce, Texas, USA
salvatore.attardo@tamuc.edu

Abstract
A basic prediction of incongruity theory is that
semantic scripts in verbal humor should be in
a state of incongruity. We test this prediction
using a dataset of 1,182 word/phrase pairs ex-
tracted from a set of imperfect puns. Incon-
gruity was defined as the cosine distance be-
tween their word vector representations. We
compare these pun distances against similarity
metrics for the pun words against their syn-
onyms, extracted from WordNet. Results indi-
cate a significantly lower degree of similarity
between pun words when compared to their
synonyms. Our findings support the basic pre-
dictions of incongruity theory and provide com-
putational researchers with a baseline metric to
model humorous incongruity.

1 Introduction

Theories such as the General Theory of Verbal Hu-
mor describe the need for incongruity between ele-
ments of jokes, puns, and other humor forms, but
this theory also stipulates there must a simultane-
ous degree of script overlap (Attardo and Raskin,
1991). As such, computational researchers should
strive to model both opposition and overlap to bet-
ter connect computational algorithms to humor the-
ory (Hempelmann, 2008). In this paper, we do so
by flipping the script on prior computational re-
search which has used incongruity as a means to
generate verbal humor (e.g., Ritchie, 2004; Mihal-
cea et al., 2010). Instead, we aim to determine the
usefulness of recent advances in word vector rep-
resentations to test some aspects of humor theory
with the domain of puns.

1.1 Puns and Incongruity
Puns are defined as follows:

A pun is a textual occurrence in which a
sequence of sounds must be interpreted
with a formal reference to a second se-
quence of sounds, which may, but need

not, be identical to the first sequence,
for the full meaning of the text to be ac-
cessed. The perlocutionary goal or effect
of the pun is to generate the perception
of mirth or of the intention to do so. (At-
tardo, 2020, p. 177–178)

In more accessible terms, two sequences of sounds
evoke two meanings, associated with the first and
second sequence, respectively. These are known as
the pun and its target. For example, consider this
very old pun: Why did the cookie cry? Its mother
was a wafer/away for so long. In this pun, we have
the string text a wafer (the pun), which sounds like
the words away for (the target). Note in passing
that outside of context, it does not matter which
is the pun and which the target. Incongruity the-
ory makes a clear prediction: the two senses (the
pun and its target) should be in a relationship of
incongruity. Incongruity is defined on the basis
of semantic expectations. The (non–punning) sen-
tence “I had a peanut butter and jelly sandwich” is
congruous; the sentence “I had a peanut butter and
jelly suitcase” is incongruous. In the case of puns,
the incongruity has to reside, ex hypothesis, in the
pun/target pair (since the rest of the text is iden-
tical). Let’s consider again “why did the cookie
cry?” Its mother was [a wafer]/[away for] so long”
since the rest of text “why did the cookie cry?” Its
mother was [. . .] so long” is identical in either
reading, the incongruity can reside only in the pair
“a wafer”/“away for.”

1.2 Current Study

Our goal in this paper is to test this prediction, us-
ing the metric of cosine distance between word
vector representations. Word vectors (or embed-
dings) capture semantic relationships as a function
of distributional similarity. Words which appear in
similar contexts have similar meanings, and their
vector representations transform these relationships

58

into a numerical, multidimensional vector space
(Mikolov et al., 2013). The angle between two
vectors is commonly used as a measure of the dif-
ference between them and the cosine of the angle
“has the nice property that it is 1.0 for identical
vectors and 0.0 for orthogonal vectors” (Singhal
et al., 2001, p. 3).

Distances among vectors have previously been
applied to the problem of pun generation, where
it was shown that vector distance could be used
to model local and global similarity of pun words,
improving pun generation performance (He et al.,
2019). Here we also use distances between vec-
tors, except we seek to measure the similarity be-
tween words in existing puns. Cosine vector simi-
larity has been used to compare text similarity since
the 1960s (Salton, 1963), and possibly earlier, in
the context of information retrieval with keywords.
More recently, cosine distance has been used as a
measure of semantic acceptability/deviance (Vec-
chi et al., 2017), as well as metaphoricity and cre-
ativity (Winter and Strik-Lievers, 2023).

2 Method

We compare the cosine similarities of vector rep-
resentation of key words used in puns. Our com-
parisons are made using both single–word vector
spaces trained with word2vec (Mikolov et al., 2013)
as well as sentence embeddings using the sentence
transformers architecture (Reimers and Gurevych,
2019). We further compare the degree of these
cosine distances between pun words against a base-
line of their synonyms, collected from WordNet
(Fellbaum, 1998)1.

2.1 Materials
We utilized a corpus of 1182 pun–target word
pairs analyzed in Hempelmann (2003), which were
drawn from a subset of a larger corpus of puns
discussed in Sobkowiak (1991). These 1182 pairs
are from imperfect, heterophonic puns, meaning
that the sound of the pun and target are not the
same2. Using these puns, Hempelmann (2003) out-
lined a hierarchy of phonological, syntactic, and
semantic constraints which differentiated between
"good" and "bad" imperfect puns. While 959 of the
pun–target pairs are in the form of a word–word
relationship (e.g., frozen and chosen), 223 others

1We have made our code and data available on an OSF
Repository

2Contrast these with homophonic puns, such as I used to
be a banker, until I lost interest.

represent a word–phrase relationship (e.g., funda-
mental and from the mantel).

2.2 Measuring Pun–Target Similarity
We calculated vector representations for each
word/phrase in the pun–target pairs using two meth-
ods. Firstly, we used the sentence-transforms
(SBERT) Python module to generate vec-
tor representations for pun words using the
all-MiniLM-L6-v2 model. This is a lightweight
model provided by Hugging Face, which was
fine–tuned on over 1 billion sentence pairs with
a 384–multidimensional vector space3. This sen-
tence embedding model allowed us to calculate
vectors for the 223 targets which spanned more
than one word. However, recognizing the major-
ity of the puns were pairs of single words, we
also calculated a second set of similarities using
the word2vec-google-news-300 vector represen-
tations for single words using the word2vec algo-
rithm, trained on 100 billion words from Google
News corpus, creating a 300–dimensional space.4

Cosine distances between puns and targets
for SBERT and word2vec representations were
measured using the cosine_similarity function
from the scikit-learn Python module. In addi-
tion to the 223 puns with targets more than one
word long, an additional 153 puns contained a pun
or target word not in the pre–trained word2vec
space, meaning their pairwise similarity could not
be calculated using word2vec. The average simi-
larity between pun–target pairs was 0.270 (SD =
0.109) for the SBERT vectors, and 0.143 (SD =
0.203) for the word2vec vectors. For word2vec,
some of the cosine distances were negative, so we
also calculated the absolute values to better com-
pare the degree of similarity (positive or negative)
against the SBERT values. The results were closer,
with the average absolute word2vec distances at
0.198 (SD = 0.150). We provide more examples
across the full distribution in Table 1, and plot the
density of the cosine distances in Figure 2.

We interpret these results as initial confirma-
tion of incongruity theory. The maximum possible
range of the absolute values is 0.0 (no relation)
to 1.0 (completely related/completely unrelated).
Finding that the median/average values for the puns
is near the lower quartile of possible distances sug-
gests that the occurrence of a semantically different

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

4https://code.google.com/archive/p/word2vec/
59

Figure 1: Distribution of cosine similarities between pun–target words using SBERT and word2vec.

Sentence–BERT
pun target sim range
cinnamon see a man 0.046 min
kitty pity 0.161 −1SD
prostituting prosecuting 0.260 median
tinkle twinkle 0.379 +1SD
invisible visible 0.814 max

word2vec
pun target sim range
accost cost −0.407 min
salivation salvation −0.060 −1SD
pawn upon 0.134 median
sheep cheap 0.346 +1SD
thing think 0.936 max

Table 1: Similarity values between pun and target words
across distribution of similarities (minimum, median,
and +/−1 standard deviation from mean), with example
words.

sense will be unexpected and hence incongruous.
As shown in Figure 2, most of the pun–target pairs
live in this range, as indicated by the peak density
values.

2.3 Establishing a Comparative Baseline

However, there is a difficulty: while in puns we
can contrast the pun with its target, what should we
compare that measure to? Although the resulting
similarities for our pun–target pairs are relatively
low on a scale from 0 to 1, a comparative baseline
is needed in order to contextualise these results.

We could compare a word to itself, but that only
guarantees that we will get a score of approximately
0.99, or asymptotically tending to one.

As a solution, we queried WordNet, a large
database of lexical meanings and connections for
English words (Fellbaum, 1998). Each lexical en-
try in WordNet includes a list of synsets, which
capture different semantic uses. For example, the
entry humour has seven synsets: temper, wit, liq-
uid body substance, and four different senses of
humour (feeling humour, being humorous, sense
of humour, and humorous mood). Each synset in-
cludes a list of words associated with that sense,
called lemmas. The lemmas for wit are ’wit’, ’hu-
mor’, ’humour’, ’witticism’, and ’wittiness’.

We gathered the lemmas of all synsets for each
pun–target word. Using the same SBERT model
as we used for the puns, we then and calculated
the average cosine distance between each pun word
and its full set of synset lemmas. The assumption
behind this approach is that punning pair words
should have higher cosine similarity to their syn-
onyms than to the pun–target words. This approach
introduces a certain amount of noise — only about
2/3 of the pun words are in WordNet (again be-
cause some pun words are phrases or unorthodox
spellings), and some WordNet entries are more de-
tailed than others (meaning a greater number of
synsets and lemmas for some words than others).

Specifically, of the 2,190 unique pun–target
words and phrases in the pun data (some words
were repeated across puns), only 1,520 words could

60

be found in WordNet (69.41%). Using this set, re-
sults of the similarity comparisons between a word
and its synonym(s) is an average of 0.422 (me-
dian = 0.385, SD = 0.156, min = 0.039, max =
0.962). This is an increase of ~56% from the aver-
age SBERT similarities and an increase of ~112%
from the average of the absolute values of the
word2vec similarities. Paired–sample t–tests com-
paring SBERT pun similarities against SBERT syn-
onym similarities indicated these differences were
significant and with large effect sizes for both pun
(mean difference = 0.158, 95%CI [0.144, 0.171], t
= 23.325, df = 908, Cohen’s d = 1.111, p < .001)
and target (mean difference = 0.139, 95%CI [0.128,
0.151], t = 23.704, df = 843, Cohen’d d = 1.169, p
< .001) words found in WordNet. This comparison
provides further support for the incongruity theory.
Namely, the pun average similarity of 0.27 (using
sentence embeddings) is capturing some degree
of incongruity, in that it is much lower than the
similarity to related words (0.42).

Figure 2: Distribution of cosine distance values between
SBERT embeddings for pun words and their synset
lemmas extracted from WordNet.

3 Discussion

The goal of our study was to test fundamental pre-
dictions of incongruity theory using computational
measures of semantic distance. Using a dataset
of pun–target words from 1182 imperfect, hetero-
phonic puns, we found the cosine distances be-
tween word embeddings calculated using single–
word vector spaces as well as sentence embeddings
were on average significantly lower than those cal-
culated from the pun words and their set of syn-
onyms. In other words, pun–target words were less
related to each other than they were to their own

synonym entries in WordNet. As such, we find
that the predictions based on the incongruity the-
ory, that there should be a low degree of similarity
between a pun and its target and that the similarity
should be lower than that between a word and its
synonyms, are borne out by our data.

It is noteworthy that single–word vectors from
word2vec suggest less similarity between the pun
words when compared to the SBERT embeddings.
This likely reflects the difference in algorithms and
size of training data. Nonetheless, both sets of em-
beddings measure the distributional probability of
the target words within co–word contexts, so we
have some confidence that these vectors are captur-
ing the distributional properties of larger contexts
within which the words appear. Our results thus
seem to model the necessary balance for humor-
ous incongruity — the simultaneous relationship
of opposition and overlap. If the pun words were
completely unrelated (e.g., cosine distances around
0), it would be unlikely that both words could be
acceptable within the same sentence contexts, and
thus the puns would simply not work.

We should of course point out the limitations of
the study: first, we used a limited data set, collected
by one scholar over 30 years ago. This may have
introduced biases we are unaware of. Moreover,
we used only the pun–target words from the puns
— including full sentence contexts could provide
more contextual information for baseline compar-
isons. Second, there are a growing number of differ-
ent sentence embedding models, all of which will
return different vector embeddings depending on
their training data. More sophisticated models may
be needed for future data sets and different types
of humor, with the caveat that larger models comes
at the expense of computational performance. Re-
gardless, further replication of our results using
other trained models and measures of similarity
with puns and other datasets is necessary.

4 Conclusion

Our results provide empirical validation of theo-
retical assumptions related to predictions of incon-
gruity theory. Specifically, we find incongruity
between overlapping scripts of verbal humor as it
occurs in puns using computational measures of
semantic distance.

61

References
Salvatore Attardo. 2020. The linguistics of humor: An

introduction. Oxford University Press.

Salvatore Attardo and Victor Raskin. 1991. Script the-
ory revis(it)ed: Joke similarity and joke representa-
tion model. Humor - International Journal of Humor
Research, 4(3-4):293–348.

Christiane Fellbaum. 1998. WordNet: An electronic
lexical database. MIT Press, Cambridge, MA.

He He, Nanyun Peng, and Percy Liang. 2019.
Pun generation with surprise. arXiv preprint
arXiv:1904.06828.

Christian Hempelmann. 2008. Computational humor:
Beyond the pun? In Victor Raskin, editor, The
primer of humor research, pages 333–360. Mouton
de Gruyter.

Christian F Hempelmann. 2003. Paronomasic puns:
Target recoverability towards automatic generation.
Ph.D. thesis, Purdue University.

Rada Mihalcea, Carlo Strapparava, and Stephen Pulman.
2010. Computational models for incongruity detec-
tion in humour. In Computational linguistics and
intelligent text processing, pages 364–374. Springer.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. Preprint, arXiv:1301.3781.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. Preprint, arXiv:1908.10084.

Graeme Ritchie. 2004. The linguistic analysis of jokes.
Routledge, New York, NY.

Gerard Salton. 1963. Associative document retrieval
techniques using bibliographic information. J. ACM,
10(4):440–457.

Amit Singhal et al. 2001. Modern information retrieval:
A brief overview. IEEE Data Eng. Bull., 24(4):35–
43.

Włodzimierz Sobkowiak. 1991. Metaphonology of En-
glish Paronomasic Puns. P. Lang.

Eva M Vecchi, Marco Marelli, Roberto Zamparelli, and
Marco Baroni. 2017. Spicy adjectives and nominal
donkeys: Capturing semantic deviance using compo-
sitionality in distributional spaces. Cognitive Science,
41(1):102–136.

Bodo Winter and Francesca Strik-Lievers. 2023. Se-
mantic distance predicts metaphoricity and creativity
judgments in synesthetic metaphors. Metaphor and
the Social World, 13(1):59–80.

62

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 63–70
January 19, 2025. ©2025 Association for Computational Linguistics

Pragmatic Metacognitive Prompting Improves LLM Performance on
Sarcasm Detection

Joshua Lee†, Wyatt Fong†, Alexander Le†, Sur Shah†, Kevin Han†, Kevin Zhu†*

†Algoverse AI Research
{zhukevin, kevin.x.han}@berkeley.edu

Abstract

Sarcasm detection is a significant challenge
in sentiment analysis due to the nuanced and
context-dependent nature of verbiage. We in-
troduce Pragmatic Metacognitive Prompting
(PMP) to improve the performance of Large
Language Models (LLMs) in sarcasm detec-
tion, which leverages principles from prag-
matics and reflection helping LLMs interpret
implied meanings, consider contextual cues,
and reflect on discrepancies to identify sar-
casm. Using state-of-the-art LLMs such as
LLaMA-3-8B, GPT-4o, and Claude 3.5 Son-
net, PMP achieves state-of-the-art performance
on GPT-4o on MUStARD and SemEval2018.
This study demonstrates that integrating prag-
matic reasoning and metacognitive strategies
into prompting significantly enhances LLMs’
ability to detect sarcasm, offering a promising
direction for future research in sentiment anal-
ysis.

1 Introduction

Within the field of sentiment analysis, various ap-
proaches exist to improve emotion classification,
from bidirectional transformers to prompt tuning
for aspect-based sentiment analysis (Ataei et al.,
2020; Ouyang et al., 2015; Devlin et al., 2019; Li
et al., 2021; Zadeh et al., 2017; Kanakaraj and Gud-
deti, 2015). Yet one present limitation sentiment
analysis models face is in determining sarcasm
(Tan et al., 2023a).

Recent discoveries found that LLMs underper-
form compared to specially trained transformer en-
coder models in both sarcasm detection and sen-
timent analysis. The speculated cause of poor
LLM performance is that LLMs are built on logi-
cal pipelines, which may contradict sarcasm’s non-
sequential nature. Regardless, studies believe im-
proving prompting methods is a step towards the so-
lution (Zhang et al., 2024, 2023; Tan et al., 2023b;

*Corresponding Author

Liu et al., 2023; Yao et al., 2024; Wei et al., 2022;
Besta et al., 2024; Yao et al., 2023).

This work presents PMP1 based on Wei et al.’s
Metacognitive prompting (MP). PMP is a new
approach to improving LLM sarcasm detection.
Our approach incorporates linguistic principles
to mimic how humans reason through emotion-
ally complex text as well as reflection strategies
commonly found in LLM reasoning and planning
agents (Shinn et al., 2023). This paper presents a
novel prompting approach through the use of prag-
matics and reflection to improve sarcasm detection,
runs its prompting method on sarcasm benchmarks,
and at times exceeds the prompt results of the cur-
rent state-of-the-art (SoTA) prompt for LLM sar-
casm detection.

2 Background

2.1 Pragmatics

Pragmatics is a field of linguistics that goes be-
yond the literal meaning of a conversation. It’s the
social context of a statement that is needed to com-
prehend the subtleties of human language. (Grice,
1975; Clark, 1996; Horn and Ward, 2004). Vari-
ous studies in linguistics have been conducted on
the pragmatics of sarcasm. One pragmatic theory
called Grice’s Maxims of Conversation, poses the
4 different factors that a conversation must have to
be a meaningful conversation. One study, in the
field of pragmatics, analyzed Grice’s Maxims. It
concluded that if Grice’s Maxims were exceeded,
like with sarcasm in TV shows, it could be a deter-
mining factor as to whether dialogue is sarcastic
(Al Anssari and Hadi, 2021).

Our method, PMP, incorporates proposed prag-
matic theories on how to detect sarcasm from
the field of linguistics into LLM prompting. Our

1Our code can be found at: https://github.com/wya
tt-fong/Pragmatic-Metacognitive-Prompting-Impro
ves-LLM-Performance-on-Sarcasm-Detection

63

"You will be given movie or tv show dialogue, and will analyze the statement marked between brackets.
Summarize the conversation, and repeat back the statement to analyze."

 "Then, analyze the following:"
 "-What does the speaker imply about the situation with their statement?"

 "-What does the speaker think about the situation?"
 "-Are what the speaker implies and what the speaker thinks saying the same thing?"

 "Finally, decide if the speaker is pretending to have a certain attitude toward the conversation."

"You will be given a piece of movie dialogue, a statment marked in brackets, and a preliminary analysis on the marked
statement. Summarize the preliminary analysis and the given dialogue"

 "Decide whether statement is sarcastic or not by first analyzing the following:"
 "The Implicature - What is implied in the conversation beyond the literal meaning?"
 "The Presuppositions - What information in the conversation is taken for granted?"

 "The intent of the speaker - What do the speaker(s) hope to achieve with their statement and who are the
speakers?"

 "The polarity - Does the last sentence have a positive or negative tone?"
 "Pretense - Is there pretense in the speaker's attitude?"

 "Meaning- What is the difference between the literal and implied meaning of the statement?"
 "Reflect on the preliminary analysis and what should change, then decide if the statement is sarcastic.

In two sentences, sentence 1: “[sentence_1]” and sentence 2: “[sentence_2]”, both contain the target word
“[word]”. Determine if the target word is used with the same meaning in both sentences. As you perform

this task, follow these steps:
1. Understand the context and meaning of the target word in both sentences.

2. Make a preliminary judgmenton whether the target word has the same meaning in both sentences.
3. Critically assess your preliminary analysis. If you are unsure about your initial judgment, reassess it.

4. Confirm your final answer and explain the reasoning behind your decision.
5. Evaluate your confidence (0-100%) in your analysis and provide an explanation for this confidence level.

Provide the answer in your final response as “The target word has the same meaning in both
sentences: {} (True / False)”.

Comprehension of Context/Understanding

Preliminary Judgement

Final Answer

General Pragmatics Analysis

Comprehension of Preliminary Judgement/Context

Specific Pragmatic Analysis/Reassessment

PM Prompting

MP Prompting
Comprehension of Context/Understanding

Preliminary Judgement

Reassesment of Judgement

Final Answer/Explaination of Confidence

Figure 1: Metacognitive Prompt structure compared to proposed Pragmatic Metacognitive Prompt.

method encourages the LLM to analyze multiple
pragmatic theories analyzing sarcasm before reach-
ing its conclusion. A simplified explanation of the
theories used in PMP is provided below.

The Standard Pragmatic Model (TSPM):
Building upon the foundations of the TSPM, Gibbs
and Colston, refined the understanding of sarcasm
detection. His version of TSPM emphasized a pro-
cess of contacting literal and non-literal meanings
alongside context to determine sarcasm.

The Pretense Theory of Irony: When a speaker
is ironic or sarcastic, they set up a facade to what
they actually believe. (Clark and Gerrig, 1984).
For instance, if someone says “Your jacket looks
soooo nice” in a sarcastic tone, they are presenting
an attitude that they do like the look of your jacket
when they actually do not.

The Echoic Reminder Theory of Verbal Irony:
This method is characterized by positive and neu-
tral statements that ironically reference a past state-
ment. It is often used as a critique of a scenario.
An example would be the phrase “What a great
idea!” which typically has a positive connotation.
However, if it was used to describe a terrible plan
it would take a negative connotation, conveying
sarcasm. (Kreuz and Glucksberg, 1989).

Implicature: Implicatures are implicit infer-
ences drawn automatically from the information
provided in a sentence, relying on the shared con-

text between the speaker and listener. For example,
if Bob says “Do you want any cake for lunch?”
and Joey responds “I don’t want to get fat”, the
implied meaning is that Joey is declining the of-
fer. However, inferences like these can sometimes
be incorrect. For instance, Joey may have been
making a completely unrelated comment. As the
interpreters, we may assume that Joey’s statement
was relevant to the conversation, which causes us
to infer his refusal.

Presupposition: The presupposition is that the
information is automatically accepted as true in
order for a statement to make sense. For example,
in the statement “The king of France is bald”, the
presupposition is that there exists a King of France.
This statement assumes that a king exists in France,
even though there might not be one, for the sake of
making sense of the statement.

3 Method

Our prompting method builds on top of Wei et al.’s
Metacognitive prompting (MP). MP consists of
prompting an LLM to repeat the given information,
create a preliminary analysis, reflect on their pre-
liminary analysis, and then create a final judgment
(Wei et al., 2023). See Figure 1 for more details on
MP. In our method, PMP, the LLM is encouraged to
analyze simplified elements of pragmatic theories
in the preliminary analysis and reflection stages.

64

SemEval 2018 MUStARD

Model Acc. Ma-F1 Acc. Ma-F1

GPT-4o (IO) 64.03 63.17 67.24 65.79
GPT-4o (CoT) 58.92 51.99 58.11 55.76
GPT-4o (ToT) 63.90 63.02 69.00 68.27
GPT-4o (CoC) 70.79 70.60 69.42 68.48
GPT-4o (GoC) 74.03 74.02 70.69 69.91
GPT-4o (BoC) 62.12 61.85 69.42 68.45
GPT-4o (PMP) 86.68 83.18 79.42 77.65

GPT-4o-mini (PMP) 81.88 79.85 65.79 62.29

Claude 3.5 Sonnet (IO) 75.13 75.11 74.78 74.78
Claude 3.5 Sonnet (CoT) 71.56 71.47 73.62 73.53
Claude 3.5 Sonnet (ToT) 68.62 68.61 58.84 54.46
Claude 3.5 Sonnet (CoC) 82.27 82.23 74.20 74.16
Claude 3.5 Sonnet (GoC) 57.33 57.24 52.77 52.67
Claude 3.5 Sonnet (BoC) 65.94 65.50 59.71 56.70
Claude 3.5 Sonnet (PMP) 81.50 76.72 72.60 71.66

LLaMA-3-70B (PMP) 80.86 78.15 72.73 73.06

LLaMA-3-8B (IO) 49.36 44.47 54.64 44.99
LLaMA-3-8B (CoT) 49.36 44.55 54.20 44.86
LLaMA-3-8B (ToT) 50.64 48.63 54.35 50.56
LLaMA-3-8B (CoC) 49.23 44.36 54.93 45.66
LLaMA-3-8B (GoC) 57.33 57.24 52.7 52.67
LLaMA-3-8B (BoC) 65.94 65.50 59.71 56.70
LLaMA-3-8B (ToC) 68.88 68.21 61.26 58.03
LLaMA-3-8B (PMP) 78.21 77.65 53.48 54.69

Table 1: Comparison of PMP with Claude 3.5 Sonnet, GPT4o, GPT4o-mini, LLaMa-3-70B and LLaMA-3-8B to
prompting methods. The best results are bolded.

We establish two separate LLM calls, one which
analyzes the prompt from the lens of each prag-
matic factor: implicature, presuppositions, intent,
polarity, pretense, and potential meanings individ-
ually, and a second LLM call that reflects on the
analysis and outputs a final prediction. A detailed
explanation of PMP is provided in Figure 1.

4 Experimental Design

4.1 Benchmarks

We evaluated our sarcasm detection method on the
same benchmarks as (Yao et al., 2024): MUStARD
(Castro et al., 2019), which consists of sarcastic and
non-sarcastic comments in TV and movie dialogue
paired with context; and SemEval 2018 Task 3
(Van Hee et al., 2018) consisting of sarcastic and
non-sarcastic twitter statements.

4.2 Models

We tested our method using models also utilized
in SarcasmCue (Yao et al., 2024). The models are:
GPT-4o, LLaMA 3-8B and Claude 3.5 Sonnet (An-
thropic, 2024). Furthermore, we additionally tested
on GPT-4o mini (OpenAI, 2023) and LLaMA 3-
70B (Touvron et al., 2023).

4.2.1 SarcasmCue

Our method achieves the new SoTA in comparison
to SarcasmCue. The method SarcasmCue modifies
popular SoTA prompts to analyze a “cue”, which
is a coherent language sequence that serves as an
indicator towards identifying sarcasm, from either
linguistic (rhetorical devices, punctuation), con-
textual (topic, common knowledge), or emotional
(emotional words, emojis) parts of a sentence.

65

SarcasmCue2 introduces four sarcasm detection
methods; three prompting techniques: Bag of Cues
(BoC), Chain of Cues (CoC), and Graph of Cues
(GoC), and one that requires explicit model train-
ing, Tensor of Cues (ToC). BoC removes sequential
bias by treating cues independently. CoC arranges
cues in a sequential order to capture the step-by-
step reasoning process of sarcasm detection. GoC
analyzes the relationships between cues without
imposing a fixed sequence. ToC adds encoded
indications through explicit training to leverage
higher-order interactions among cues. For the ex-
act prompts, please see Appendix A.

5 Results

The accuracy and Macro-F1 scores comparing
PMP with prompting method baselines are com-
pared in Table 1. The accuracy and Macro-F1
scores comparing PMP with SarcasmCue’s BoC,
CoC, GoC, and ToC strategies are reported in Table
1.

Comparison to Popular Prompting methods:
PMP surpasses popular prompting methods such as
Zero Shot, Chain of Thought, and Tree of Thought
in both SemEval 2018 Task 3 and MUStARD.
Across both performing well on LLaMA-3-8B and
GPT-4o, with the exception of Claude 3.5 Sonnet.
Zero-shot prompting still works well with Claude
3.5 Sonnet in 2 benchmarks, aligning with Yao
et al.’s results. PMP’s performance with LLaMA-
3-70B is significantly higher than with LLaMA-3-
8B.

Comparison to State of the Art (SoTA): PMP
is competitive with and exceeds SarcasmCue’s per-
formance on all datasets with GPT-4o while per-
forming well on LLaMA-3-8B on SemEval 2018.
As shown in Table 2, zero-shot Claude 3.5 Sonnet
achieves the highest accuracy on the MUStARD
datasets, outperforming it in SarcasmCue and PMP.

Datasets: PMP performs the best on SemEval
2018 Task 3, although it falls slightly short of Sar-
casmCue on Claude. PMP struggles on Sarcasm
Corpus V1 the most, with current SoTA and Tree
of Thought outperforming it across certain models.

State of The Art and PMP: Between PMP and
SarcasmCue, neither consistently achieves higher
accuracies than the other across all models and
datasets, excluding Claude. However, one notable

2At the time of the writing of this paper, Yao et al. has
not published their source code. Therefore, we compare our
results with the reported results from their paper.

factor is that for both datasets, GPT-4o utilizing
PMP performs best in comparison with all other
models and prompting methods. GPT-4o outper-
forming other LLMs aligns with previous studies
such as Zhang et al.’s work, suggesting GPT-4o’s
performance is a common factor in sarcasm detec-
tion. Another inconsistency is that SarcasmCue
underperforms some prompts in SemEval 2018
Task 3 across all models except Claude 3.5 Sonnet,
while PMP outperforms prompts in SemEval 2018
Task 3 across all models but underperforms SoTA
in Claude 3.5 Sonnet. Analyzing SemEval 2018
as a dataset could help explain these performance
patterns.

6 Conclusion

Pragmatic Metacognitive Prompting is a novel ap-
proach for enhancing sarcasm detection in LLMs.
PMP is competitive with or beats the current
state-of-the-art methods for sarcasm detection with
pre trained LLMs such as GPT4o and LLaMA-
3-8B. It introduces various pragmatic theories
into the prompt design, fosters a deeper contex-
tual understanding that improves sarcasm iden-
tification, and incorporates a human-like reflec-
tion step for final verification and sarcasm reason-
ing. After testing across models like GPT-4o and
LLaMA-3-8B, PMP underscores the potential of
pragmatic-informed methods to outperform tradi-
tional prompting methods and points to a continued
focus on linguistic theories to bridge performance
gaps in sentiment analysis.

7 Limitations

While PMP represents an approach to implement-
ing pragmatic reflection, prompting is only one
implementation of pragmatics and reflection in nat-
ural language processing. A key limitation to using
zero-shot prompting is that PMP does not guarantee
high performance in sarcasm detection that devi-
ates from general linguistics norms and in domain-
specific contexts. Due to PMP’s reliance on LLM’s
pretraining with data, underrepresented cultural or
linguistic norms are also not accounted for with
prompting. These limitations suggest PMP is a step
towards improving sarcasm detection, but does not
represent a comprehensive solution.

References
R. S. Al Anssari and H. A. N. Hadi. 2021. A pragmatic

study of sarcasm in selected tv shows. International
66

Journal of Linguistics, Literature and Translation,
4(7):148–153.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

T. S. Ataei, S. Javdan, and B. Minaei-Bidgoli. 2020.
Applying transformers and aspect-based sentiment
analysis approaches on sarcasm detection. In Pro-
ceedings of the Second Workshop on Figurative Lan-
guage Processing.

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger,
M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann,
H. Niewiadomski, P. Nyczyk, and T. Hoefler. 2024.
Graph of thoughts: Solving elaborate problems with
large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 17682–17690.

Santiago Castro, Devamanyu Hazarika, Verónica Pérez-
Rosas, Roger Zimmermann, Rada Mihalcea, and Sou-
janya Poria. 2019. Reliability-aware dynamic feature
composition for name tagging. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1010–1021, Florence, Italy. Association for Compu-
tational Linguistics.

Herbert H. Clark. 1996. Using Language. Cambridge
University Press.

Herbert H. Clark and Richard J. Gerrig. 1984. On the
pretense theory of irony. Journal of Experimental
Psychology: General, 113(1):121–126.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Raymond W. Gibbs and Herbert L. Colston. 2007. Irony
in Language and Thought. Taylor & Francis Group,
New York.

H. Paul Grice. 1975. Logic and conversation. In Syntax
and Semantics, Volume 3: Speech Acts, pages 41–58.
Academic Press.

N.A. Helal, A. Hassan, N.L. Badr, et al. 2024. A
contextual-based approach for sarcasm detection.
Scientific Reports, 14:15415.

Laurence R. Horn and Gregory L. Ward. 2004. The
Handbook of Pragmatics. Wiley Online Library.

M. Kanakaraj and R. M. R. Guddeti. 2015. Performance
analysis of ensemble methods on twitter sentiment
analysis using nlp techniques. In Proceedings of the
2015 IEEE 9th International Conference on Seman-
tic Computing (IEEE ICSC 2015), pages 169–170,
Anaheim, CA, USA. IEEE.

Roger J. Kreuz and Sam Glucksberg. 1989. How
to be sarcastic: The echoic reminder theory of
irony. Journal of Experimental Psychology: Gen-
eral, 118(4):374–386.

Chengxi Li, Feiyu Gao, Jiajun Bu, Lu Xu, Xiang
Chen, Yu Gu, Zirui Shao, Qi Zheng, Ningyu
Zhang, Yongpan Wang, and Zhi Yu. 2021. Sen-
tiprompt: Sentiment knowledge enhanced prompt-
tuning for aspect-based sentiment analysis. Preprint,
arXiv:2109.08306.

Y. Liu, R. Zhang, Y. Fan, and J. Guo. 2023. Prompt tun-
ing with contradictory intentions for sarcasm recog-
nition. In Proceedings of the 17th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 328–339.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

X. Ouyang, P. Zhou, C. Li, and L. Liu. 2015. Sentiment
analysis using convolutional neural networks. In
Proceedings of the IEEE International Conference
on Computer and Information Technology.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning. Preprint, arXiv:2303.11366.

K. L. Tan, C. P. Lee, and K. M. Lim. 2023a. A survey of
sentiment analysis: Approaches, datasets, and future
research. Applied Sciences, 13(7).

Y. Y. Tan, C. Chow, J. Kanesan, J. H. Chuah, and Y. Lim.
2023b. Sentiment analysis and sarcasm detection
using deep multi-task learning. Wireless Personal
Communications, 129(3):2213–2237.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Armand Joulin, Edouard Grave, Max Chate-
lain, and Hervé Jegou. 2023. Llama: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of The 12th Interna-
tional Workshop on Semantic Evaluation, pages 39–
50, New Orleans, Louisiana. Association for Compu-
tational Linguistics.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter,
F. Xia, E. Chi, Q. Le, and D. Zhou. 2022. Chain-of-
thought prompting elicits reasoning in large language
models. arXiv.org.

Jason Wei, Yi Tay, Shixiang Shane Gu, William Fedus,
Xuezhi Wang, Dale Schuurmans, Quoc Le, Ed Chi,
and Denny Zhou. 2023. Metacognitive prompting
improves understanding in large language models.
Preprint, arXiv:2308.05342.

B. Yao, Y. Zhang, Q. Li, and J. Qin. 2024. Is sarcasm
detection a step-by-step reasoning process in large
language models? arXiv.org.

67

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao,
and K. Narasimhan. 2023. Tree of thoughts: Delib-
erate problem solving with large language models.
arXiv.org.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. 2017. Tensor
fusion network for multimodal sentiment analysis.
Preprint, arXiv:1707.07250.

W. Zhang, Y. Deng, B. Liu, S. J. Pan, and L. Bing.
2023. Sentiment analysis in the era of large language
models: A reality check. arXiv.org.

Y. Zhang, C. Zou, Z. Lian, P. Tiwari, and J. Qin. 2024.
Towards evaluating large language models on sar-
casm understanding. arXiv.org.

A Prompts

The prompting method we utilized in our approach
guides the model through a structured reasoning
process before reaching a conclusion. The prompt
instructs the model to analyze a statement checking
its comprehension of the given information before
asking the LLM to generate an accompanying
preliminary analysis analyzing basic pragmatic
factors. After completing the preliminary analysis,
the model then passes its generated analysis to
another LLM call, where the model has a chance
to reflect and comprehend the preliminary analysis
originally generated. It then directs the model to
refine the analysis by systematically addressing
specific pragmatic aspects, including implicature,
presuppositions, speaker intent, polarity, pretense,
and the relationship between literal and implied
meanings. The wording of our initial prompt varies
per dataset to ensure that all information about
the benchmark is given for the LLM to generate a
proper analysis. An example of this would be with
MUStARD’s dataset:

“You will be given movie or TV show dialogue
and will analyze the statement marked between
brackets. Summarize the conversation, and repeat
back the statement to analyze. Then, analyze the
following:”

Decide whether the statement is sarcastic or not
by first analyzing the following:

1. The Implicature – What is implied in the con-
versation beyond the literal meaning?

2. The Presuppositions – What information in
the conversation is taken for granted?

3. The Intent of the Speaker – What do the
speaker(s) hope to achieve with their state-
ment, and who are the speakers?

4. The Polarity – Does the last sentence have a
positive or negative tone?

5. Pretense – Is there pretense in the speaker’s
attitude?

6. Meaning – What is the difference between the
literal and implied meaning of the statement?

Reflect on the preliminary analysis and what
should change, then decide if the statement is
sarcastic.”

A.1 Cues

A.1.1 Bag of Cues
The Bag of Cues method evaluates sarcasm by treat-
ing cues and without order.

Prompt Example: “Identify if the given state-
ment is sarcastic based on the presence of the fol-
lowing cues:

Rhetorical devices (e.g., irony, hyperbole, or un-
derstatement) Emotional language (e.g., frustration,
happiness, or sarcasm-laden phrases) Contextual
inconsistencies (e.g., contradictory meanings or un-
expected word choices). Does the statement exhibit
any of these cues?”

Example Application: Input: “Oh, great! An-
other meeting that could have been an email.”
Rhetorical Device: Irony Emotional Cue: Frus-
tration Contextual Cue: Work-related sarcasm De-
tection: Likely sarcastic

A.1.2 Chain of Cues
The Chain of Cues method evaluates sarcasm by
analyzing cues sequentially. It simulates logical
reasoning to then assess the overall sarcastic nature
of a statement.

Prompt Example: “Analyze the statement step-
by-step: Identify any rhetorical device (e.g., hyper-
bole, irony). Determine if emotional cues such as
frustration or humor are present. Check for con-
textual markers that may suggest sarcasm. Does
the progression or order of these cues indicate sar-
casm?”

Example Application: Input: “Thanks for
breaking the printer. Really helpful.” Rhetorical De-
vice: Irony detected in “Really helpful.” Emotional
Cue: Frustration in the context of the statement.

68

Contextual Marker: Complaints about a broken
printer. Detection: Sarcastic

A.1.3 Graph of Cues
The Graph of Cues method evaluates sarcasm by
analyzing the relationships between cues. This
method leverages interdependencies between lin-
guistic, emotional, and contextual features.

Prompt Example: “Construct a graph where:
Nodes represent sarcasm cues (e.g., rhetorical de-
vices, emotional cues, contextual features). Edges
represent relationships between these cues (e.g.,
reinforcement, contrast). Based on the intercon-
nected cues, does the statement appear sarcastic?”

Example Application: Input: “Wow, you’re
so good at driving (said during a near accident).”
Nodes: Rhetorical Device: Sarcastic praise (“so
good”). Emotional Cue: Anxiety/frustration. Con-
textual Cue: Near accident. Edges: Reinforcement
between rhetorical device and emotional cue. Con-
textual cue amplifies sarcasm. Detection: Sarcastic

A.1.4 Tensor of Cues
The Tensor of Cues method uses a structured, multi-
dimensional representation of sarcasm cues to train
a model explicitly. This approach captures inter-
actions between cues in a numerical format. The
implementation details include implementation de-
tails, as well as linguistic, emotional, and contex-
tual cues to be encoded as tensors. The model
is then trained to revolve around optimizing the
model to learn patterns across these dimensions.

Example Tensor Encoding: Input: “Nice job
ignoring me all day!” Linguistic Cue: Irony (tensor
dimension 1). Emotional Cue: Frustration (ten-
sor dimension 2). Contextual Cue: Social neglect
(tensor dimension 3). Combined Tensor: Captures
interrelations of cues for sarcasm prediction.

Performance Highlights: This method achieves
higher accuracy by explicitly modeling multi-cue
interactions compared to the prompting methods.
This structured prompt ensures that the model’s
reasoning aligns with pragmatic analysis principles,
fostering a more nuanced understanding of sarcasm
detection.

B LLM Pragmatic Reasoning

Figure 2 illustrates the application of PMP and
the reasoning process demonstrated by the model.
As depicted, the LLM leverages various elements
of the pragmatic framework to arrive at a well-
considered conclusion. In the appendix, we include

a detailed PMP analysis of the phrase, “Lots of peo-
ple tweeting pictures from their cars of their snowy
commutes to work, whilst saying ’stay safe’ Oh,
the #irony!”. In this example, PMP successfully
identifies the nuanced contrast between literal and
implied meanings, allowing the model to detect sar-
casm effectively by contextualizing the speaker’s
intent, polarity, and presuppositions.

C Transformer Encoder Models

SemEval 2018

Model Acc. Ma-F1

BERT 69.60 68.40
RoBERTa 75.00 72.00

XLNet 66.00 66.00
DC-Net-RoBERTa 70.90 68.70

GPT-4o (PMP) 86.68 83.18
GPT-4o-mini (PMP) 81.88 79.85

Claude 3.5 Sonnet (PMP) 81.50 76.72
LLaMA-3-70B (PMP) 80.86 78.15
LLaMA-3-8B (PMP) 78.21 77.65

Table 2: Comparison of PMP among LLMs with re-
ported results of Zhang et al. with transformer ecoder
models on SemEval 2018 Task 3

Previous works have studied the performance of
transformer encoder models in sarcasm detection
with MUStARD and SemEval 2018 Task 3. The
models listed in Table 2 andTable 3 are reported
from Helal et al. and Zhang et al. which show their
performance compared to PMP across tested LLMs.
A brief explanation of each model is provided:

BERT a model built for sarcasm detection which
produces context-based word em- beddings.

RoBERTa based off BERT, which removes the
next-sentence predictions, utilizes larger datasets
and can have larger inputs of text in training.

XLNet Uses permutation language modeling for
training, which predicts the order of tokens in a
random order, helping the model learn the depen-
dencies of words better.

DC-Net-RoBERTa processes two separate in-
puts (DC-Net) analyzing both literal and implied
sentiments of a text separately, using RoBERTa as
a base.

DistilBERT Uses knowledge distillation where
DistilBERT is trained on BERT data as well as
mimicking the outputs of BERT while having re-
duced parameters.

69

"Lots of people tweeting pictures from their cars of their snowy commutes to work, whilst saying 'stay safe' Oh, the #irony!"
- The speaker implies that there is a contradiction in the actions of people who are driving in potentially dangerous snowy

conditions while also advising others to stay safe. This irony arises from the fact that they are engaging in an activity that may
compromise safety (using a phone to tweet while driving) while simultaneously promoting safety.

- The speaker likely thinks that there is hypocrisy or a lack of self-awareness in these people's actions. They find it ironic or
somewhat ridiculous that the same individuals advising others to be cautious are engaging in risky behavior themselves.

- Yes, what the speaker implies and what they think are largely saying the same thing: the behavior they observe is
contradictory or ironic.

Finally, the speaker is not pretending to have a certain attitude toward the conversation. Their statement expresses genuine
sarcasm or criticism about the contrast between the act of tweeting while driving and the advice to "stay safe."

-
The preliminary analysis identifies the irony in people tweeting pictures of snowy commutes while advising others to "stay

safe." Here's a summary:
- **Implicature**: By calling out the irony, the speaker highlights the contradiction in urging safety while potentially engaging

in unsafe behavior (tweeting while driving).
- **Presuppositions**: It is assumed that driving in snow is risky and using a phone while driving is unsafe.

- **Intent of the Speaker**: The speaker aims to point out and criticize the perceived hypocrisy or lack of self-awareness of
those tweeting from their cars, by highlighting the irony.

- **Polarity**: The tone of the last sentence is negative, as it critiques the contradiction in behavior.
- **Pretense**: There's no pretense in the speaker's attitude; they openly express criticism through sarcasm.

- **Meaning**: The literal act of tweeting "stay safe" contradicts the implied riskiness of the situation, emphasizing the irony
and making the tone sarcastic.

Reflecting on the analysis, the statement is indeed sarcastic. The speaker uses sarcasm to draw attention to the irony and
criticize those who are tweeting about safety while potentially compromising it themselves. No major changes are needed in

the preliminary analysis.

Figure 2: PMP analysis on the phrase “Lots of people tweeting pictures from their cars of their snowy commutes to
work, whilst saying ’stay safe’ Oh, the #irony!”.

MUStARD

Model Acc. Ma-F1

RoBERTa 86.80 87.70
DistilBERT 87.00 87.70

GPT-4o (PMP) 79.42 77.65
GPT-4o-mini (PMP) 65.79 62.29

Claude 3.5 Sonnet (PMP) 72.60 71.66
LLaMA-3-70B (PMP) 72.73 73.06
LLaMA-3-8B (PMP) 53.48 54.69

Table 3: Comparison of PMP among LLMs with re-
ported results of Helal et al. with transformer encoder
models on MUStARD

70

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 71–78
January 19, 2025. ©2025 Association for Computational Linguistics

Abstract

Evaluating the effectiveness of a joke-

generating AI system ultimately comes

down to one question: are its jokes as funny

as those crafted by humans? Prior studies

have typically relied on numerical ratings

assigned by human evaluators—a method

with inherent limitations—and few have

directly compared the quality of AI-

generated jokes to that of jokes created by

professional human joke writers. In this

study, we measured audience laughter—a

direct and fundamental response to jokes—

to assess the funniness of jokes produced by

a specialized AI joke-writing system. We

also compared those jokes to those written

by a professional human joke writer to

determine which elicited more laughter.

Our findings reveal that the AI-generated

jokes got as much laughter as the human-

crafted ones. This suggests that the best AI

joke generators are now capable of

composing original, conversational jokes

on par with those of a professional human

comedy writer.

1 Introduction

Generating humor is often regarded as an AI-

complete problem, one that requires full human

intelligence to solve (Hurley, 2011; Winters, 2021).

Generating original humor is even a challenge for

humans (Amir, 2022; Tikhonov, 2024), and the

brains of professional comedians are distinct

functionally and structurally (Amir, 2016; Brawer,

2021). Witscript is one of the few AI systems that

can generate contextually integrated jokes, like the

jokes a human might improvise in a conversation

(Toplyn, 2021b). The last time Witscript was

systematically evaluated (Toplyn, 2023), human

evaluators judged its responses to input sentences

to be jokes 44% of the time. Since then, the

Witscript system has been improved. This paper

puts the current system to a more challenging test,

comparing the funniness of its jokes to the

funniness of jokes written by a professional human

joke writer.

To determine whether Witscript is as funny as a

human expert, a reliable method for evaluating the

funniness of jokes is necessary. Goes et al. (2022)

use an AI model, but papers on the computational

generation of humor almost always evaluate the

generated text using non-expert humans recruited

on crowdsourcing platforms like Amazon

Mechanical Turk (Loakman, 2023). This

evaluation method is probably common because it

is relatively low-cost and easy to carry out.

Nevertheless, using non-expert humans to rate

jokes on a numerical scale has significant

limitations (Amin, 2020; Hossain, 2020; Inácio,

2024; Valitutti, 2013). Evidence indicates that non-

expert humans cannot appropriately evaluate the

quality of creative text (Lamb, 2015). In the case of

jokes, this apparent inability to judge quality may

arise because jokes are designed to elicit laughter,

not high numerical ratings. Indeed, a common

definition of "joke" is "something said or done to

provoke laughter" (www.merriam-

webster.com/dictionary/joke). And

"voiced laughter is correlated with highly amusing

multimedia content" (Petridis, 2009). So, we

believe that measuring the laughter elicited by a

joke is a better way to measure its funniness.

Laughter is strongly influenced by social

context. We laugh the most when we interact with

someone in person, instead of via voice or text

(Scott, 2014). Therefore, to ensure a stronger

laughter signal that can be more accurately

measured, a joke should be delivered to a group of

people by someone in their presence. Delivering

the joke to a group would also help compensate for

the fact that evaluating humor is subjective: if a

Can AI Make Us Laugh? Comparing Jokes Generated by Witscript

and a Human Expert

Joe Toplyn1, Ori Amir2
1Twenty Lane Media, LLC; 2HaHator LLC & Pomona College

joetoplyn@twentylanemedia.com, oriacadem@gmail.com

71

joke elicits a big laugh from a group, that means

many people thought it was funny and, therefore,

that the joke can objectively be assigned a high

funniness rating. We decided, then, that the most

reliable way to measure the funniness of jokes like

those generated by Witscript is to measure how

much laughter they elicit when they are delivered

by professional standup comics in front of live

audiences.

2 Related Work

Other authors have tasked human evaluators with

comparing the funniness of jokes written by

humans to that of jokes generated by AI systems.

But those authors used numerical scales, not

measurements of laughter, to rate the funniness of

the output (Gorenz, 2024; He, 2019; Mittal, 2022;

Petrović, 2013; Tikhonov, 2024; Zhang, 2020). To

the best of our knowledge, this paper represents the

first time that jokes generated by an AI system have

been formally evaluated in the context of standup

comedy performances.

3 Description of the Witscript System

Witscript is a neural-symbolic hybrid AI system

designed to work in American English (Toplyn,

2023). It's symbolic because it incorporates joke-

writing algorithms created by a human expert

(Toplyn, 2014). And it's neural because it executes

those algorithms, and other joke-production

methods, by calling on a large language model in

the GPT family from OpenAI (Brown et al., 2020).

The Witscript jokes used in this research were

generated by the version of the Witscript app that

was publicly available on October 9, 2024, from

www.witscript.com. The algorithms are

based on formulas described in Toplyn (2014) and

several patents (Toplyn 2020a, 2020b, 2021a).

4 System Evaluation

4.1 Input Selection

Author OA selected 16 current news headlines for

use in evaluating Witscript. Author JT, a

professional comedy writer, eliminated any of

those headlines that were strongly associated with

events occurring after the knowledge cutoff date of

the GPT model used by Witscript. That way,

Witscript's performance wouldn't be adversely

affected by the system's dependence on non-

current training data.

From the remaining news headlines, JT selected

eight that, in his expert opinion, had two

characteristics that made them particularly well-

suited for joke writing: (1) they were likely to

capture most people's interest, as good joke topics

do (Toplyn, 2014); and (2) they were relatively

"evergreen"—likely to seem fresh indefinitely—so

jokes based on them wouldn't get stale and unfunny

before testing was completed.

 Then JT edited each of the eight selected news

headlines into a form that he believed, in his expert

opinion, would make it a useful joke topic. Each

resulting topic had the following characteristics:

(1) it was one sentence; (2) it was likely to be easily

understood by its intended audience of adult

Americans; and (3) it was relatively simple, with

only one or two attention-getting elements, which

Toplyn (2014) calls "topic handles."

4.2 Joke Production

The human expert—a longtime joke writer for a

well-known, U.S.-based, late-night comedy/talk

show—and Witscript, operated by JT,

independently generated jokes based on the eight

edited topics. They were given three days to

complete the task to the best of their ability, so that

the speed of their joke production would not be a

factor.

The human expert and JT each selected from all

of their own output the one joke for each topic that

they believed would elicit the most laughter from

an audience of typical American adults. They

submitted their eight chosen jokes to a third-party

data manager without sharing them with each

other. All of Witscript's selected jokes were

submitted exactly as they were output by Witscript.

4.3 Laughter Measurement

Experienced standup comics performed two

comedy sets in front of live audiences in comedy

venues in the U.S. The comics did not reveal the

sources of the jokes and did not know which jokes

had been written by AI. In each set, jokes based on

all of the eight topics were performed, with half of

the punchlines written by the human expert and

half by Witscript. Both the order of the topics and

which punchline was selected for each topic were

determined randomly and counterbalanced

between sets. As a cover story, the comics

explained that they would be performing some

jokes written by a friend.

72

To measure the quantity of laughter elicited by

each joke, the recording of each set was labeled to

mark the segments in which laughter occurred. The

original audio was then converted to a graph of

decibels over time using Formula 1.

 𝑑𝐵 = 20 ∗ 𝑙𝑜𝑔10(|𝑠| + 1𝑒−6) (1)

In the formula, s is the original sound wave, and

1e-6 is the lowest sound level perceivable by

humans. The area under the curve, representing the

"quantity of laughter," was then computed using

Simpson’s numerical integration method

implemented in Python (Matthews, 2004). We refer

to the measure as Total Laughter; its units are

decibel-seconds (see Figure 1). We believe this

method best captures the quantity of laughter

compared to other potential methods such as the

average, median, or max, as those other methods

would be poor at capturing situations in which

different individuals in the audience "get the joke"

at different times, resulting in the same amount of

laughter spread over a longer period of time.

For the present analysis, we used the audio of

two high-quality sets performed at the same North

Hollywood venue by the same comedian, Mike

Perkins, with audience sizes of 35 and 15. The sets

were performed a month apart at the same time of

day (at the end of the comedian's 10-minute set

opening the 8 p.m. show). Two other sets were

excluded from the analysis either because of poor

venue quality or small audience size (N<10).

The audio tracks were annotated to select the

segments of laughter associated with each joke. In

a typical set, sounds unrelated to the laughter, such

as heckling, would mix with the laughter. However,

these interferences were not an issue in the sets we

analyzed. Additionally, comedians might speak

over the laughter to make a comment or start the

next joke. But in the sets we analyzed, the

comedian made an effort to let the audience laugh

uninterrupted, though he often did start the next

joke when he felt the laughter was dying down. We

always ended the laugh segment before the

comedian resumed talking, so the audio segment

contained laughter only. Importantly, the comedian

was not aware which jokes had been written by AI,

so any such interference affected all jokes equally.

We compared the performance of Human vs. AI

jokes within sets and between sets. The between-

sets comparison required some form of

normalization of the laughs to remove any bias

resulting from the size of the audience or other

characteristics affecting the overall loudness of its

laughter. That normalization was achieved by:

1. Prior to conducting a paired t-test, we compared

two joke versions across sets. The Loudness

measure of all the jokes within a set was

normalized by the median Loudness across all

jokes in the set.

2. For the GLM the Set was included as a regressor

of no interest.

4.4 The Hypothesis

Historically, the standard for demonstrating that AI

had reached a certain milestone against human

performance involved only a few data points. For

example, Kasparov played only six games with

Deep Blue (AI) in 1997 (scoring 2.5-3.5). In 2011,

Watson (AI) competed only once against two

human champions on Jeopardy!, and won. While

such events would not meet the nominal standards

of statistical significance required to determine that

AI was "consistently" better than the human

champions, they are nevertheless considered

meaningful milestones, since before those events it

was considered inconceivable that AI would

perform at the level of those human champions

even once.

If generating jokes for a comedy/talk show-style

monologue, where the quality is judged by

Figure 1: A demonstration of how the "Total

Laughter" of a single joke is measured. The sound

wave of the laughter segment following the joke is

converted to dB over time. The area under the

curve (here 241) is the Total Laughter in decibel-

seconds.

73

audience laughter, was an AI-complete problem,

we would expect that:

H0: None of the AI-generated jokes would perform

better than any of the professional human writer’s.

We could reject this hypothesis if:

H1: Some of the AI-generated jokes performed

better than some of the Human’s.

5 Results and Discussion

5.1 Analysis Within a Set

Figure 2 displays the eight jokes performed in Set

11 ranked by the Total Laughter they elicited. Three

of the four jokes written by AI elicited more

laughter than at least one joke written by the human

expert. Additionally, the joke that elicited the most

laughter was AI-written.

This result is in line with H1, in that some of the

AI-written jokes did better than some of the

Human’s. The same pattern held true for Set 2; see

the Appendix for the data. If we deem this result to

be reliable, we can conclude that writing the type

of humor analyzed here is not AI-complete. How

can we determine this reliability?

1 Set 1 had the bigger audience (N=35). It would be

inappropriate to display jokes from both sets in this figure

because of the difference in the Loudness baseline.

How reliable is the measure itself? The measure

captures the total laughter of an audience of N=35

and 15 in Sets 1 and 2, respectively. In a classical

experiment, jokes are rated by a handful of raters.

While audience members' responses are not

entirely independent (e.g., laughter is contagious)

whatever effect audience members had on each

other was present for all jokes and presumably had

the effect of signal amplification rather than of

cancellation of individual differences.

Additionally, unlike with raters, it is not possible to

tease apart the contributions of individual raters

(here, audience members). Despite these

drawbacks, the number of raters/audience

members is much larger than in a typical study in

the field, suggesting higher reliability than the

standard. The validity of the measure is arguably

higher since the measure is of a natural response to

jokes in a natural environment. However, there

may be other forms of humor for which a

traditional approach using numerical ratings would

be better suited than our measurement method.

How did the Human and AI jokes compare? The

funniest joke (area under the curve = 241) was

written by AI. On average, AI did slightly better (M

= 106, SD = 96) than the Human (M = 104, SD =

86) in Set 1, with the reverse true in Set 2 (AI: M =

66, SD = 21; Human M = 99, SD = 93). However,

these differences were not significant (both sets:

Mann-Whitney U(4,4) = 8.0, ns). The lack of

statistical difference between the groups is not

meaningful with the present sample size. Instead,

as explained above (see the hypotheses), we rely on

a standard similar to Deep Blue's and Watson’s,

that of a limited live demonstration of equivalence

to human performance, which we have met.

5.2 Comparison Between the Sets

As described above, the two sets had the same eight

topics, for which half of the punchlines were

written by AI and half by the Human. The jokes

were counterbalanced so that if a particular topic

had a punchline written by the Human in Set 1 it

would have a punchline written by AI in Set 2, and

vice versa.

The audience size for Set 1 was bigger than for

Set 2 (35 vs. 15), resulting in longer laugh times (M

= 2.16 sec. vs. 1.71 sec.) and greater values on our

Total Laughter metric (M = 105 vs. 83). But

Figure 2: The jokes written by the human expert

(H) and Witscript (AI) in order of the Total

Laughter they elicited in Set 1. Joke ID

corresponds to the actual order in which the jokes

were told. The jokes are listed in the Appendix.

74

Median Laughter Loudness showed no difference

(for both sets, M = 48). Controlling for that

baseline, no significant differences were observed

between the AI and human-written versions of the

joke for each topic. This was true for our Total

Laughter metric as well as for other measures,

including Mean Loudness, Median Loudness, and

Length of Laugh (all paired t values < 1, ns; a GLM

statistically controlling for Set effects returned the

same result). Since there was no difference in the

Median Laughter Loudness, that metric lends itself

to a bar graph comparing the two sets which has no

distortions resulting from normalization; see

Figure 3.

Overall, comparing the AI and Human jokes on

the same topic between sets mirrors the result of

comparing the AI and Human jokes within the

sets—there is no difference in the effectiveness of

the jokes.

6 Contributions

This paper makes the following contributions:

1. It introduces a novel method of evaluating the

funniness of jokes—measuring the laughter they

elicit.

2. It demonstrates a way to compare the joke-

writing ability of an AI system to that of a human

expert in the real-world setting of standup comedy.

3. It provides further evidence that computational

joke generation is best accomplished by taking a

hybrid neural-symbolic approach.

4. It provides further evidence that at least one type

of humor, generating monologue-style jokes for an

American audience, is not AI-complete.

7 Conclusion

AI-written jokes, performed in front of a live

audience, elicited laughter within the same range as

jokes written by a professional human comedy

writer.

Some AI-written jokes ranked higher than some

of the human-written jokes, and the funniest joke,

as measured by quantity of laughter, was written by

AI.

The study provides naturalistic, real-world

evidence that when it comes to generating

comedy/talk show monologue-style humor, an AI

system can perform at the level of a professional

human comedy writer.

8 Limitations

1. Several aspects of the performances may have

contributed to a joke's funniness beyond the quality

of its writing. These include the comic's vocal

delivery and any gestures and facial expressions he

chose to make. We assume these factors influenced

AI and human-written jokes equally, since the

comic did not know which jokes had been written

by AI. This kind of noise is the price of conducting

an arguably more valid naturalistic study. It is not

likely to reflect systematic bias.

2. Our measure captures the funniness ratings of

the ~50 audience members for the two sets.

However, the audience members cannot be

considered fully independent (e.g., laughter is

contagious). That acknowledged, whatever

influence audience members had on each other, it

was likely a constant factor of amplification

affecting all jokes similarly.

3. The Witscript jokes submitted for evaluation

were cherry-picked by a human expert from all of

the jokes generated by Witscript on the assigned

topics. However, we don't consider that to be a

major limitation because the human jokes

submitted for evaluation were similarly cherry-

picked from multiple joke candidates crafted by the

human writer.

Figure 3: The Median Laughter Loudness (over the

duration of the laugh) elicited by the Human (H)-

vs. AI (A)-written jokes for each topic across the

two sets. The lack of pattern suggests equivalent

performance by the Human and AI sources.

75

Acknowledgments

We would like to thank the following comedians

for their insights and help: Mike Perkins, Kevin

Hickerson, Ajitesh Srivastava, and the comedy/talk

show writer who wrote the Human jokes for the

experiment.

References

Miriam Amin and Manuel Burghardt. 2020. A Survey

on Approaches to Computational Humor

Generation. In Proceedings of the 4th Joint

SIGHUM Workshop on Computational Linguistics

for Cultural Heritage, Social Sciences, Humanities

and Literature, pages 29–41, Online. International

Committee on Computational Linguistics.

Ori Amir et al. 2022. The elephant in the room:

attention to salient scene features increases with

comedic expertise. Cognitive Processing, 23(2),

203-215.

Ori Amir and Irving Biederman. 2016. The Neural

Correlates of Humor Creativity. Frontiers in Human

Neuroscience, 10(597).

Jacob Brawer and Ori Amir. 2021. Mapping the ‘funny

bone’: neuroanatomical correlates of humor

creativity in professional comedians. Social

Cognitive and Affective Neuroscience, 16(9), 915-

925.

Tom B. Brown et al. 2020. Language models are few-

shot learners. arXiv preprint arXiv:2005.14165.

Fabricio Goes, Zisen Zhou, Piotr Sawicki, Marek

Grzes, and Daniel G. Brown. 2022. Crowd score: A

method for the evaluation of jokes using large

language model AI voters as judges. arXiv preprint

arXiv:2212.11214.

Drew Gorenz and Norbert Schwarz. 2024. How funny

is ChatGPT? A comparison of human- and AI-

produced jokes. PLoS ONE 19(7): e0305364.

https://doi.org/10.1371/journal.pone.0305364.

He He, Nanyun Peng and Percy Liang. 2019. Pun

Generation with Surprise. North American Chapter

of the Association for Computational Linguistics.

Nabil Hossain, John Krumm, Michael Gamon, and

Henry Kautz. 2020. SemEval-2020 Task 7:

Assessing Humor in Edited News Headlines. In

Proceedings of the Fourteenth Workshop on

Semantic Evaluation, pages 746–758, Barcelona

(online). International Committee for

Computational Linguistics.

Matthew M. Hurley, Daniel C. Dennett, and Reginald

B. Adams. 2011. Inside Jokes: Using Humor to

Reverse-Engineer the Mind. MIT Press.

Marcio L. Inácio and Hugo G. Oliveira. 2024.

Generation of Punning Riddles in Portuguese with

Prompt Chaining. 15th International Conference on

Computational Creativity (ICCC'24).

Carolyn Lamb, Daniel G. Brown, and Charles L.A.

Clarke. 2015. Human Competence in Creativity

Evaluation. Sixth International Conference on

Computational Creativity.

Tyler Loakman, Aaron Maladry, and Chenghua Lin.

2023. The Iron(ic) Melting Pot: Reviewing Human

Evaluation in Humour, Irony and Sarcasm

Generation. Conference on Empirical Methods in

Natural Language Processing.

John H. Matthews. 2004. Simpson’s 3/8 Rule for

Numerical Integration, Numerical Analysis-

Numerical Methods Project.

Anirudh Mittal, Yufei Tian, and Nanyun Peng.

2022. AmbiPun: Generating Humorous Puns with

Ambiguous Context. In Proceedings of the 2022

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, pages 1053–1062, Seattle,

United States. Association for Computational

Linguistics.

Stavros Petridis and Maja Pantic. Is this joke really

funny? Judging the mirth by audiovisual laughter

analysis. 2009. In 2009 IEEE International

Conference on Multimedia and Expo, New York,

NY, USA, pp. 1444-1447, doi:

10.1109/ICME.2009.5202774.

Saša Petrović and David Matthews.

2013. Unsupervised joke generation from big data.

In Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (Volume

2: Short Papers), pages 228–232, Sofia, Bulgaria.

Association for Computational Linguistics.

Sophie Scott, Nadine Lavan, Sinead Chen, and Carolyn

McGettigan. 2014. The social life of laughter.

Trends in Cognitive Sciences, 18(12), 618–620.

https://doi.org/10.1016/j.tics.2014.09.002.

Alexey Tikhonov and Pavel Shtykovskiy. 2024. Humor

Mechanics: Advancing Humor Generation with

Multistep Reasoning. arXiv preprint

arXiv:2405.07280.

Joe Toplyn. 2014. Comedy Writing for Late-Night TV:

How to Write Monologue Jokes, Desk Pieces,

Sketches, Parodies, Audience Pieces, Remotes, and

Other Short-Form Comedy. Twenty Lane Media,

LLC, Rye, New York.

Joe Toplyn. 2020a. Systems and Methods for

Generating Jokes. U.S. Patent No. 10,642,939.

Washington, DC: U.S. Patent and Trademark Office.

76

Joe Toplyn. 2020b. Systems and Methods for

Generating Comedy. U.S. Patent No. 10,878,817.

Washington, DC: U.S. Patent and Trademark Office.

Joe Toplyn. 2021a. Systems and Methods for

Generating and Recognizing Jokes. U.S. Patent No.

11,080,485. Washington, DC: U.S. Patent and

Trademark Office.

Joe Toplyn. 2021b. Witscript: A System for Generating

Improvised Jokes in a Conversation. In Proceedings

of the 12th International Conference on

Computational Creativity, 22–31. Online:

Association for Computational Creativity.

Joe Toplyn. 2023. Witscript 3: A Hybrid AI System for

Improvising Jokes in a Conversation. arXiv,

abs/2301.02695.

Alessandro Valitutti, Hannu Toivonen, Antoine

Doucet, and Jukka M. Toivanen. 2013. “Let

Everything Turn Well in Your Wife”: Generation of

Adult Humor Using Lexical Constraints. In

Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (Volume

2: Short Papers), pages 243–248, Sofia, Bulgaria.

Association for Computational Linguistics.

Thomas Winters. 2021. Computers Learning Humor Is

No Joke. Harvard Data Science Review, 3(2).

doi.org/10.1162/99608f92.f13a2337.

Hang Zhang, Dayiheng Liu, Jiancheng Lv, and Cheng

Luo. 2020. Let's be Humorous: Knowledge

Enhanced Humor Generation. Annual Meeting of

the Association for Computational Linguistics.

Appendix. The Jokes

Below is a full list of the jokes and their Joke ID,

which indicates the order in which they were told

in the sets. Each joke has a topic that serves as a

prompt/setup for both the AI- and human-written

punchlines. Each set randomly includes half of the

punchlines written by AI. Next to each joke, we

also provide these metrics for the laughter it

elicited: Total Laughter, in decibel-seconds (TL);

total laugh Time, in seconds (T); and Median

Laughter Loudness over the duration of the laugh,

in decibels (ML).

Joke 1

Topic:

A new report says that NASA officials are worried

about a leak on the International Space Station.

Human: (TL: 79, T: 2.00, ML: 40)

Will they fix it? Naw, even in space, landlords don't

fix leaks.

"But Houston, we have a potty problem."

That's on them, we subcontracted to Boeing.

AI: (TL: 51, T: 1.04, ML: 50)

They're especially concerned since the leak is

coming from one of their astronauts' space diapers.

Joke 2

Topic:

Why do TV stations air false political ads?

Human: (TL: 51, T: 1.04, ML: 50)

That's so after the election, we welcome the sound

of "Attention, Hemorrhoid Sufferers!"

AI: (TL: 101, T: 1.96, ML: 53)

Because they want to make sure the viewers are

just as confused as the candidates!

Joke 3

Topic:

A company just introduced a virtual dog leash that

uses wireless technology.

Human: (TL: 73, T: 1.58, ML: 47)

Wifi can control my dog's movements? So where's

his virtual pooper scooper?

AI: (TL: 53, T: 1.54, ML: 36)

But I'm pretty sure that's just a fancy way of saying

'I don't want to walk my dog.'

Joke 4

Topic:

Bob Yerkes, a stuntman who appeared in "Star

Wars," died at the age of 92.

Human: (TL: 231, T: 3.92, ML: 62)

In his long career, he broke so many bones, his

grave says Rest in Pieces. But true Star Wars fan to

the end, he asked to be buried in his parent's

basement.

AI: (TL: 48, T: 1.00, ML: 49)

He passed away surrounded by his loved ones and

a strategically placed pile of mattresses.

Joke 5

Topic:

BuzzFeed put out a list of 31 things to buy when

you finally decide to update your kitchen.

Human: (TL: 36, T: 1.08, ML: 33)

If you ask me, appliances are too smart already. The

clock on my coffee maker flashes 12 12 12...

What'll it do smarter--snicker? "Tsk tsk tsk. So

much for caffeine increasing brain function."

AI: (TL: 25, T: 0.92, ML: 26)

Number 32 on the list: a new Buzzfeed article on

31 ways to use all the unnecessary gadgets you

bought from the first list.

77

Joke 6

Topic:

Scientists have discovered a sixth ocean more than

400 miles below the surface of the Earth.

Human: (TL: 60, T: 1.29, ML: 48)

Great, I was just looking for a gnarly new place to

surf. (mime surfing around dangers) "Stalactite!

Stalagmite! Bats! Gollum!!"

AI: (TL: 94, T: 1.54, ML: 62)

Looks like Aquaman's commute just got a whole

lot longer.

Joke 7

Topic:

Scientists are studying whether astronauts in the

future could transform rocks into food.

Human: (TL: 236, T: 4.62, ML: 52)

Hey, don't give Fruity Pebbles any ideas. Rocky

Road with real rocks? You could chip a tooth on

Stone Ground Mustard!

AI: (TL: 241, T: 4.79, ML: 52)

Which is great news for anyone who's ever had a

craving for a pebble pie.

Joke 8

Topic:

A new study says that young children in the UK get

almost half their calories from ultra-processed

food.

Human: (TL: 46, T: 0.88, ML: 57)

If you think that's bad, the other half is British

cooking.

AI: (TL: 70, T: 1.79, ML: 40)

The most popular kids' meals in the UK are now

the Happy Meal, the Crispy Chicken Sandwich,

and Uncle Nigel's Deep-Fried Crumpets.

78

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 79–87
January 19, 2025. ©2025 Association for Computational Linguistics

Evaluating Human Perception and Bias in AI-Generated Humor

Narendra Nath Joshi
Adobe Inc

San Jose, CA, USA
joshinarendranath@gmail.com

Abstract
This paper explores human perception of AI-
generated humor, examining biases and the
ability to distinguish between human and AI-
created jokes. Through a between-subjects user
study involving 174 participants, we tested hy-
potheses on quality perception, source identifi-
cation, and demographic influences. Our find-
ings reveal that AI-generated jokes are rated
comparably to human-generated ones, with
source blindness improving AI humor ratings.
Participants struggled to identify AI-generated
jokes accurately, and repeated exposure led to
increased appreciation. Younger participants
showed more favorable perceptions, while tech-
nical background had no significant impact.
These results challenge preconceptions about
AI’s humor capabilities and highlight the im-
portance of addressing biases in AI content
evaluation. We also suggest pathways for en-
hancing human-AI creative collaboration and
underscore the need for transparency and ethi-
cal considerations in AI-generated content.

1 Introduction

Advancements in generative artificial intelligence
have opened up new avenues in creative expression.
These powerful language and content generation
models produce remarkably human-like text, im-
ages, audio, and code. One particularly intriguing
application is its ability to generate humorous con-
tent.

Humor is a fundamental aspect of human com-
munication and interaction. It serves various so-
cial and psychological functions, from facilitating
bonding and group cohesion to reducing stress and
diffusing tense situations (Martin and Ford, 2018).
Psychologists have long studied the role of humor
in human development, cognition, and emotional
expression (Berger, 2014). Humor improves mood,
enhances creativity, and fosters feelings of empathy
and trust between individuals (Kuiper and Nicholl,
2004).

Humor is a uniquely human trait that has been
beyond the capabilities of machines until recently.
However, the latest breakthroughs in natural lan-
guage processing, neural networks, and large lan-
guage models challenge this assumption. Gen-
erative artificial intelligence systems can now be
trained on vast repositories of human-created hu-
mor, from witty one-liners to elaborate comedic
sketches. By identifying patterns, analyzing the
structure of humor, and learning to mimic the cre-
ative processes of human comedians, these models
can generate original humorous content that often
surprises and delights its audience.

Generating, understanding, and appreciating hu-
mor requires complex cognitive processes, includ-
ing pattern recognition, perspective-taking, and jux-
taposing incongruous concepts (Veale, 2004). Pre-
vious research has highlighted humor’s nuanced
and context-dependent nature, with cultural norms,
personal experiences, and social dynamics all play-
ing a role in an individual’s humorous sensibilities
(Polimeni and Reiss, 2006). Exploring how gen-
erative artificial intelligence systems can capture
and replicate these multifaceted elements of hu-
man humor is a fascinating and challenging area of
inquiry.

However, generating high-quality humor re-
mains a significant challenge for current systems.
Humor is a complex and subjective phenomenon,
often relying on cultural references, contextual un-
derstanding, and the ability to surprise and delight
the audience (Ritchie, 2009). Existing generative
artificial intelligence models may need help to cap-
ture the full depth and nuance of human humor,
leading to humor perceived as generic or lacking
in authenticity (Augello et al., 2008).

Furthermore, it is crucial to understand how hu-
man perception and biases influence the evaluation
of AI-generated humor. Humans may have pre-
conceived notions or skepticism about machines’
ability to generate genuinely humorous content,

79

which could lead to biased assessments.
As generative artificial intelligence advances, it

becomes increasingly important to understand its
impact on various domains, including the creative
arts and human-computer interaction. In this work,
we explore the current state of generative artificial
intelligence and its humor applications. We ex-
amine the human perception of humor created by
generative artificial intelligence.

Building upon these foundational concepts and
challenges, this study aims to investigate specific
hypotheses and research questions regarding hu-
man perception of AI-generated humor. Our re-
search is guided by the following hypotheses and
corresponding research questions:

H1 Humans believe they can reasonably identify
if humor is AI-generated. (Reasonable Iden-
tification Hypotheses)

H1a Participants’ accuracy in identifying AI-
generated jokes is higher than chance.

H2 Humans have reasonable doubt in AI’s abili-
ties to generate quality humor. (Reasonable
Doubt Hypotheses)

H2a Humans rate AI-generated jokes lower
in quality compared to human-generated
jokes.

H2b The perceived quality of AI-generated
jokes improves when participants are un-
aware of the source.

H3 Bias towards AI-generated humor changes
with exposure. (Repeated Exposure Hy-
potheses)

H3a Participants’ ratings of AI-generated
jokes improve after repeated exposure.

H4 Demographic factors influence perception of
AI-generated humor. (Demographic Hy-
potheses)

H4a Younger participants rate AI-generated
jokes higher than older participants.

H4b Participants with a background in tech-
nology or AI are more accepting of AI-
generated humor.

To investigate these hypotheses, we formulated
the following research questions:

RQ1: Are participants able to accurately identify AI-
generated jokes more often than by chance?
(tests Hypothesis H1a)

RQ2: Do humans rate AI-generated jokes lower in
quality compared to human-generated jokes?
(tests Hypothesis H2a)

RQ3: Does the perceived quality of AI-generated
jokes improve when participants are unaware
of the source? (tests Hypothesis H2b)

RQ4: Do participants’ ratings of AI-generated jokes
improve after repeated exposure? (tests Hy-
pothesis H3a)

RQ5: Do younger participants rate AI-generated
jokes higher than older participants? (tests
Hypothesis H4a)

RQ6: Are participants with a background in tech-
nology or AI more accepting of AI-generated
humor? (tests Hypothesis H4b)

Through a carefully designed user study, we aim
to address these research questions and test our
hypotheses, contributing to the understanding of
human perception and bias in the context of AI-
generated humor.

2 Related Work

The field of computational humor has evolved from
early rule-based systems to more sophisticated data-
driven approaches powered by modern machine
learning techniques. Researchers have increasingly
focused on understanding human perception and
biases towards AI-generated humor.

Previously, researchers primarily focused on
rule-based systems that attempted to capture the
logical structures and linguistic patterns underlying
humorous expressions (Binsted, 1996 and Ritchie,
2001). These systems relied on pre-defined rules
and templates to generate puns, jokes, and other
forms of humor. However, they were often limited
in their ability to adapt to the nuances and com-
plexities of human humor, which can be highly
context-dependent and subjective.

As the field of artificial intelligence advanced,
researchers began exploring the use of machine
learning algorithms to generate humor in a more
data-driven manner. Mihalcea and Strapparava,
2005 developed one of the early data-driven sys-
tems, which utilized semantic relationships and
linguistic features to identify and generate humor-
ous one-liners. This approach showed promise
but needed higher quality and semantically diverse
training data. Valitutti et al., 2016 developed a sys-
tem that could produce puns and other forms of

80

wordplay by exploiting linguistic patterns and se-
mantic relationships. Similarly, Winters et al., 2019
presented a general framework for computational
humor that learns joke structures and parametriza-
tion from rated example jokes by learning from
datasets of human-created humor. These findings
suggest that modern machine learning systems can
recognize and replicate the nuances of humor.

The recent advancements in large language mod-
els have further expanded the capabilities of compu-
tational humor generation. LLM-based approaches,
such as those leveraging GPT-3 (Brown, 2020)
or other transformer-based models, have demon-
strated impressive performance in generating coher-
ent and contextually relevant humor. These models
are trained on vast amounts of text data, allowing
them to capture more nuanced linguistic patterns
and common-sense knowledge that can be lever-
aged for humor generation (Hossain, 2020).

Alongside these advancements in computational
humor generation, researchers have also begun to
explore the importance of understanding human
perception and biases towards AI-generated humor.
Humor is a highly subjective and complex phe-
nomenon, often relying on cultural references, con-
textual understanding, and the ability to surprise
and delight the audience (Ritchie, 2009).

3 Methodology

3.1 Study Design

We conducted a between-subjects experimental
study to investigate human perception of AI-
generated humor and potential biases in evaluation.
The study was designed to examine how knowl-
edge of a joke’s source (human or AI) influences
perception, and how different presentation contexts
affect evaluation accuracy and bias.

Participants were randomly assigned to one of
six experimental groups, each designed to test spe-
cific aspects of humor perception and source iden-
tification:

• Group A (Human Baseline) Participants
evaluated only human-generated jokes, estab-
lishing a baseline for humor quality ratings
and identification accuracy.

• Group B (AI Baseline) Participants evaluated
only AI-generated jokes, allowing assessment
of perceived quality and identification accu-
racy for AI-generated content.

• Group C (Alternating Sequence) Partici-
pants evaluated an alternating sequence of
human and AI-generated jokes, enabling as-
sessment of distinction abilities in a structured
mixed context.

• Group D (Mixed Presentation) Participants
evaluated a randomized set of both human
and AI-generated jokes, testing identification
accuracy in a naturalistic mixed context.

• Group E (Blind AI Test) Participants evalu-
ated AI-generated jokes without knowledge
of their source, measuring unbiased quality
perception.

• Group F (Informed AI Test) Participants
evaluated AI-generated jokes with explicit
knowledge of their AI origin, enabling direct
comparison with Group E to measure source-
related bias.

3.2 Participant Selection and Demographics

We recruited 193 total participants from Amazon
Mechanical Turk (Paolacci et al., 2010). Partic-
ipating workers received a $5.00 compensation
based on an estimated work of 30 minutes for a
projected wage of $10 (US federal minimum wage
is $7.25). The workers provided informed consent
before completing the study. After completing the
task, participants also answered questions about de-
mographics and prior experience with Mechanical
Turk.

We performed several integrity checks for our
participants. Similar to prior studies deployed on
Mechanical Turk (Ashktorab et al., 2021), we ex-
cluded workers whose mean rating time was less
than 3 seconds and removed workers who had uni-
form responses (σ < 5) in the rating responses. We
also removed individuals from the study who fell
outside of the mean ±2SD statistic for each of the
dependent variables. This process left us with 174
participants.

Demographic data was collected for:

• Gender (Male, Female, Non-binary, Prefer
not to say, Other)

• Age Range (18-24, 25-34, 35-44, 45-54, 55+)

• Experience with AI technologies (5-point
scale from "Never use it" to "Deep understand-
ing")

81

3.3 Stimulus Selection and Preparation

3.3.1 Human-Generated Jokes
Human-generated jokes were sourced from
(Phillips, 2013), curated by a panel of three in-
dependent raters to ensure consistent quality and
appropriate content. Selected jokes represented var-
ious humor styles (wordplay, observational, situa-
tional) while controlling for potentially confound-
ing variables such as length and complexity. The
jokes were completely text-based.

3.3.2 AI-Generated Jokes
AI-generated jokes were created using Claude 3.5
Sonnet (Anthropic, 2024), with consistent prompt-
ing techniques to ensure comparable quality and
style variety. The jokes underwent the same rat-
ing and filtering process as human-generated jokes
to maintain experimental control. The jokes were
completely text-based.

3.4 Experimental Procedure

3.4.1 Joke Presentation
Each participant evaluated twenty-five jokes in
their assigned condition. In trials, we found twenty-
five jokes to be appropriate as an increased number
of jokes could lead to potential cognitive fatigue
and a drop in study experience and quality of re-
sults. Jokes were presented individually in ran-
domized order (except for Group C’s alternating
sequence) to control for order effects.

3.4.2 Rating Sessions
The experiment consisted of two phases:

1. Initial Rating Phase: All participants rated
jokes on a 5-point scale (Very funny to Not
funny at all).

2. Source Assessment Phase: Group E per-
formed additional tasks:

• Source identification (Human/AI)
• Confidence ratings (5-point scale)

4 Results

4.1 Overall Analysis

Our analysis reveals several significant patterns in
how humans perceive and evaluate AI-generated
humor. We present our findings organized by
research questions, incorporating both quantita-
tive metrics and qualitative observations. The re-
sults challenge several preconceptions about AI-

generated humor while confirming others, particu-
larly regarding demographic influences and expo-
sure effects.

4.2 Source Assessment Performance (RQ1)
Participants’ ability to identify AI-generated jokes
shows minimal deviation from chance:

• Accuracy: 0.43034

• Mean Confidence: 3.892

The near-chance accuracy rates suggest that dis-
tinguishing between human and AI-generated hu-
mor has become increasingly challenging. High-
quality AI-generated jokes, in particular, were fre-
quently misattributed to human authors with high
confidence, indicating significant advancement in
AI’s ability to generate natural-seeming humor.

4.3 Quality Perception and Source Bias
4.3.1 Comparative Quality Ratings (RQ2)
Contrary to initial expectations, our analysis shows
that participants do not rate AI-generated jokes
significantly lower in quality compared to human-
generated jokes (µAI = 2.97393, σ = 1.4137;
µhuman = 2.94769, σ = 1.4046).

This finding is particularly noteworthy given
the common assumption that AI-generated con-
tent would be perceived as inferior to human-
created content. The ratings distribution shows
considerable overlap between the two sources, with
AI-generated jokes occasionally receiving higher
scores in categories such as wordplay and situa-
tional humor.

4.3.2 Source Awareness Effects (RQ3)
The blind testing condition (Group E) demonstrates
significantly different ratings compared to the in-
formed condition (Group F):

• Blind condition: µ = 3.34064, σ = 1.1056

• Informed condition: µ = 2.92737, σ = 1.4164

• Statistical significance: [t(df) = 6.04, p =
1.78e− 09]

The data reveals a clear pattern of bias when
participants are informed about the source. In the
blind condition, participants evaluated jokes pri-
marily on their inherent humor value, leading to
more favorable ratings for AI-generated content.
This suggests that preconceptions about AI capa-
bilities may influence judgment more than actual
content quality.

82

Group Mean Rating
(First 7 Jokes)

Mean Rating
(Last 7 Jokes)

A 3.02721 2.84354
B 2.88095 3.15476
C 2.90043 3.06494
D 3.21693 3.56085
E 2.99078 3.47926
F 2.91353 2.96617

Table 1: Mean Humor Ratings for First 7 and Last 7
Jokes by Group

Figure 1: Mean Humor Rating for each Joke for each
Group. Note that Group A is only human-generated
jokes

4.4 Exposure and Learning Effects (RQ4)

Analysis of rating progression shows a significant
upward linear trend in groups with AI-generated
jokes (Groups B, C, D, E and F) as shown in Fig-
ure 1. The improvement in ratings over time as
shown in Table 1 suggests a familiarization effect,
where initial skepticism gives way to increased ap-
preciation of AI-generated humor. This trend is
particularly evident in the mixed presentation se-
quence group D and the blind AI test group E.

4.5 Demographic Influences

4.5.1 Age-Related Effects (RQ5)

Results reveal significant age-group differences as
shown in Figure 2. The age-related differences in
ratings show a clear generational pattern across dif-
ferent groups, with younger participants demon-
strating more openness to AI-generated humor.
This trend remains consistent across different joke
types and presentation formats.

4.5.2 Technical Background Impact (RQ6)
Analysis of variance indicates no significant dif-
ferences based on AI expertise across groups as
shown in Figure 3. Participants with technical
backgrounds did not provide more favorable rat-
ings but showed a more nuanced appreciation for
AI-generated humor, often mentioning technical
aspects in their qualitative feedback.

4.6 Qualitative Observations
Participant feedback revealed several recurring
themes. Many expressed initial skepticism, with
some noting, "It’s strange to think of AI ‘trying’ to
be funny when it doesn’t actually experience hu-
mor. I’m not sure it will ever truly understand what
makes people laugh" (Participant 36) and "The
jokes were clever enough, but there’s something un-
settling about humor coming from a machine. It’s
missing the human touch" (Participant 71). How-
ever, others were surprised by the quality of the
AI-generated humor, with comments such as, "It’s
impressive how well the AI captured the timing and
wit usually found in human jokes. I wouldn’t have
guessed it was machine-generated" (Participant 64)
and "I was genuinely surprised that an AI could
come up with something this funny! I didn’t expect
it to pick up on such subtle humor" (Participant
146). Finally, some participants noted recognizing
patterns in the AI’s humor, with one stating, "I no-
ticed a lot of the humor felt very structured, almost
too perfect. I think the AI relies on patterns that
work, but it doesn’t quite get the unpredictability
that human humor has" (Participant 21), and an-
other remarking, "When I started paying attention,
I could tell the AI was using patterns that were
too precise. It didn’t have the imperfections or un-
predictable elements that make human humor feel
fresh" (Participant 167).

These qualitative insights provide context for the
quantitative findings and highlight the complex na-
ture of human perception of AI-generated content.

4.7 Summary of Key Findings
Our results reveal several important patterns. AI-
generated jokes receive comparable ratings to
human-generated ones, challenging preconceptions
about AI’s humor capabilities. Source blindness
significantly improves perception of AI-generated
humor, indicating the presence of implicit bias. Par-
ticipants demonstrate poor ability to distinguish be-
tween AI and human-generated jokes despite high
confidence. Repeated exposure leads to improved

83

Figure 2: Mean Humor Rating by Age Range for AI-
Generated Jokes

Figure 3: Mean Humor Rating by Experience with AI
for AI-Generated Jokes

ratings and reduced bias. Younger participants
show more favorable perceptions of AI-generated
humor. Participants with technical backgrounds
do not demonstrate more favorable perceptions of
AI-generated humor.

5 Discussion

5.1 Human Ability to Distinguish AI Content

The inability of participants to accurately identify
AI-generated jokes beyond chance levels (RQ1)
has significant implications for the sophistication
of current AI humor generation systems, especially
when reported confidence is high. It also raises
the potential need for AI disclosure in creative con-
tent, especially as the line between human and AI-
generated works continues to blur. Furthermore,
this finding highlights the future of human-AI cre-
ative collaboration and the ethical considerations
surrounding the attribution of AI-generated con-

tent.

5.2 Evolution of AI Humor Perception

Our findings challenge the prevalent assumption
that humans inherently prefer human-generated hu-
mor over AI-generated content. The comparable
ratings between AI and human-generated jokes
(as shown in RQ2) suggest that AI systems have
reached a significant milestone in generating con-
textually appropriate and genuinely amusing con-
tent. This advancement reflects the sophisticated
natural language processing capabilities of mod-
ern AI systems, particularly in understanding and
replicating the nuanced patterns that make content
humorous.

5.3 The Role of Source Bias

The improvement in perceived quality when the
source is unknown (RQ3) reveals a crucial insight
into human cognitive bias. This "source bias" ef-
fect demonstrates how preconceived notions about
AI capabilities can influence humor appreciation.
The disconnect between blind and informed rat-
ings suggests that humans may hold unconscious
biases against AI-generated content. These biases
can significantly impact their evaluation of creative
content, with the quality of AI-generated humor
often being systematically undervalued when its
source is known.

5.4 Demographic and Exposure Effects

The improvement in ratings with repeated exposure
(RQ4) indicates a learning effect that could have
important implications for AI content integration
strategies. It suggests that public acceptance of AI-
generated creative works may increase over time,
as audiences become more familiar with the tech-
nology. This improvement also points to the poten-
tial for long-term shifts in perception, as repeated
exposure helps individuals to better understand and
appreciate AI-generated content.

5.5 Generational Differences

The observed age-related differences in humor ap-
preciation (RQ5) reflect broader patterns in technol-
ogy adoption and acceptance. Younger participants’
higher ratings of AI-generated humor suggest a
generational shift in attitudes toward AI-generated
content. These differences may indicate potential
future trends in AI acceptance, with younger gen-
erations being more open to embracing AI-driven

84

creative works. Moreover, the role of early expo-
sure to technology in shaping these perceptions
cannot be overlooked.

5.6 Technical Literacy Impact

While technical background does not show a direct
correlation with humor appreciation (RQ6), this
finding still provides valuable insights into how
knowledge may influence perception. It suggests
that understanding AI systems could potentially re-
duce skepticism toward AI-generated content, even
though such a relationship is not evident in the
data. Additionally, education about AI capabili-
ties may play a role in influencing public reception
of AI-generated works. While no clear connec-
tion between technical literacy and humor appreci-
ation is found, it remains a potential area for future
exploration, especially in terms of how technical
knowledge might shape bias against AI-generated
content.

5.7 Technical Implications

Our findings suggest several key implications for
the development of humor-generating AI systems.
One crucial factor is the importance of context
awareness in humor generation, ensuring that AI
systems can understand and adapt to the nuances of
different situations. The need for diverse training
data is also highlighted, as it could help AI systems
better appeal to various demographics, accounting
for differences in humor preferences. Additionally,
incorporating user feedback mechanisms into the
design of AI systems may enhance their ability to
tailor humor more effectively. Lastly, maintaining
stylistic consistency in AI-generated humor is valu-
able, as it can create a more coherent and relatable
experience for the audience.

5.8 Societal Implications

The study’s findings also have broader societal im-
plications, particularly in the context of AI’s role
in everyday life. As AI continues to integrate into
various aspects of our society, it will influence not
only the entertainment and media sectors but also
broader cultural perceptions of creativity and orig-
inality. Understanding these dynamics can help
shape policies and frameworks that govern the use
and development of AI technologies in socially
sensitive areas.

5.9 Creative Industry Impact

The implications of our findings extend to the fu-
ture of AI in creative industries. One key aspect is
the evolving role of AI in content creation, which
could redefine how creative works are produced.
The potential for human-AI collaborative content
creation also stands out, with AI augmenting hu-
man creativity in new and innovative ways. The
future of entertainment and media production will
likely see a blending of human and AI-generated
content, which could change how audiences con-
sume creative works. Additionally, this shift may
influence employment and skill requirements in
creative fields, as new roles emerge to manage and
work alongside AI systems.

5.10 Design Considerations

The study suggests several design principles that
could guide future AI humor systems. Trans-
parency in source attribution is important, ensuring
users are aware of whether content is AI-generated.
Adapting to user preferences and feedback is an-
other key principle, allowing AI systems to evolve
and better align with individual tastes over time.
Incorporating cultural and contextual awareness
will also be crucial in making AI-generated humor
more relevant and relatable. Finally, a balance be-
tween novelty and familiarity is essential, as AI
humor should be fresh and surprising without stray-
ing too far from what audiences find familiar and
enjoyable.

5.11 Ethical Considerations

Our study raises several important ethical questions
regarding AI-generated content. One of the main
concerns is the need for transparency, particularly
in the disclosure of AI-generated content. This dis-
closure is vital in maintaining trust and ensuring
that audiences are informed about the nature of
the material they engage with. The potential im-
pact of AI on human creativity and expression also
warrants attention, as it may alter how people per-
ceive and value human-created art. Furthermore,
the role of AI in shaping cultural narratives is a sig-
nificant ethical consideration, as AI could influence
societal values and perceptions. Lastly, preserving
human agency in the creative process is essential,
ensuring that AI serves as a tool to augment human
creativity, not replace it.

85

5.12 Limitations and Future Research

5.12.1 Study Limitations

There are some limitations to consider in this study.
First, the specific context and timing of the research
may influence the findings, as perceptions of AI-
generated content can evolve over time. Addition-
ally, the limited range of humor styles tested in the
study means that the findings may not fully reflect
the diversity of humor types that exist. Sampling
biases in participant selection could also affect the
generalizability of the results. Finally, the rapid
evolution of AI capabilities means that the study’s
conclusions may need to be revisited as new ad-
vancements emerge.

5.12.2 Future Research Directions

Future research should address several areas to fur-
ther explore the impact of AI on humor appreci-
ation and content creation. One potential direc-
tion is studying long-term changes in perception
over extended exposure to AI-generated content,
which could reveal how familiarity affects audience
reception. Cross-cultural variations in AI humor
appreciation should also be examined, as differ-
ent cultures may have distinct humor preferences.
Additionally, the impact of various AI disclosure
methods on audience reactions warrants further
investigation. Future studies could also explore
the role of personalization in AI humor generation,
examining how tailored content influences user sat-
isfaction. Finally, the influence of different humor
styles and contexts on AI-generated content should
be explored to better understand how AI systems
can cater to diverse comedic tastes.

6 Conclusion

Our findings suggest that the relationship between
humans and AI-generated humor is more complex
and nuanced than previously understood. As AI
systems continue to evolve, the distinction between
human and AI-generated content becomes increas-
ingly subtle, challenging our preconceptions about
creativity and humor. The study highlights the im-
portance of understanding and addressing human
biases in the development and deployment of AI
creative systems, while also suggesting potential
pathways for improving human-AI creative collab-
oration.

References
Anthropic. 2024. Claude. https://www.anthropic.

com. Version 3.5 Sonnet.

Zahra Ashktorab, Michael Desmond, Josh Andres,
Michael Muller, Narendra Nath Joshi, Michelle
Brachman, Aabhas Sharma, Kristina Brimijoin, Qian
Pan, Christine T Wolf, et al. 2021. Ai-assisted
human labeling: Batching for efficiency without
overreliance. Proceedings of the ACM on Human-
Computer Interaction, 5(CSCW1):1–27.

Agnese Augello, Gaetano Saccone, Salvatore Gaglio,
and Giovanni Pilato. 2008. Humorist bot: Bringing
computational humour in a chat-bot system. In 2008
international conference on complex, intelligent and
software intensive systems, pages 703–708. IEEE.

Peter L Berger. 2014. Redeeming laughter: The comic
dimension of human experience. Walter de Gruyter
GmbH & Co KG.

Kim Binsted. 1996. Machine humour: An implemented
model of puns.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Nabil Tarique Hossain. 2020. Creative natural lan-
guage generation: humor and beyond. University of
Rochester.

Nicholas A Kuiper and Sorrel Nicholl. 2004. Thoughts
of feeling better? sense of humor and physical health.

Rod A Martin and Thomas Ford. 2018. The psychology
of humor: An integrative approach. Academic press.

Rada Mihalcea and Carlo Strapparava. 2005. Making
computers laugh: Investigations in automatic humor
recognition. In Proceedings of Human Language
Technology Conference and Conference on Empirical
Methods in Natural Language Processing, pages 531–
538.

Gabriele Paolacci, Jesse Chandler, and Panagiotis G
Ipeirotis. 2010. Running experiments on amazon
mechanical turk. Judgment and Decision making,
5(5):411–419.

Bob Phillips. 2013. The World’s Greatest Collection of
Clean Jokes. Harvest House Publishers.

Joseph Polimeni and Jeffrey P Reiss. 2006. The
first joke: Exploring the evolutionary ori-
gins of humor. Evolutionary psychology,
4(1):147470490600400129.

Graeme Ritchie. 2001. Current directions in computa-
tional humour. Artificial Intelligence Review, 16:119–
135.

Graeme Ritchie. 2009. Can computers create humor?
AI Magazine, 30(3):71–71.

86

Alessandro Valitutti, Antoine Doucet, Jukka M Toiva-
nen, and Hannu Toivonen. 2016. Computational gen-
eration and dissection of lexical replacement humor.
Natural Language Engineering, 22(5):727–749.

Tony Veale. 2004. Incongruity in humor: Root cause or
epiphenomenon?

Thomas Winters, Vincent Nys, and Danny De Schreye.
2019. Towards a general framework for humor gener-
ation from rated examples. In ICCC, pages 274–281.

87

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 88–95
January 19, 2025. ©2025 Association for Computational Linguistics

The Theater Stage as Laboratory:
Review of Real-Time Comedy LLM Systems for Live Performance

Piotr Mirowski
Improbotics
London, UK

piotr.mirowski@computer.org

Boyd Branch
Improbotics

Coventry, UK

Kory Mathewson
Improbotics

Montréal, Canada

Abstract

In this position paper, we review the eclectic
recent history of academic and artistic works
involving computational systems for humor
generation, and focus specifically on live per-
formance. We make the case that AI comedy
should be evaluated in live conditions, in front
of audiences sharing either physical or online
spaces, and under real-time constraints. We fur-
ther suggest that improvised comedy is there-
fore the perfect substrate for deploying and
assessing computational humor systems. Us-
ing examples of successful AI-infused shows,
we demonstrate that live performance raises
three sets of challenges for computational hu-
mor generation: 1) questions around robotic
embodiment, anthropomorphism and competi-
tion between humans and machines, 2) ques-
tions around comedic timing and the nature of
audience interaction, and 3) questions about
the human interpretation of seemingly absurd
AI-generated humor. We argue that these ques-
tions impact the choice of methodologies for
evaluating computational humor, as any such
method needs to work around the constraints of
live audiences and performance spaces. These
interrogations also highlight different types of
collaborative relationship of human comedians
towards AI tools.

1 Introduction

Attempting to combine humor with machine intel-
ligence is a long-standing subject of scientific en-
quiry and it is perceived as a fundamental challenge
(Raskin, 1979). Amin and Burghardt (2020), Veale
(2021) and Sharples and y Pérez (2022) provide au-
thoritative reviews of this nascent field, which can
be supplemented with examples of recent works
that rely on large language models (Winters et al.,
2018; Toplyn, 2023; Chen et al., 2023; Jentzsch and
Kersting, 2023; Tikhonov and Shtykovskiy, 2024).

According to several computational humor re-
searchers including Winters (2021), “humans are

the only known species that use humor for making
others laugh. Furthermore, every known human
civilization also has had at least some form of hu-
mor for making others laugh” (Caron, 2002; Ger-
vais and Wilson, 2005). This observation is often
extrapolated into the assertion that humor remains
an elusive goal for AI (in the same vein, researchers
in computational storytelling have defined impro-
visational storytelling as a grand challenge for AI
(Martin et al., 2016)). According to recent surveys
(Mirowski et al., 2024), this skeptical view about
AI’s comedic potential is a strongly-held opinion
shared by the wider comedy community, from ac-
tors and audiences to reviewers and journalists writ-
ing about comedy.

For this reason, we posit that comedy audiences
and performance spaces are the ultimate environ-
ments to critically evaluate the quality of systems
for the computational generation of humor. Even
though some studies like (Gorenz and Schwarz,
2024) have evaluated AI-generated humor using
crowd-sourced workers, human-computer interac-
tion researchers have raised concerns about the
poor quality of crowd-sourced evaluation of open-
ended text generation (Karpinska et al., 2021),
which can be attributed to lack of buy-in from eval-
uators, and to missing context. The setup of live
professional comedy invites paying audiences ex-
pecting to have a good time, and critical reviewers
judging the overall performance: it thus provides
with a realistic and challenging testbed for com-
putational humor systems. Moreover, the live na-
ture of comedy performance creates rich, interac-
tive exchanges between comedians and audiences,
which—unlike pure online evaluation—allows co-
medians (and comedy generation systems) to in-
corporate real-time feedback and rich sensory and
cultural context in the safe environment of theater.

At the intersection of live theater and humor sits
improvisational theater and comedy (Johnstone,
1979), a complex theatrical art form that can be

88

traced back to Rhapsodes in Ancient Greece or
to Commedia dell’Arte (Lea, 1934; Collins, 2001;
Mathewson, 2019). Because it relies on natural
human interaction and demands constant adapta-
tion to an evolving context, theatrical improvisa-
tion (like jazz) has been qualified as “real-time
dynamic problem solving” (Magerko et al., 2009;
Johnson-Laird, 2002). According to Mathewson
and Mirowski (2018) “improv requires perform-
ers to exhibit acute listening to both verbal and
non-verbal suggestions coming from the other im-
provisers, split-second reaction, rapid empathy to-
wards the other performers and the audience, short-
and long-term memory of narrative elements, and
practiced storytelling skills”, making it a highly
interesting challenge for AI systems. Interestingly,
theatrical improvisation encourages risk taking and
experimentation, and it even “celebrates failure”
thanks to a tacit agreement between improvisers
and audiences who acknowledge the challenge of
making up comedic material live on the stage. The
improv stage thus provides a “safe” environment to
test technological tools like artificial intelligence.

What follows is a literature and performance re-
view of the state of the art of computational humor
systems deployed in real-time in front of live audi-
ences, whether in physical or in virtual spaces. We
group these according to the type of scientific or
artistic questions that they raise, starting with ques-
tions around robotic embodiment of chatbots, an-
thropomorphism and competition between humans
and machines (Section 2), and questions around
liveness, timing and utility in the artistic process
(Section 3). We address the human interpretation
and justification of seemingly absurd AI-generated
humor (Section 4) and finish with a discussion on
how the constraints of live audiences and perfor-
mance spaces impact the choice of methodologies
for evaluating computational humor (Section 5).
We therefore suggest that the setting of live perfor-
mance allows to define collaborative relationships
between human comedians and AI tools.

2 Robot comedy as a test of humanity

As introduced in the previous section, a commonly
held belief is that humor is seen as the last frontier
of intelligence (Winters, 2021). Robot comedy can
then be seen as a challenge to humanity itself1.

1This prompted comedy critic Logan (2023) to unwittingly
center comedy over other art forms: “unlike music and visual
art, comedy can’t be easily reduced to an algorithm.” (sic)

2.1 Can robots deliver comedy on stage?
Robot embodiment presents with unique challenges
of audience reception. Some robotics and theater
practitioners like Hiroshi Ishiguro and Oriza Hi-
rata took the route of anthropomorphism (Pluta,
2016) to make the robot presence as human-like as
possible, whereas others like Tom Sgouros built a
custom robotic arm2 or even, like Annie Dorsen,
simply staged two laptops “talking” philosophy3.

In 2010, social roboticist Prof. Heather Knight4

pioneered staged comedy performances with an
Aldebaran Nao5 robot delivering human-written
comedy and gathering audience feedback thanks
to camera sensors that track audience sentiment
following each line delivered by the robot, and
used this information to modify next joke selection
based on audience feedback (Knight et al., 2011).
Starting in 2014, Austin, Texas-based multidisci-
plinary artist and engineer Arthur Simone staged
toy-like humanoid robots to be his partners in im-
provised theater performances: Bot Party: Improv
Comedy with Robots6, thus investigating how to
improvise with a robot.

In 2016, theater improvisers and robotics re-
searchers Dr. Piotr Mirowski and Dr. Kory Math-
ewson from duo HumanMachine7 developed large
language models (Sutskever et al., 2014) for im-
provisational comedy (Mathewson and Mirowski,
2017a). Unlike previous, rule-based AI methods
geared at generating comedy, they trained gen-
eral conversational models (Vinyals and Le, 2015)
trained on OpenSubtitles (Tiedemann, 2009). The
language model was coupled with speech recogni-
tion to listen to their human partner, text-to-speech
and text-dependent robotic control to operate a
small scale robot such as the Nao or EZ-Robot
JD Humanoid8. Comedy derived from the human
actor attempting to justify whatever the robot said.

Some of those robot performances incorporated
implicit audience feedback (Knight et al., 2011;
Mathewson and Mirowski, 2017a), but we hypothe-
size that audiences may have evaluated the novelty
of the premises of those shows in addition to their
comedic quality.

2https://sgouros.com/judy/
3https://anniedorsen.com/projects/

hello-hi-there/
4https://www.ted.com/talks/heather_knight_

silicon_based_comedy
5https://www.aldebaran.com/en/nao
6https://www.botparty.org/
7https://humanmachine.live
8https://www.ez-robot.com/

89

2.2 Computational humor presented as a
competition between humans and machine

The recent rapid deployment of AI in the creative
fields has raised ethical issues around the cannibal-
ization of creative economies (Frosio, 2023) and
the lack of consent in how training data for AI was
obtained (Zhong et al., 2023). As a consequence,
the public debate around AI is currently driven by
the fear of replacement; as illustrated below, perfor-
mance artists engaging AI ask the question whether
AI-generated humor can ever match human level.

In 2023, and in the context of public releases of
generative AI tools, and of their subsequent short-
term impact on creative industries (contributing
to the Writers Guild of America (WGA) labour
action), Los Angeles-based comedians Allisson
Goldberg and Brad Einstein created Comedians
vs. AI: Stage Against the Machine9. Their show
featured two teams of comedians, one “human” re-
lying only on their skills, another one supported
by Gen AI software like ChatGPT and DALL-E.
The show evaluated AI in an adversarial context,
pitting one team against another, and promising the
audiences reassurance about limited capabilities of
the machines; to quote one comedian, “We have
the benefit of having trauma and life experience
to pull from that AI doesn’t have integrated yet,
and that makes us more dynamic and sensitive and
hilarious for now.” (Jamerson, 2023).

In that same year of 2023, New York-based Com-
edy Bytes10 refined this concept to focus on im-
provised rap battles and comedy roasts between a
small cast of human performers, and cartoonish vir-
tual avatars puppeteered by actors or text-to-speech,
reading AI-generated jokes (Tett, 2023).

Other improv performances built around adver-
sarial human-AI relationships include The AI Im-
prov Show (2023) by London improv school The
Free Association11 (featuring ChatGPT-generated
jokes) and Amsterdam-based Boom Chicago who
produced The Future Is Here... And It Is Slightly
Annoying12 (2019) with improv sketches involv-
ing a tele-presence robot on wheels connected to a
chatbot developed by Botnik Studios13.

9https://www.comediansvsai.com/
10https://www.comedybytes.io/
11https://www.thefreeassociation.co.uk/
12https://boomchicago.nl/shows/

the-future-is-here/
13https://botnik.org/

2.3 Can an AI Pass the Comedy Turing Test?
Building upon the idea of human-AI compari-
son, improv duo HumanMachine adapted in 2017
the Turing test (Turing, 1950) and introduced its
comedic counterpart (Mathewson and Mirowski,
2017b). They assembled in 2018 a large-cast im-
prov troupe, Improbotics14, featuring human actors,
some of whom (called Cyborgs) get lines from AI
via headphones connected to a portable FM radio
receiving lines transmitted from the AI chatbot’s
text-to-speech. Over hundreds of performances,
the troupe has devised diverse short-form and long-
form improv games featuring the Cyborg in dis-
closed or concealed identity. In addition to evalu-
ating audiences’ perception towards AI, the troupe
evaluates audiences’ perception of its language ca-
pabilities: they devised a comedy Turing test by
staging non-Cyborg actors who pretend to be con-
trolled by AI alongside the Cyborg actors. One
would expect the comedy Turing test to become
harder as LLM technology develops, but the co-
medians invented ways to “sound like an AI” to
confuse the audiences, thereby demonstrating the
limitations of the Turing test.

Computational humor researcher Dr. Thomas
Winters designed, with comedian Lieven Schiere,
a more formal Turing test performed on the stage,
and aimed at evaluating advances in large language
models for writing comedy ahead of the perfor-
mance (Winters, 2024).

2.4 Comedic deception of audiences by AI
The idea of deception has been explored in game
contexts beyond the Turing test. In 2023, film-
maker Dr. Manuel Hendry designed a dark
comedic installation The Feeling Machine15, where
a chatbot-powered, ELIZA-inspired “psychothera-
pist” is embodied by an animated mask: once that
“psychotherapist” establishes a rapport with an in-
dividual spectator (Hendry et al., 2023), the system
provocatively shows a deep fake of that spectator
making up false memories, to raise questions about
misuses of technology. The Feeling Machine tar-
gets art museum audiences acquainted with ethical
discussions around AI; at the opposite side of the
spectrum sits a general audience show made by
TV company Endemol Italy and presented in 2023:
Fake Show: Diffidate delle imitazioni16, an impro-

14https://improbotics.org
15https://www.hendry.me/
16https://www.raiplay.it/programmi/

fakeshowdiffidatedelleimitazioni

90

visational game show featuring deep fakes.
Company Improbotics adapted that concept in

2024: they comically explore alternative life
choices of a consenting audience member, acted out
by different improvisers who drive live-generated
deep fakes (Glennon, 2024).

3 Live performance and real-time
interaction as a test for generative AI

The commonality behind the shows presented in
Section 2 was that they addressed ethical interroga-
tions about the role of AI in comedy. In this section,
we review shows that investigate how to effectively
deliver computational humor on stage.

3.1 AI co-creating real-time comedy dialogue

The development of large language models and
conversational AI applications mostly focuses on
single-user text-based dialogue. Speech recogni-
tion and dialogue systems struggle with Multi-Party
Chat (MPC). Branch et al. (2024) describe how
they approached this problem in Improbotics per-
formances, where multiple actors interact with an
AI Cyborg stage partner, just like in a traditional
improv comedy show featuring a large cast in a
lively performance. Instead of simple turn-taking
in human-chatbot dialogue, the troupe resorts to
human-in-the-loop curation of continuously AI-
generated lines, where the most comedic or relevant
lines are sent to the Cyborg performer via an ear-
piece; introducing a second performer who takes
responsibility for selecting the AI-generated line
creates a “writer’s room” setup and introduces two
levels of human interpretation of AI-generated ma-
terial. In their 2024 performances at the Edinburgh
Festival Fringe, the troupe replaced earpieces by
augmented-reality glasses, delegating the role of AI
line curation to the Cyborg performer, who would
simultaneously read some of the AI-generated lines
and try to maintain eye contact with stage partners.

Timing! The most important rule of comedy
is... Improbotics needed to design both technol-
ogy (fast speech recognition and language mod-
els, and asynchronous generation) to accelerate the
robot’s responses (Branch et al., 2024), and dra-
maturgy (“slow-burn” improv scenes relying on
non-language communication to fill the time lags)
(Mathewson and Mirowski, 2018). Improviser Cy-
borgs expressed they had struggled with AI gener-
ated lines because of slow timing and delays; their
perception was that the audience preferred timely

responses to higher quality but delayed responses.
In Oregon, Prof. Naomi Fitter focused on com-

edy timing as she has been running since 2019
regular comedy nights where her robot comedian
Jon relies on audience laughter to control the timing
and delivery of jokes (Srivastava and Fitter, 2021).

3.2 AI for inspiration and world building
Liveness in AI improv shows is not limited to dia-
logue: human actors can leverage AI-generated
ideas for real-time performance. Notably, San
Francisco-based Alexa Improvise17 has used an AI
assistant for game ideas since 2018; Yes, Android
by Toronto company Bad Dog18 featured actors
reading LLM-generated lines in 2017; Nouméa-
based La Claque19 incorporated French-language
AI for short-form improv suggestions in 2023; and
India-UK troupe ClimateProv leveraged Gen AI
to inspire climate-themed improvisation in 2022.
Winters and Mathewson (2019) designed automatic
slide generators20 for Powerpoint karaoke games.

Several projects explored LLMs for long-form
improvisation by supporting storytelling. Notably
Plays by Bots, staged since 2022 by Edmonton-
based Rapid Fire Theatre21, rely on scripts co-
written with Dramatron (Mirowski et al., 2023)
to build the world for improvisers; and in 2021,
Improbotics used an AI as narrator for long-form
scenes (Branch et al., 2021b).

Finally, and while they do not use AI in real time
during their performance, many comedians have
presented material co-written with AI in front of
live audiences, including Darren Walsh22 in 2023
and Anesti Danelis23 in 2024 at Edinburgh Fringe.

The commonality between all those shows is
to employ computational humor systems as mere
writing tools to support live human performance;
as a consequence, audience evaluation is focused
primarily on the human performers and how they
engage with their audiences.

3.3 Live performance with AI in digital spaces
The development of computer-mediated communi-
cation technology has introduced a new way for hu-
mans to congregate and redefined the notion of live-
ness and audience interaction. Live performance

17https://ai.nickradford.dev/
18https://baddogtheatre.com/
19https://laclaqueimpro.com/
20https://talkgenerator.com/
21https://rapidfiretheatre.com/
22https://darrenwalsh.co.uk/
23https://www.anestidanelis.com/

91

no longer requires a physical space, as performers
and audience can congregate virtually via telecon-
ference and chat, overcoming long geographical
distances, as proved by Failed to Render24, a com-
edy club in virtual reality, or most improv teams
performing and rehearsing online during Covid-19.

Branch et al. (2023) analysed how shared VR
environments and telepresence enhance improvi-
sational flow more than traditional teleconference;
a tele-immersive environment was used in 2020-
2021 for VR rehearsals and performances25 of Im-
probotics, where the AI agent was represented by
an avatar (Branch et al., 2021a). Jacob et al. (2019)
used computer vision models for physical improv
games in Robot Improv Circus VR26. PORTAGING
was a humorous prompt battle with Gen AI per-
formed on a Discord channel at NeurIPS 202227.
In these shows, audience engagement could be mea-
sured in chat interactions during streaming and, in
some cases, laughter on live audio channels.

4 AI language and human interpretation

The remaining question about computational hu-
mor systems for live performance is how they help
communicate, or how they challenge human actors
to make sense of AI-generated output.

On one hand, AI can be used for meaning mak-
ing: multilingual improv in Rosetta Code is me-
diated by speech recognition, machine translation,
and in-ear text-to-speech (Mirowski et al., 2020).
Incidently, these three tools are applications that
underlie the development of language models.

On the other hand, we alluded in Section 2 to
human actors trying to justify “seemingly absurd”
AI-generated text. Improvisers can leverage LLMs
as a creative and acting challenge (Mathewson and
Mirowski, 2018), and THEaiTRE’s scripted pro-
duction of AI: When a Robot Writes a Play exem-
plifies the glitch aesthetic of involuntarily funny
absurdist LLMs (Rosa et al., 2021). Absurdist the-
atre, however, requires supportive audiences. The
Dramatron system (Mirowski et al., 2023) was an
attempt at making AI-generated theatrical scripts
sound less “absurdist”, and it aimed at supporting
actors by generating more coherent narratives.

More than Human, produced in 2019 by Dr.
Gunter Lösel, went in the opposite direction. Its

24https://failedtorender.com/
25https://www.art-ai.io/programme/improbotics/
26https://gvu.gatech.edu/research/projects/

robot-improv-circus-vr-installation
27https://neurips.cc/virtual/2022/56220

human cast (one of whom was taking lines from an
LLM) did not attempt to justify those AI-generated
suggestions at all. Instead, and following the prin-
ciples of Dadaism, they used AI to explore and
celebrate their own “inner machine” (Loesel et al.,
2020; Lösel, 2024).

5 Discussion: evaluation of live AI humor

This position paper claims that audience feed-
back from live performances enables a challeng-
ing testbed for computational humor systems. Ar-
guably, some comedy material is not amenable to
live or improvised formats (e.g., memes, comedic
videos and films) as they are pre-written and with
no live audience interaction. Nevertheless, these
can be assessed by measuring audience engage-
ment on social media, in ratings or at the box office.

Human-Computer Interaction literature provides
many toolboxes for assessing live audience en-
gagement and the creative process. Branch et al.
(2024) and Mathewson and Mirowski (2018) rely
on audience and performer surveys after perfor-
mances. Srivastava and Fitter (2021) measure audi-
ence laughter and engagement using microphones.
Mirowski et al. (2024) proposed focus groups with
comedians engaging in writing tasks with LLMs
and assessing AI using Creativity Support Tool met-
rics like (Cherry and Latulipe, 2014; Chakrabarty
et al., 2024): these metrics can be applied to live
and improvisational contexts as well.

The fundamental advantage of framing the eval-
uation of computational humor in the wider context
of audience reception and feedback, is that it simul-
taneously defines the role that AI tools can play in
the wider comedy ecosystem–as creativity support
tools. Such a framing encourages a collaborative re-
lationship between human comedians and AI tools
instead of an adversarial one, and helps approach
the various ethical questions around AI art (and
comedy in particular) on artists (and comedians)
(Epstein et al., 2023; Jiang et al., 2023).

Humans have used the technologies of their time
to tell stories, from cave paintings to the internet.
Generative AI is one such technology, and this
paper gave examples of storytellers trying to adopt
it as a writing tool for performance. Humor and
comedy writers can evaluate those tools through
real-time human feedback, which can be uniquely
provided by live theater—an ideal experimental
substrate for creative technology for storytelling.

92

Acknowledgments

The authors wish to thank three anonymous review-
ers for instrumental feedback that helped improved
the paper, and the casts and guest players of Im-
probotics for transforming improv and the theatre
stage into a laboratory.

References
Miriam Amin and Manuel Burghardt. 2020. A survey

on approaches to computational humor generation.
In Proceedings of the The 4th Joint SIGHUM Work-
shop on Computational Linguistics for Cultural Her-
itage, Social Sciences, Humanities and Literature,
pages 29–41.

Boyd Branch, Christos Efstratiou, Piotr Mirowski,
Kory W Mathewson, and Paul Allain. 2021a. Tele-
immersive improv: Effects of immersive visualisa-
tions on rehearsing and performing theatre online. In
Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1–13.

Boyd Branch, Piotr Mirowski, Kory Mathewson, Sophia
Ppali, and Alexandra Covaci. 2024. Designing and
evaluating dialogue llms for co-creative improvised
theatre. In Proceedings of the 15th International Con-
ference on Computational Creativity. Association for
Computational Creativity.

Boyd Branch, Piotr Mirowski, and Kory W Mathew-
son. 2021b. Collaborative storytelling with human
actors and ai narrators. In Proceedings of the 12th In-
ternational Conference on Computational Creativity.
Association for Computational Creativity.

Boyd Branch, Piotr Mirowski, Sophia Ppali, Rocio
Von Jungenfeld, Paul Allain, and Christos Efstratiou.
2023. Mirror placement matters in remote collabo-
ration. In Extended Abstracts of the 2023 CHI Con-
ference on Human Factors in Computing Systems,
CHI EA ’23, New York, NY, USA. Association for
Computing Machinery.

James E Caron. 2002. From ethology to aesthetics:
Evolution as a theoretical paradigm for research on
laughter, humor, and other comic phenomena. Hu-
mor: International Journal of Humor Research.

Tuhin Chakrabarty, Vishakh Padmakumar, Faeze Brah-
man, and Smaranda Muresan. 2024. Creativity sup-
port in the age of large language models: An empiri-
cal study involving professional writers. In Proceed-
ings of the 16th Conference on Creativity & Cogni-
tion, pages 132–155.

Yuetian Chen, Bowen Shi, and Mei Si. 2023. Prompt to
gpt-3: Step-by-step thinking instructions for humor
generation. arXiv preprint arXiv:2306.13195.

Erin Cherry and Celine Latulipe. 2014. Quantifying the
creativity support of digital tools through the creativ-
ity support index. ACM Transactions on Computer-
Human Interaction (TOCHI), 21(4):1–25.

Derek Collins. 2001. Improvisation in rhapsodic perfor-
mance. Helios, 28(1):11–29.

Ziv Epstein, Aaron Hertzmann, Investigators of Hu-
man Creativity, Memo Akten, Hany Farid, Jessica
Fjeld, Morgan R Frank, Matthew Groh, Laura Her-
man, Neil Leach, et al. 2023. Art and the science of
generative ai. Science, 380(6650):1110–1111.

Giancarlo Frosio. 2023. Generative ai in court. Court
(September 1, 2023). in Nikos Koutras and Niloufer
Selvadurai (eds), Recreating Creativity, Reinventing
Inventiveness-International Perspectives on AI and
IP Governance (Routledge, 2023, Forthcoming).

Matthew Gervais and David Sloan Wilson. 2005. The
evolution and functions of laughter and humor: A
synthetic approach. The Quarterly review of biology,
80(4):395–430.

Neave Glennon. 2024. Boti reviews | artificial intelli-
gence improvisation. Brighton on the inside.

Drew Gorenz and Norbert Schwarz. 2024. How funny
is chatgpt? a comparison of human-and ai-produced
jokes. In PLoS ONE. OSF.

Manuel Flurin Hendry, Norbert Kottmann, Martin
Fröhlich, Florian Bruggisser, Marco Quandt, Stella
Speziali, Valentin Huber, and Chris Salter. 2023. Are
you talking to me? a case study in emotional human-
machine interaction. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 19, pages 417–424.

Mikhail Jacob, Prabhav Chawla, Lauren Douglas,
Ziming He, Jason Lee, Tanuja Sawant, and Brian
Magerko. 2019. Affordance-based generation of pre-
tend object interaction variants for human-computer
improvisational theater. In Proceedings of the 10th
International Conference on Computational Creativ-
ity. Association for Computational Creativity.

Megan Jamerson. 2023. A comedian and ai
walk into a bar. who was funnier? https:
//www.kcrw.com/news/shows/greater-la/
artificial-intel-smpd-homeless-oc/
ai-comedy. KCRW.

Sophie Jentzsch and Kristian Kersting. 2023. Chat-
gpt is fun, but it is not funny! humor is still
challenging large language models. arXiv preprint
arXiv:2306.04563.

Harry H Jiang, Lauren Brown, Jessica Cheng, Mehtab
Khan, Abhishek Gupta, Deja Workman, Alex Hanna,
Johnathan Flowers, and Timnit Gebru. 2023. Ai art
and its impact on artists. In Proceedings of the 2023
AAAI/ACM Conference on AI, Ethics, and Society,
pages 363–374.

Philip N Johnson-Laird. 2002. How jazz musicians
improvise. Music Perception, 19(3).

Keith Johnstone. 1979. Impro: Improvisation and the
Theatre. Faber and Faber Ltd.

93

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
2021. The perils of using mechanical turk to evaluate
open-ended text generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1265–1285.

Heather Knight, Scott Satkin, Varun Ramakrishna, and
Santosh Divvala. 2011. A savvy robot standup comic:
Online learning through audience tracking. In Work-
shop paper (TEI’10).

Kathleen Marguerite Lea. 1934. Italian popular comedy:
a study in the commedia dell’arte, 1560-1620 with
special reference to the english stage. (No Title).

Gunter Loesel, Piotr Mirowski, and Kory Wallace Math-
ewson. 2020. Do digital agents do dada? In Pro-
ceedings of the 11th International Conference on
Computational Creativity, pages 488–491.

Brian Logan. 2023. Whose generated line is it anyway?
ai tries to crack humour’s dna. The Guardian.

Gunter Lösel. 2024. Theatre dialogues with machines.
Interdisciplinary Science Reviews, 49(2):291–304.

Brian Magerko et al. 2009. An empirical study of cog-
nition and theatrical improvisation. In ACM Creat. &
Cog.

Lara J Martin, Brent Harrison, and Mark O Riedl. 2016.
Improvisational computational storytelling in open
worlds. In Interactive Storytelling: 9th International
Conference on Interactive Digital Storytelling, ICIDS
2016, Los Angeles, CA, USA, November 15–18, 2016,
Proceedings 9, pages 73–84. Springer.

Kory Mathewson and Piotr Mirowski. 2018. Im-
probotics: Exploring the imitation game using ma-
chine intelligence in improvised theatre. In Proceed-
ings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 14,
pages 59–66.

Kory W Mathewson. 2019. Humour-in-the-loop: Im-
provised theatre with interactive machine learning
systems. PhD Thesis, University of Alberta.

Kory W Mathewson and Piotr Mirowski. 2017a. Im-
provised theatre alongside artificial intelligences. In
Thirteenth Artificial Intelligence and Interactive Dig-
ital Entertainment Conference.

Kory Wallace Mathewson and Piotr Mirowski. 2017b.
Improvised comedy as a turing test. arXiv preprint
arXiv:1711.08819.

Piotr Mirowski, Juliette Love, Kory Mathewson, and
Shakir Mohamed. 2024. A robot walks into a bar:
Can language models serve as creativity supporttools
for comedy? an evaluation of llms’ humour align-
ment with comedians. In The 2024 ACM Conference
on Fairness, Accountability, and Transparency, pages
1622–1636.

Piotr Mirowski, Kory W Mathewson, Boyd Branch,
Thomas Winters, Ben Verhoeven, and Jenny Elfving.
2020. Rosetta code: Improv in any language. In
Proceedings of the 11th International Conference on
Computational Creativity, pages 115–122.

Piotr Mirowski, Kory W Mathewson, Jaylen Pittman,
and Richard Evans. 2023. Co-writing screenplays
and theatre scripts with language models: Evaluation
by industry professionals. In Proceedings of the 2023
CHI Conference on Human Factors in Computing
Systems, pages 1–34.

Izabella Pluta. 2016. Theater and robotics: Hiroshi
ishiguro’s androids as staged by oriza hirata. Art
Research Journal, 3(1):65–79.

Victor Raskin. 1979. Semantic mechanisms of humor.
In Annual Meeting of the Berkeley Linguistics Society,
volume 5, pages 325–335.

Rudolf Rosa, Tomáš Musil, Ondřej Dušek, Dominik Ju-
rko, Patrícia Schmidtová, David Mareček, Ondřej Bo-
jar, Tom Kocmi, Daniel Hrbek, David Košt’ák, et al.
2021. When a robot writes a play: Automatically
generating a theatre play script. In Artificial Life Con-
ference Proceedings 33, volume 2021, page 60. MIT
Press One Rogers Street, Cambridge, MA 02142-
1209, USA journals-info

Mike Sharples and Rafael Pérez y Pérez. 2022. Story
machines: How computers have become creative
writers. Routledge.

Ajitesh Srivastava and Naomi T Fitter. 2021. A robot
walks into a bar: Automatic robot joke success as-
sessment. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 2710–2716.
IEEE.

Ilya Sutskever, Vinyals Oriol, and Quoc V. Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
pages 3104–3112.

Gillian Tett. 2023. Can ai crack com-
edy? https://www.ft.com/content/
818f2cab-57ff-42c3-917b-4a83f1d87802.
Financial Times.

Jörg Tiedemann. 2009. News from opus-a collection of
multilingual parallel corpora with tools and interfaces.
In Recent Advances in Natural Language Processing,
volume 5, pages 237–248.

Alexey Tikhonov and Pavel Shtykovskiy. 2024. Humor
mechanics: Advancing humor generation with multi-
step reasoning. arXiv preprint arXiv:2405.07280.

Joe Toplyn. 2023. Witscript 3: A hybrid ai system for
improvising jokes in a conversation. arXiv preprint
arXiv:2301.02695.

Alan Turing. 1950. Computing machinery and intelli-
gence. Mind, 59(236):433–460.

94

Tony Veale. 2021. Your Wit is My Command: Building
AIs with a Sense of Humor. Mit Press.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Thomas Winters. 2021. Computers learning humor is
no joke. Harvard Data Science Review, 3(2).

Thomas Winters. 2024. Evaluating humor generation
in an improvisational comedy setting.

Thomas Winters and Kory W Mathewson. 2019. Au-
tomatically generating engaging presentation slide
decks. In International Conference on Computa-
tional Intelligence in Music, Sound, Art and Design
(Part of EvoStar), pages 127–141. Springer.

Thomas Winters, Vincent Nys, and Daniel De Schreye.
2018. Automatic joke generation: Learning humor
from examples. In Distributed, Ambient and Perva-
sive Interactions: Technologies and Contexts: 6th
International Conference, DAPI 2018, Held as Part
of HCI International 2018, Las Vegas, NV, USA, July
15–20, 2018, Proceedings, Part II 6, pages 360–377.
Springer.

Haonan Zhong, Jiamin Chang, Ziyue Yang, Tingmin
Wu, Pathum Chamikara Mahawaga Arachchige,
Chehara Pathmabandu, and Minhui Xue. 2023.
Copyright protection and accountability of generative
ai: Attack, watermarking and attribution. In Compan-
ion Proceedings of the ACM Web Conference 2023,
pages 94–98.

95

Proceedings of the 1st Workshop on Computational Humor (CHum), pages 96–100
January 19, 2025. ©2025 Association for Computational Linguistics

Abstract

This position paper starts from the
examination of the “Universal Handbook
for Political Speeches,” a satirical manual
created during communist Poland as a
modular tool to parody propaganda’s rigid
linguistic patterns and its absence of
meaning, humorously revealing the
absurdity of totalitarian “newspeak.”
Presented here in English for the first time,
the “Handbook” is explored as an analog
precursor to computational humor systems.
More importantly, this artifact shows that
humor, rather than being the product of
computing, can also arise from a
computationalized, combinatorial structure
and process. This shifts the focus on
computational algorithms and processes as
a mode of humor generation, rather than a
tool. That is, computing itself—with its
processes, structure, iteration, and
combinatorial logic—can be a source of
humor, rather than an instrument to
fabricate it. The very workings of the
machine are what can make us laugh,
regardless of what the machine carries or
produces. The “Handbook” functions here
as a spark for reflection, and hopefully a
broader discussion, on how this alternative
view may impact the evolution of
computational humor and its applications at
the dawn of the era of artificial general
intelligence.

1 Introduction

The “Universal Handbook for Political Speeches”
is a satirical guide distributed in Poland at the time
of the Solidarity movement in the 1980s which
mocked the empty, verbose, and ideologically
charged rhetoric of communist propaganda

(Marone, 2010). The “Handbook” seems to be a
playful embodiment of “newspeak,” a fictional
language introduced in George Orwell’s dystopian
novel 1984 designed as a tool of political control to
limit freedom of thought and enforce ideological
conformity. The idea of recommending this
mechanical approach to its users, both mimicked
and lampooned the propaganda’s repetitive and
formulaic nature, hence unmasking its absurdity.
The “Handbook” operated as a modular template
that allowed users to construct endless variations of
lengthy, meaningless speeches by combining
prewritten phrases from four distinct categories
(columns), each containing a list of
interchangeable phrases (see Appendix A). These
columns corresponded to different components of
a sentence:

• Column I: Opening phrases or thematic
introductions (e.g., “Dear colleagues,”
“On the other hand,” “But let us not forget
that”).

• Column II: Descriptive or action-oriented
statements related to the topic (e.g., “the
execution of outlined programmatic
tasks,” “the scope and location of worker
training,” “the current organizational
structure”).

• Column III: Transitional or explanatory
phrases (e.g., “compels us to analyze,”
“plays a crucial role in defining,”
“highlights the importance of
appreciating”).

• Column IV: Concluding or outcome-
oriented statements (e.g., “the current
administrative and financial conditions,”
“further directions of development,” “a
universal participatory system”).

The Algorithm is the Message: Computing as a Humor-Generating Mode

Vittorio Marone
The University of Texas at San Antonio, USA

vittorio.marone@utsa.edu

96

To create a speech, the user would select one phrase
from each column sequentially (I → II → III → IV)
and repeat this process as needed, recycling or
varying combinations to extend the speech
indefinitely. For example:

• Combination 1: “Dear colleagues, the

ongoing informational and propagandistic
protection of our activities plays a
significant role in establishing a training
system tailored to workers’ needs.”

• Combination 2: “On the other hand, the
effort to strengthen and develop effective
structures facilitates the preparation and
construction of advanced forms of action.”

This approach enables users to produce a
seemingly endless series of sentences, all of which
sound appropriately formal, authoritative, and
ideologically consistent, while having no actual
meaning. This parodied the vacuity of communist
propaganda, which relied on impressive-sounding
language to obscure its lack of substantive ideas.

The humor of the handbook lies in its overt
mechanical sequencing, which creates the illusion
of coherence regardless of content. By exposing the
mechanical nature of speech construction, it
highlighted how the political rhetoric of the regime
was less about conveying meaning and more about
projecting authority and reinforcing ideological
control. Some of the key features that made the
“Handbook” effective include:

• Endless Combinations. The modular

design allowed for thousands of
combinations, making the system seem
both vast and methodical.

• Parodic Authenticity. The phrases were
written in a style that closely mimicked
real propaganda speeches, giving the satire
its biting edge.

• Reflection of Reality. The mechanical
relentlessness of the “Handbook” mirrored
the mechanical absurdity of actual
propaganda, creating a form of meta-
critique.

Besides its function at the time of communism in
Poland, the “Handbook” invites us to reflect on
computational approaches to language and humor
considering computers and algorithms not just as
tools, but as a mode of generating humor. We may

say that the text of the handbook was plain and not
interesting in itself, but what made it fun and
intriguing was its computationalization. The
“satirical mechanization” of the “Handbook”
demonstrates how humor can emerge from the
mechanical application of language rules. This
analog system anticipated computational humor
systems (Amin & Burghardt, 2020) by using
predefined templates and algorithms to create
meaning—or its illusion. By mechanically
generating discourse, it exposed propaganda’s
reliance on pre-fabricated rhetoric, revealing the
manipulation and vacuity underlying authoritarian
speech. This form of disruptive combinatorial
creativity shows that humor can emerge not only
from the content of the phrases, but in the very act
of their arbitrary sequencing. This analog, yet
computationalized form of humor exemplifies how
structure, randomness, and sequencing can work to
generate humor.

2 Potential Implications of Computing as
a Humor-Generating Mode

2.1 Humor as Process, Not Output

Traditionally, computation in humor has been
viewed as a tool—a means to achieve a predefined
outcome, such as generating jokes, detecting irony,
or analyzing linguistic patterns. This functional
perspective treats computational processes as
subservient to the end product: the humorous
content itself. However, reframing computation as
a humorous mode shifts the emphasis to the
generative computational process instead of the
outcome. From this perspective, humor emerges
not from the final product (a joke or punchline) but
from the structure, sequencing, and combinatorial
logic inherent in computational processes. For
example, in the “Universal Handbook for Political
Speeches,” the humor lies in its mechanical
absurdity, as interchangeable fragments produce
endless combinations of pompous, empty rhetoric.
This shows that computing itself can embody
humor when its processes are exposed.

Reframing computing as a humorous mode
invites researchers to explore how structure and
process—the underlying mechanics of humor
generation—can themselves serve as sources of
comedy. This perspective shifts attention from the
output to the systems and logic driving humor,
fundamentally rethinking the origins of humor in
computational systems. As a result, the

97

understanding of computational humor may evolve
into a domain where the humorous mechanics of
systems—not just their humorous outputs—
become complementary to understanding and
designing computational humor.

2.2 Meta-Humor and Human-Machine
Dynamics

Meta-humor arises when a system reflects on or
reveals its own mechanisms. Computational humor
as a mode inherently generates meta-humor, where
the system’s own generative logic ignites the joke.
This parallels the “Handbook,” where humor arises
primarily from its visible combinatorial structure
rather than the semantic content of individual
phrases. Similarly, the unintentionally humorous
results of AI systems (Shane, 2019) often arise
from their rigid adherence to structures, patterns,
and system logic, and leaving them exposed may
engender novel forms of meta-humor. Therefore,
studying computational processes through the lens
of theories of humor may provide novel
understandings in the field of computer science and
computational linguistics. In a sense, this would
mark a shift from computational humor to
humorous computation.

“Humorous computational systems” inspired by
the “Handbook” could be explicitly designed to
reveal or parody their algorithmic nature,
generating humor through the visible mechanics of
their construction and operation. This taps into the
human fascination with exposed mechanisms, as
seen in watches (e.g., the Swatch GK100 Jellyfish
wristwatch on display at the MoMA), computers
(e.g., the original translucent iMac G3, also on
display at the MoMA), or car gearboxes (e.g., the
visible gearchange mechanism in the Lotus Emira).
Other examples include quirky musical
instruments (e.g., Wintergatan’s Marble Machine),
Rube Goldberg machines, and Theo Jansen’s
Strandbeests. In all these creations, the visible
systems and processes are more captivating than
their final output, like the melody produced or
where an object lands.

Since current computational humor systems
evaluate success based on user reactions to
generated content (e.g., laughter or ratings of
“funny”), this new approach would require
developing new metrics that assess the humor
embedded in computational structures, such as
incongruity levels, randomness, or structural
creativity.

Superiority theories of humor (Lintott, 2016)
suggest that humans may laugh at machines when
their “cold” logic or mechanical limitations appear
inferior to human reasoning. However,
computational systems that present their own
processes and mechanisms as sources of humor, as
well as the inherent absurdity of their existence and
their interactions with humans, could invert this
dynamic, making machines appear self-aware and
relatable. This would challenge understandings and
desired outcomes of human-machine interaction.
Rather than striving to make machines more
human, exposing their inner workings and non-
humanity might make people perceive them as
more relatable and therefore—paradoxically—as
more human. While science strives to make AI and
robots as similar as possible to real humans, those
that humorously expose their computational logic
and “non-humanness” might make technology feel
less intimidating and more accessible, particularly
for non-technical users.

These forms of machine self-deprecating humor
that point at its combinatorial mechanisms, system
inefficiencies, or their programmers’ biases, may
change how humans perceive and interact with
machines. For example, interjecting self-reflective
humorous comments at random intervals may give
an AI a unique personality that shows “awareness”
of its inner workings by exposing them through a
sort of humorous computational transparency (for
instance, in response to a user’s negative feedback
on the AI’s output). As another example, an AI-
generated voice assistant could intentionally switch
to a robot-like voice to humorously express its
flawed or unsatisfactory performance as a machine.
This kind of revealing and self-referential humor
by AI systems could also be used as an educational
tool to demystify computational processes and
concepts making them less intimidating and more
engaging for students, especially when introducing
them to fields like computer science, robotics, and
artificial intelligence.

By implementing this approach, chatbots and
robotic companions that generate humor by
revealing their computational processes could feel
more relatable, as some people may find
“replicants” intimidating, if not outright creepy.
This “see-through” approach to humorous
computational thinking could transform how
people interact with AI chatbots and robotic
companions, and how they integrate them into their
lives.

98

2.3 Broader Implications

Most computational humor research aims to mimic
or reproduce human humor. Treating computing as
a humor-generating mode suggests that algorithmic
processes need not replicate human humor. Instead,
they can “embrace” their own unique, mechanical
absurdity, producing humor that is distinctly
computational. This has the potential to change and
expand not only what we find humorous as human
beings, but the very understanding of humor itself,
from human-like to more-than-human.

By focusing on structure and process,
researchers can identify distinctly computational
forms of humor, where the logic of systems
generates a unique type of comedy that does not
rely on replicating human expression. Here,
examining computing as a humorous mode reveals
the uniquely human ability to find humor in
structural absurdity and mechanical logic. This
contributes to philosophical and psychological
discussions about what distinguishes humans from
machines and how mechanical and computational
processes can expand “humanness” by broadening
modes of humor generation and enjoyment. More
broadly, computational humor systems can reveal
how humans relate to mechanized processes.
Through this lens, computational humor moves
beyond imitation to become a tool for exploration
of what makes us smile—of what make us human.

3 Conclusion

The “Universal Handbook for Political Speeches”
is more than a historical curiosity—it is a powerful
case study in how the algorithmic structuring of
language can be used as a mode of humor
generation. Its analog design anticipates the
computational methods used in modern language
generation while serving as a timeless reminder of
the power of humor to unmask authoritarian
absurdity. Building on this foundation, this paper
advocates for viewing computing as a mode of
humor generation, where humor emerges from the
structure and process itself rather than solely from
the output. The “Handbook” demonstrates how
modular structures, algorithms, and processes can
engender humor, offering new ways to design
systems that embrace the creative potential of
computing rather than striving to replicate human-
like humor. Finally, this approach can deepen our
understanding of human-machine dynamics by
emphasizing shared experiences of absurdity and
creativity, in a fragile balance between sequencing
and randomness, order and chaos.

Computational humor systems challenge us to
rethink the nature of humor itself and the ways in
which humans and machines can collaborate in
playful and meaningful ways. At the dawn of
artificial general intelligence, these systems offer a
glimpse of a future where algorithms are not just
functional but also inspiring, especially if we let
their unequivocal, mechanistic non-humanness
shine through.

4 Limitations

This position paper presents a conceptual
framework for understanding computational
humor as a generative mode rather than a tool,
using the “Universal Handbook for Political
Speeches” as a case study. However, the analysis
relies on a single historical artifact, which, while
illustrative, may limit the generalizability of the
arguments to contemporary computational humor
systems. The absence of empirical testing or
concrete implementation of the proposed ideas
means that their practical applicability and
effectiveness remain speculative. Furthermore, the
paper does not extensively address how these ideas
might interact with the latest advances in neural
network-based language models, natural language
processing, computational linguistics, or
multimodal humor systems. Finally, as a position
paper, it does not engage directly with broader
ethical implications, such as how the use of
computational humor might shape human-machine
interactions in unintended ways. Of course, these
limitations also represent doors open to further
reflection and interdisciplinary research.

References
Amin, M., & Burghardt, M. (2020). A survey on

approaches to computational humor generation.
Proceedings of the 4th Joint SIGHUM Workshop on
Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, 29–41.
International Committee on Computational
Linguistics.
https://aclanthology.org/2020.latechclfl-1.4

Lintott, S. (2016). Superiority in humor theory. The
Journal of Aesthetics and Art Criticism, 74(4), 347–
358. https://doi.org/10.1111/jaac.12321

Marone, V. (2010). La quotidianità dell’assurdo [The
everyday absurd]. Archetipo Libri.

Shane, J. (2019). You look like a thing and I love you:
How AI works and why it’s making the world a
weirder place. Voracious.

99

Appendix A

100

Author Index

Amir, Ori, 71
Asapu, Likhith, 32
Attardo, Salvatore, 58

Baluja, Ashwin, 9
Branch, Boyd, 88

Dehouck, Mathieu, 18
Delaborde, Marine, 18
Dua, Ashna, 32

Flaksman, Maria, 1
Fong, Wyatt, 63

Han, Kevin, 63

Joshi, Narendra Nath, 79

Kilpatrick, Alexander, 1
Kodali, Prashant, 32

Le, Alexander, 63
Lee, Joshua, 63

Marone, Vittorio, 96
Mathewson, Kory, 88
Mirowski, Piotr, 88

Rajesh Kavitha, Kapil, 32

Sarrof, Yash Raj, 23
Shah, Sur, 63
Shrivastava, Manish, 32
Skalicky, Stephen, 58

Toplyn, Joe, 71

Zhu, Kevin, 63

101

	Program
	The Exception of Humor: Iconicity, Phonemic Surprisal, Memory Recall, and Emotional Associations
	Text Is Not All You Need: Multimodal Prompting Helps LLMs Understand Humor
	Rule-based Approaches to the Automatic Generation of Puns Based on Given Names in French
	Homophonic Pun Generation in Code Mixed Hindi English
	Bridging Laughter Across Languages: Generation of Hindi-English Code-mixed Puns
	Testing Humor Theory Using Word and Sentence Embeddings
	Pragmatic Metacognitive Prompting Improves LLM Performance on Sarcasm Detection
	Can AI Make Us Laugh? Comparing Jokes Generated by Witscript and a Human Expert
	Evaluating Human Perception and Bias in AI-Generated Humor
	The Theater Stage as Laboratory: Review of Real-Time Comedy LLM Systems for Live Performance
	The Algorithm is the Message: Computing as a Humor-Generating Mode

