@inproceedings{li-etal-2025-large-foundation,
title = "On Large Foundation Models and {A}lzheimer{'}s Disease Detection",
author = "Li, Chuyuan and
Carenini, Giuseppe and
Field, Thalia",
editor = "Ananiadou, Sophia and
Demner-Fushman, Dina and
Gupta, Deepak and
Thompson, Paul",
booktitle = "Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.cl4health-1.13/",
doi = "10.18653/v1/2025.cl4health-1.13",
pages = "158--168",
ISBN = "979-8-89176-238-1",
abstract = "Large Foundation Models have displayed incredible capabilities in a wide range of domains and tasks. However, it is unclear whether these models match specialist capabilities without special training or fine-tuning. In this paper, we investigate the innate ability of foundation models as neurodegenerative disease specialists. Precisely, we use a language model, Llama-3.1, and a visual language model, Llama3-LLaVA-NeXT, to detect language specificity between Alzheimer{'}s Disease patients and healthy controls through a well-known Picture Description task. Results show that Llama is comparable to supervised classifiers, while LLaVA, despite its additional ``vision'', lags behind."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-large-foundation">
<titleInfo>
<title>On Large Foundation Models and Alzheimer’s Disease Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chuyuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thalia</namePart>
<namePart type="family">Field</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deepak</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Thompson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-238-1</identifier>
</relatedItem>
<abstract>Large Foundation Models have displayed incredible capabilities in a wide range of domains and tasks. However, it is unclear whether these models match specialist capabilities without special training or fine-tuning. In this paper, we investigate the innate ability of foundation models as neurodegenerative disease specialists. Precisely, we use a language model, Llama-3.1, and a visual language model, Llama3-LLaVA-NeXT, to detect language specificity between Alzheimer’s Disease patients and healthy controls through a well-known Picture Description task. Results show that Llama is comparable to supervised classifiers, while LLaVA, despite its additional “vision”, lags behind.</abstract>
<identifier type="citekey">li-etal-2025-large-foundation</identifier>
<identifier type="doi">10.18653/v1/2025.cl4health-1.13</identifier>
<location>
<url>https://aclanthology.org/2025.cl4health-1.13/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>158</start>
<end>168</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On Large Foundation Models and Alzheimer’s Disease Detection
%A Li, Chuyuan
%A Carenini, Giuseppe
%A Field, Thalia
%Y Ananiadou, Sophia
%Y Demner-Fushman, Dina
%Y Gupta, Deepak
%Y Thompson, Paul
%S Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-238-1
%F li-etal-2025-large-foundation
%X Large Foundation Models have displayed incredible capabilities in a wide range of domains and tasks. However, it is unclear whether these models match specialist capabilities without special training or fine-tuning. In this paper, we investigate the innate ability of foundation models as neurodegenerative disease specialists. Precisely, we use a language model, Llama-3.1, and a visual language model, Llama3-LLaVA-NeXT, to detect language specificity between Alzheimer’s Disease patients and healthy controls through a well-known Picture Description task. Results show that Llama is comparable to supervised classifiers, while LLaVA, despite its additional “vision”, lags behind.
%R 10.18653/v1/2025.cl4health-1.13
%U https://aclanthology.org/2025.cl4health-1.13/
%U https://doi.org/10.18653/v1/2025.cl4health-1.13
%P 158-168
Markdown (Informal)
[On Large Foundation Models and Alzheimer’s Disease Detection](https://aclanthology.org/2025.cl4health-1.13/) (Li et al., CL4Health 2025)
ACL