@inproceedings{elyazori-etal-2025-capturing,
title = "Capturing Patients' Lived Experiences with Chronic Pain through Motivational Interviewing and Information Extraction",
author = "Elyazori, Hadeel R A and
Abdulrazzaq, Rusul and
Al Shawi, Hana and
Amouzou, Isaac and
King, Patrick and
Manns, Syleah and
Popal, Mahdia and
Patel, Zarna and
Destefano, Secili and
Shah, Jay and
Gerber, Naomi and
Sikdar, Siddhartha and
Lee, Seiyon and
Acuna, Samuel and
Lybarger, Kevin",
editor = "Ananiadou, Sophia and
Demner-Fushman, Dina and
Gupta, Deepak and
Thompson, Paul",
booktitle = "Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.cl4health-1.28/",
doi = "10.18653/v1/2025.cl4health-1.28",
pages = "321--330",
ISBN = "979-8-89176-238-1",
abstract = "Chronic pain affects millions, yet traditional assessments often fail to capture patients' lived experiences comprehensively. In this study, we used a Motivational Interviewing framework to conduct semi-structured interviews with eleven adults experiencing chronic pain and then applied Natural Language Processing (NLP) to their narratives. We developed an annotation schema that integrates the International Classification of Functioning, Disability, and Health (ICF) with Aspect-Based Sentiment Analysis (ABSA) to convert unstructured narratives into structured representations of key patient experience dimensions. Furthermore, we evaluated whether Large Language Models (LLMs) can automatically extract information using this schema. Our findings advance scalable, patient-centered approaches to chronic pain assessment, paving the way for more effective, data-driven management strategies."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elyazori-etal-2025-capturing">
<titleInfo>
<title>Capturing Patients’ Lived Experiences with Chronic Pain through Motivational Interviewing and Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hadeel</namePart>
<namePart type="given">R</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Elyazori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rusul</namePart>
<namePart type="family">Abdulrazzaq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hana</namePart>
<namePart type="family">Al Shawi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isaac</namePart>
<namePart type="family">Amouzou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">King</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Syleah</namePart>
<namePart type="family">Manns</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahdia</namePart>
<namePart type="family">Popal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zarna</namePart>
<namePart type="family">Patel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Secili</namePart>
<namePart type="family">Destefano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jay</namePart>
<namePart type="family">Shah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naomi</namePart>
<namePart type="family">Gerber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddhartha</namePart>
<namePart type="family">Sikdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seiyon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Acuna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Lybarger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deepak</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Thompson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-238-1</identifier>
</relatedItem>
<abstract>Chronic pain affects millions, yet traditional assessments often fail to capture patients’ lived experiences comprehensively. In this study, we used a Motivational Interviewing framework to conduct semi-structured interviews with eleven adults experiencing chronic pain and then applied Natural Language Processing (NLP) to their narratives. We developed an annotation schema that integrates the International Classification of Functioning, Disability, and Health (ICF) with Aspect-Based Sentiment Analysis (ABSA) to convert unstructured narratives into structured representations of key patient experience dimensions. Furthermore, we evaluated whether Large Language Models (LLMs) can automatically extract information using this schema. Our findings advance scalable, patient-centered approaches to chronic pain assessment, paving the way for more effective, data-driven management strategies.</abstract>
<identifier type="citekey">elyazori-etal-2025-capturing</identifier>
<identifier type="doi">10.18653/v1/2025.cl4health-1.28</identifier>
<location>
<url>https://aclanthology.org/2025.cl4health-1.28/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>321</start>
<end>330</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Capturing Patients’ Lived Experiences with Chronic Pain through Motivational Interviewing and Information Extraction
%A Elyazori, Hadeel R. A.
%A Abdulrazzaq, Rusul
%A Al Shawi, Hana
%A Amouzou, Isaac
%A King, Patrick
%A Manns, Syleah
%A Popal, Mahdia
%A Patel, Zarna
%A Destefano, Secili
%A Shah, Jay
%A Gerber, Naomi
%A Sikdar, Siddhartha
%A Lee, Seiyon
%A Acuna, Samuel
%A Lybarger, Kevin
%Y Ananiadou, Sophia
%Y Demner-Fushman, Dina
%Y Gupta, Deepak
%Y Thompson, Paul
%S Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-238-1
%F elyazori-etal-2025-capturing
%X Chronic pain affects millions, yet traditional assessments often fail to capture patients’ lived experiences comprehensively. In this study, we used a Motivational Interviewing framework to conduct semi-structured interviews with eleven adults experiencing chronic pain and then applied Natural Language Processing (NLP) to their narratives. We developed an annotation schema that integrates the International Classification of Functioning, Disability, and Health (ICF) with Aspect-Based Sentiment Analysis (ABSA) to convert unstructured narratives into structured representations of key patient experience dimensions. Furthermore, we evaluated whether Large Language Models (LLMs) can automatically extract information using this schema. Our findings advance scalable, patient-centered approaches to chronic pain assessment, paving the way for more effective, data-driven management strategies.
%R 10.18653/v1/2025.cl4health-1.28
%U https://aclanthology.org/2025.cl4health-1.28/
%U https://doi.org/10.18653/v1/2025.cl4health-1.28
%P 321-330
Markdown (Informal)
[Capturing Patients’ Lived Experiences with Chronic Pain through Motivational Interviewing and Information Extraction](https://aclanthology.org/2025.cl4health-1.28/) (Elyazori et al., CL4Health 2025)
ACL
- Hadeel R A Elyazori, Rusul Abdulrazzaq, Hana Al Shawi, Isaac Amouzou, Patrick King, Syleah Manns, Mahdia Popal, Zarna Patel, Secili Destefano, Jay Shah, Naomi Gerber, Siddhartha Sikdar, Seiyon Lee, Samuel Acuna, and Kevin Lybarger. 2025. Capturing Patients’ Lived Experiences with Chronic Pain through Motivational Interviewing and Information Extraction. In Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health), pages 321–330, Albuquerque, New Mexico. Association for Computational Linguistics.