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Abstract

This paper presents EventHopNLI, a simpli-
fied functional diagnostic dataset for the task of
event temporal ordering. This paper uses this
diagnostic dataset to improve the interpretabil-
ity of the performance of attention-based lan-
guage models on this task. Existing datasets
based on natural data have multiple overlapping
linguistic features. Simplifying and isolating
these features improves interpretability. Even-
tHopNLI is a programmatically-created NLI
dataset that systematically varies over various
complexity factors such as number of events,
number of logical hops etc. Even though Even-
tHopNLI is highly simplified, it still proves
challenging to language models. Being func-
tional, the dataset is dynamic. This reduces
the risk that the data is available to language
models during training. We ablate over the
different complexity parameters and illustrate
different shortcomings of attention-based mod-
els at this task. We discuss the performance
of RoBERTa-large, LLlama-405B and GPT-4o0.
The code and data is available at https://
github.com/vedmathai/eventhopnli.

1 Introduction

Identifying events in time and reasoning about their
relationships is critical for many NLP application
areas such as text summarization and fact checking.
However, off-the-shelf large language models per-
form rather poorly in temporal reasoning (Xiong
et al., 2024; Wang and Zhao, 2023). Despite the
advances they report in building explicit temporal
graphs and applying chain-of-thought reasoning,
the problem cannot be viewed as solved. One rea-
son the task is difficult is that multiple linguistic
factors need to be brought to bear concurrently.
A related challenge is that human annotators find
it difficult and sometimes confusing to supply ex-
plicit temporal annotations, and as a result anno-
tated natural data is expensive and often noisy. A
core challenge — and the one that the present pa-
per addresses — is that reasoning about temporal
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Premise: The end of the Raid on Firestone Z& happened simultaneous(1) to the end of the

. The start of the Raid on Eaglesmoor L4 happened after(2)
the start of the Conflict at Ironveil ;<. The start of the Conflict at Ironveil ;< happened
simultaneous(3) to the end of the Raid on Firestone Z& . The start of the Raid on Firestone Z
happened after(4) the szart of the Battle of Crescent Moon Keep . The end of the Raid on
Eaglesmoor L4 happened before(5) the start of the Battle of Moosetop .. The end of the
Battle of Moosetop 4 happened before(6) the szart of the Raid on Eaglesmoor ‘4.

Battle of Crescent Moon Keep

Hypothesis 1: The Raid on Firestone & occurred
before(h1) The Raid on Eaglesmoor. “r

o h3
3152 z | Label: True
| Lo ~ /,,/J Hypothesis 2: The Raid on Firestone Z occurred
~ ' 576 .
PN ‘) > N after(h2) The Raid on Eaglesmoor. L'4
L hih2 ah Label: False
a

Hypothesis 3: The Battle of Moosetop «, occurred
after(h3) The Raid on Eaglesmoor. “
Label: Undefined

Earlier Later

Figure 1: An example of the generated premise and
an illustration of the timeline that the premise depicts.
The actual dataset does not contain the emojis. They
have been included in the figure to help readers parse the
paragraph. The dataset is created to test the upper-bound
of language models on the the temporal ordering task.
The current naturalistic datasets are have confounding
linguistic features making it hard to identify specific
areas of improvements. Simplifying the task to this
format helps us better understand models’ ability to
perform multi-hop reasoning for temporal reasoning.

relationships is a multi-hop reasoning problem on
a graph of relationships, and classic algorithms for
solving such problems exactly are recursive.

Most annotated temporal datasets (UzZaman
et al., 2013) are created by asking experts or crowd-
workers to provide temporal labels on naturally
occurring text articles. In general, the set of tempo-
ral relationships in a text has a O(n?) complexity
on the number of events. Annotating all relation-
ships quickly becomes intractable as the text length
increases, so it is necessary to select events for
which relations are to be annotated. UzZaman et al.
(2013) leaves the choice of the pair of events for
which a relationship is to be identified to the an-
notators. As a result, these datasets are sparsely
labeled. Later annotation efforts attempt to remedy
the sparsity problems. For example, Cassidy et al.
(2014) make annotators provide temporal relation-
ship labels between all events in a two-sentence
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window. Ning et al. (2018) perform two-rounds
of annotations. The first classifies the member of
events to multiple orthogonal axes, i.e., one axis
for events that have happened and another axis for
events that are only planned to happen but haven’t
as yet. The second round of annotation then places
these events in temporal order on their respective
axes. This discussion illustrates that the annota-
tion completeness is already limited by the specific
design of the annotation process.

One additional — and critical — limitation of cur-
rent datasets is Lack of diversity. Most annotation
efforts were carried out on news data, which is
dominated by the past tense. This introduces biases
which can limit performance on other types of text,
such as planning documents. A second critical lim-
itation is linguistic coverage. The materials are not
balanced or controlled for the linguistic markers
of temporal relations. This makes it impossible to
carry out a diagnostic evaluation of which types of
expressions are the causes of difficulties in perfor-
mance.

Both of these points motivate EventHopNLI.
The dataset focuses on analysing the performance
of models when multiple logical hops are required
to perform the temporal reasoning. We system-
atically vary the complexity in terms of number
of events, relationships, hops and analyse the per-
formance. An inventory of the full variety of lin-
guistic features found in naturalistic data can be
found in §2. A technical description of how the
EventHopNLI dataset isolates and balances for the
specific features in its scope is found in §3.

Our contributions are the following:

1. The dataset: EventHopNLI, which is pre-
sented in the form of a Natural Language Inference
task. Each datapoint presents a paragraph (premise)
and a corresponding claim (hypothesis) about the
temporal order between two events in the para-
graph. The task posed to the model is to decide
whether the claim is true, false or undecidable due
to logical inconsistencies in the text.

2. An illustration of programmatic data gen-
eration for the task of temporal relationship ex-
traction: As discussed above, EventHopNLI is
designed to alleviate the problems of imbalance
and excessive overlap of linguistic phenomena by
generating the data points programatically. This
forms a functional test (Fan et al., 2024). Static
benchmarks run the risk of being accessible to lan-
guage models during their training. Evaluating on
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data that the language model has already seen dur-
ing their training doesn’t give us a true estimated
of their expected behaviour on out-of-domain data.
Functional tests create data that tests a particular
functionality but has enough adaptation to the lex-
ical representation of the data. Therefore, it guar-
antees that the evaluation provides a true estimate
on the out-of-domain examples. We hope that this,
along with the previously motivated argument to
isolate linguistic phenomena when designing tem-
poral datasets provides a template for future tempo-
ral datasets targeting other linguistic phenomena.

3. Analysis of the model performance on this
dataset. We report the performance of three mod-
els on EventHopNLI. We find that even the best-
performing model struggles on the dataset, for all
but the simplest premises. Given that we have
distilled down the dataset to a very simplified ver-
sion with all the additional challenges removed, it
is clear that reasoning capabilities beyond those
provided by a transformer model using pure atten-
tion will be required to fully solve the problem of
temporal-order classification.

The rest of the paper is as follows: §2 analyses
the different linguistic features a model would need
to have the ability to understand in order to perform
the task of temporal-ordering. §3 describes the data
and its creation. §4 describes the experiments per-
formed on the dataset, followed by the presentation
and analysis of the results in §5.

2 Desiderata

2.1 Target particular linguistic features while
abstracting away from other features

Understanding temporal relationships involves un-
derstanding multiple linguistic features.

We argue that to systematically understand the
failure modes of language models, datasets have to
be designed such that linguistic features are isolated
from each other in the datasets.

The specific linguistic feature that EventHopNLI
focuses on are temporal markers such as before,
after, during etc. that position events in relations
to each other in time. EventHopNLI analyses how
language models perform on chains of such rela-
tionships in text.

Below, we enumerate the linguistic features that
often co-occur in temporal and event expressions.
The text in EventHopNLI is designed such that the
choice of label does not depend on any of the fol-
lowing features. In Appendix A, we take an exam-



ple from the TempEval dataset and show how these
features often occur in overlapping ways. Note
that each of the following are often studied sub-
stantially in isolation in theoretical linguistics. For
each, we provide an explanation that highlights the
main difficulty of that feature.

Events embedded under a speech-act verb:
For example, fly in John said that Mary will fly
tomorrow, is embedded under said. The tempo-
ral location of embedded events is understood in
relation to that of the speech act.

Events presupposed by a corresponding state:
Referring to an entity being dead presupposes that
a death event happened sometime before.

Vagueness: Stating that World War II happened
during the last century specifies a broader time
window than saying that it took place from 1939
to 1945. Such vagueness can lead to uncertainty in
inferences about temporal ordering.

Accomplishments/Achievements/Processes: If
a process of drawing a circle stopped halfway then
a circle is not drawn. But if the process of jogging
is stopped halfway, it is still true that jogging took
place.

Entity coreference resolution: The same real-
world event may be referred to by different lexical
descriptors. These co-references have to be cor-
rectly resolved to create the chain of event occur-
rences. A related yet important point is that a noun
such as recovery alludes to a verbal event of an
entity recovering.

Irrealis events are events that were or are
planned to occur and haven’t or are yet to occur.
These are more difficult to model on a timeline
because they may not occur or many simultaneous
timelines of the future may exist.

General knowledge and commonsense: Inau-
gurating a new president of the USA entails that an
election has taken place. Understanding this entail-
ment involves the use of world knowledge about
how elections occur.

In the next section, we show how the text of
EventHopNLI is designed such that a model that
has to solve EventHopNLI task (described in the
next section) does not have to understand any of
the linguistic features mentioned above.

2.2 Provide for rich ablations

Balancing the data across different parameters and
labeling individual data points with the parameter
value allows us to recognize patterns of failures in a
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model’s behaviour. The data should be balanced for
size and temporal relationships. The dataset should
tackle questions such as: Are models able to deci-
pher ambiguity in the facts stated? Do language
models benefit from the temporal relationships be-
ing presented in a sorted order? It should also probe
whether difficulties are intrinsic to the problem or
to the lexical form of the temporal domain.

2.3 Avoid the need for human annotations

In §1 we discussed the general difficulty previous
annotation efforts have faced since this task is dif-
ficult for humans too. By programmatically gen-
erating the data we can i) inexpensively create a
large dataset ii) balance the dataset across a range
of attributes and their values iii) guarantee the avail-
ability of a ground truth, correct, answer for each
query. Inspired by (Kim and Schuster, 2023), we
argue that it is beneficial to create data program-
matically, with controllable parameters that system-
atically limit the number of linguistic factors that
need to be simultaneously used.

Generating data does not preclude the need for
annotated natural data. Performance metrics ob-
tained on annotated natural data gives us a good
understanding of how models will perform on data
that is available in production. However, in order
to improve their performance, it is important to di-
agnose where, why and how they fail so that future
interventions can be made to either the algorithm or
training data to improve performance. Testing on
data that is isolated by linguistic features helps us
understand the features that prove difficult for the
model. Such data with isolated linguistic features
can be obtained by filtering natural data, which is
labour intensive and expensive. Alternatively, it
can be obtained by generating data: the method
used by this paper.

3 Data

Formally, we have a set of events £; and relation-
ship types T = {before, after, simultaneous}. Each
event has a start and an end. The premise is a set
of temporal relationships r that are in the format of
a triple (efmﬁ/ end, t, egmrt/ end) where e € £ and
t € T, the superscript of e indicates the extremity
and the subscript indicates the index of e. The hy-
pothesis is of the form (eq, 1, e3) where € ‘R and
R={before, after, overlaps}. The label | € L and
L = {true, false, undefined}. The task is a modifi-

cation of a natural language inference (NLI) task.



Each data point consists of a premise, a hypothesis
(or claim) and a label.

The premise is a set of n relationships between
m events while the hypothesis makes a claim about
a single relationship r. A simpler formulation of
the problem would involve the temporal relation-
ship between point events. However, we choose
to test durative events because they form an inher-
ently harder problem and one that forms a better
representation of those events available in the nat-
ural texts. In our formulation, one has to keep
track of the extremities of the event and compare
all four points in order to find the ordering of events
versus just the two required of point events. This
includes keeping track of when the events mentions
are under-specified, i.e., only the start or the end of
an event is mentioned.

1) true labels cases where the hypothesis is true
given the premise. 2) false labels cases where the
hypothesis is false given the premise. A pair can
be false either because an alternative claim is true
or no claim can be derived. For example: if the
premise makes a claim (e, before, e§"¢) and
the hypothesis makes the claim (e5!%"?, after, e5?).
Then the pair is labeled as false. 3) undefined
labels cases when there are two more logical paths
that involve the two events that present in a cyclical
chain. For example, i.e., both (e§**"t, before, e§")
and (e§'", after, e5"?) exist or are derivable from
the evidence available.

In general, there are 13 different temporal re-
lationships (Allen, 1983). It is undesirable to tie
the architecture of a model to the subset of rela-
tionships that need to be classified. Setting up an
NLI task allows the set of labels to remain constant
while the set of temporal relationships tested can
be varied easily without affecting existing learning
architectures.

Examples of generated data points are presented
in Fig.1. The following are particular design
choices and the particular desiderata that they ad-
dress:

Dataset is agnostic to world knowledge: Our
dataset has the flavour of a miniature language that
could be employed in the context of a multi-player
on-line game. By using fictional battle names
such ‘The Raid on Firestone’, we guarantee that
the proposed evaluation methodology is testing the
model’s ability to understand the logic of temporal
relationship markers and not using any facts about
real historical battles that it may have learned dur-
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ing its pre-training phase.

Minimalistic descriptions of temporal rela-
tionships: The premise is made up of only rela-
tionships in the form of start/end of event 1 af-
ter/before/simultaneous start/end of event 2. Using
the full names of events in the specification of ev-
ery relationship removes the need for models to
apply entity coreference resolution that is more
complex than simple lexical matching. No com-
monsense or world-knowledge beyond that of the
temporal relationship markers has to be applied.
There is no verbal event therefore there is no need
to understand tense. All events are realis, (i.e, have
actually occurred versus possibly occurring in the
future) and are named events (i.e, there is no use of
anaphora or events rooted in verbs). There are no
descriptions of states.

Ablating over sizes: Ablating over the sizes
of the premise in terms of relationships, events,
logical hops' gives us an understanding of how
increased complexity due to size and increased
number of relationships affect language models’
performance.

By ablating over the temporal relationships
in the premise we can identify if any particular
temporal relationship proves to be more difficult
than others. We predict that simultaneous would
be more difficult than that of before and after for
the following reasons.

Finding the temporal order between events or
event identifying contradictions in the premise in-
volves performing a depth first search on the graph.
Traversing a graph with only after and before re-
lationships is computationally easier than travers-
ing a graph with simultaneous relationships. Both
traversals involve maintaining a stack. However,
with simultaneous relationships the stack size at
any given point can be larger.

We explain with an example: Assume event A
is earlier than event B. It is not necessary to add
events earlier than A or later than B to the stack
since they do not provide useful information to the
temporal chain that connects event A and event
B. However, assume a simultaneous relationship
between A and C. Now all of the nodes related to
C will have to be added to the stack, which means
that with many simultaneous relationships there are

'We define a temporal chain to be a sequence of two or
more events ordered temporally such that traversing the chain
provides the temporal relationship between the two events at
its endpoints. We further define each individual relationship
on the chain to be a logical hop.



higher chances of the size of the stack being larger
than if there were no simultaneous relationships.

Sorting: Providing the temporal relationships
in the premise in a sorted order resembles how
events are often described in text, i.e., in temporal
order. Sorting relationships reduces the number
of permutations in which the same timeline can
be expressed to just one. This would increase the
probability that patterns between the train and test
sets repeat.

Comparison with other domains: Testing on
only the temporal domain raises the question of
whether the difficulty of the task is intrinsic to the
task of timeline resolution or to the lexical prop-
erties of the temporal relationships. The dataset
consists of computationally equivalent tasks but in
two following domains:

i) Spatial domain: Events are mapped to loca-
tions and the start and stop points are mapped to
east and west edges and the temporal relationships
are mapped to east of and west of. An example is
provided in Table 4.

ii) Logical axioms: Relationships are mapped
to { <, >, =} and the event names to simple tokens.
This formulation strips away the natural language
aspect of the task.

Generalizability versus memoization: We ex-
pect a language model to generalize the logic of
temporal relationships from the training data while
not memoizing (learning by rote) event names, spe-
cific lexical forms or timelines. We create train-test
pairs that individually keep event names, lexical
forms or timelines common between the train and
test datasets.

Impossible logical chains: A logically coher-
ent temporal graph is a directed acyclic graph. If
a cycle exists in a temporal graph then the tem-
poral relationships among the events on the cycle
are undefined. Annotated natural text data may
have cyclic relations either because the text itself
contains contradictions, or because the annotators
made mistakes. A language model should recog-
nize such cycles and report them. Our dataset con-
tains instances of cycles only by design, when the
claims in the text are contradictory.

A note on complexity of the task: Since the
data points were created using an algorithm and
natural language templates, it is trivial to write a
parser that parses the data points back into a tem-
poral graph to obtain 100% accuracy. This places
performance of the language models in perspective.
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Kim and Schuster (2023) argues that their task
of entity-tracking may be hard for humans when
the stimuli, which are quite long, are presented
orally. However, when provided with a scratch-
pad, humans were able to solve the task exactly.
Our task is similar in that it can be solved exactly
with a scratchpad and careful reasoning. Human
annotators may not obtain a perfect score due to fac-
tors such as fatigue, carelessness or simple errors.
However, when provided with a written version, a
scratchpad and no time constraints, one of the au-
thors was able to solve the question exactly. With
these experiments, we provide similar standards to
the language model. We ask if the language mod-
els can solve the task exactly if they had no time
constraints. Language models are increasingly be-
ing deployed in applications that help students and
researchers who expect a high level of correctness
from the models especially on such logical prob-
lems that don’t involve subjective decisions (Kooli,
2023), therefore it is instructive to understand the
upper-limit of their logical performance.

3.1 Generation of the EventHopNLI dataset

The following are salient points about the imple-
mentation details of the program that generates the
dataset, more information including pseudocode is
included in Appendix 8.

The program has four sections: i) timeline data
structure; ii) timeline generator; iii) verifier; iv)
data-structure-to-natural-language translator.

Timeline data structure: The timeline itself
is a graph of events connected by temporal rela-
tionships. The events are partially ordered and the
dataset is balanced to have timelines with internal
contradictions.

Timeline generator: The set of fictional battle
names are generated using ChatGPT. We create a
list of names for the test set mutually exclusive
from the names in the train dataset. The extrem-
ities (start or end) of two events are selected at
random and a relationship with a specific temporal
relationship is generated between them.

Verifier: In some cases in the timeline graph
there may be internal logical contradictions. A
hypothesis is generated by choosing two events
and assigning a relationship between them. The
verifier traverses the generated timeline graph and
decides whether the hypothesis is true, false or
undefined.

It is possible for the relationship between the two



events in the hypothesis to be under-specified. For
example, given two events A and B, the premise
specifies that the start of event A is before the start
of B, however, the premise does not specify if the
relationship is between the end points. Assume the
claim in the hypothesis is: event A being before,
after or overlapping with B. It is unclear which one
of these temporal orderings is true without knowing
the exact temporal ordering between the end-points.
Therefore we label the pair as false.

A closed cycle in the graph is evidence of a
logical contradiction. Using a depth-first search
traversal on a directed graph allows us to find cycles
easily, because visiting a previously visited node
would present a cycle.

Data-structure-to-natural-language transla-
tor: The temporal graph is converted to natural
language descriptions using templates. Later, we
describe how we create different sets of these tem-
plates for an ablation study.

3.2 Balancing EventHopNLI and defining its
variations

We balance EventHopNLI across the following at-
tributes: {number of events, number of relation-
ships, number of hops, whether an internal logical
contradiction exits, temporal relationship, label }.

The number of events vary over a exponentially
increasing set of sizes, i.e., € {4, 8, 16, 32}.

The number of relationships vary as function
of the number of events. number of relationships =
min(max(number of events, 3), 32) where relation-
ship_number = relationship_multiplier x number
of events and relationship_multiplier € {0.5, 1, 2}.

The dataset represents a Cartesian product of the
following form: number of events X number of
relationships X temporal relationship x whether
there exists an internal contradiction X label.

We create different train-set tests with the fol-
lowing strategies. Each of the strategies inform us
about the models’ capabilities.

Each of the train datasets are about 14,000 data
points. The test set are 2,500 data points.

Strict: In this pairing, the names of events, nat-
ural language templates for the relationships and
the timelines are mutually exclusive between the
train and test set. Naturalistic data would have a
high degree of mutual exclusivity between the train
and test set, therefore an efficient model would be
expected to not perform memoization.

Same names/templates/timelines: To system-
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Random 0.323
RoBERTa standard 0.762
RoBERTa spatial domain 0.66
RoBERTa logical domain | 0.79
Llama 405B strict 0.4
GPT-4o strict 0.36

Table 1: Main results reported on the
standard specification of the dataset

atically check for the models ability to generalize
vs. memoizing (cf §3) we remove the mutual ex-
clusivity between the train and test set and create
the following three sets of train datasets. In each
one of i) event names ii) the natural language
templates used to create the premise iii) the set of
timeline graphs are maintained as common infor-
mation between the train and test set.

Ablating temporal relationship type and sort-
ing: We create the following deviations from the
strict dataset by varying the relationship types al-
lowed and sorting the relationships in the premise
temporally:

1) only after and before relationships

ii) only after and simultaneous relationships

iii) only before and simultaneous relationships

iv) only before relationships: this is the same as
(iii) but the after relationships are inverted to make
them before relationships

v) All relationships sorted 2

vi) Only before relationships sorted: same as (iv)
but sorted temporally.

These ablations will inform us i) whether the
simultaneous relationship-type is indeed more dif-
ficult than after/before ii) Whether sorting relation-
ships temporally benefits learning because it re-
duces the entropy in terms of presentation of infor-
mation.

Alternate domains: Following §3, we create
two sets of test-train pairs. One for the spatial
domain and the second for the logical domain.

4 Experiments

Finetuning-based experiments: We experiment
with fine-tuning a RoBERTa-large (Liu et al., 2019)
model on the given data to see how well the model
can learn this task with fine-tuning. We deliberately

2All of the cases in which the premise is sorted, the rela-
tionships are sorted temporally by the earliest event present
in the relationship. Arbitarily choosing events in the case of
logical cycles.
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use RoBERTa because it is an example of a large
model which can easily be fully fine-tuned without
the use of adapters.

We use a learning rate of le-6.

In-context demonstration: In this setting, the
large language model is prompted with only the
task description, label description and the expected
response format as shown in Table 3. We prompt
GPT-40 (Hurst et al., 2024), a large commercial
closed model 3 and Llama-405b (Grattafiori et al.,
2024), a large open-weight model.

It is instructive to evaluate the ability of these
large-language on this task without any fine-tuning,
with the understanding that a low performance on
this task will automatically translate to a low per-
formance on an even more complex task.

5 Results

We use macro-F1 as the basic metric for all of the
results reported.

5.1 Simple Baselines

We report the simple baseline of random selection
to show that the dataset is both not trivial and is bal-
anced. An F1 score of 0.33 on the random selection
shows that the dataset is balanced.

5.2 Main Results

Table 1 reports the main results. Each of the result
reports the mean of five runs.

3We attempted experiments on GPT-01, OpenA[’s latest
reasoning model and we found the the results varied drastically
between multiple runs over multiple weeks. Therefore, we do
not report the performance.
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Performance drops as complexity increases
Fig. 2a shows that as the number of relationships in-
creases, the performance of the models deteriorates.
This is an indicator of the expected performance
of models on production data. Timeline creation is
a direct downstream task of temporal relationship
extraction and regardless of having a larger context
window, lower performance can be expected from
the models when the number of relationships that
need to be parsed increase.

The rate of decrease in performance as the num-
ber of events increases (shown in Fig. 3a) is not
as prominent as when the number of relationships
increase, this indicates that it is the number of rela-
tionships and not the number of events is the source
of complexity for the task.

Fig. 2c provides further evidence. It plots perfor-
mance as a function of the relationships to events ra-
tio. Decreasing performance as the ratio increases
shows that the performance is more influenced by
the number of relationships rather than events.

As the number of logical hops required increases,
the performance first falls and then asymptotes out.
(Fig. 3b). We attribute this to the fact that as the
number of permutations in which smaller temporal
chains are presented is exponentially smaller than
the ways relationships with larger temporal chains
can be presented. This makes it easier for the model
to memoise the different patterns that represent the
temporal chains.

Surprisingly, this effect is not seen in GPT-4o,
suggesting that its higher number of parameters,
larger training data and larger context window en-
able it to perform the same regardless of the number



of hops required to solve the particular data point,
even though its overall performance is low.

Larger parameter size and pre-training data
does not provide an advantage The performance
of models with a larger parameter capacity on this
simplified dataset shows that even in its highly-
simplified formulation temporal relationship ex-
traction is still computationally challenging for lan-
guage models.

The fine-tuned RoBERTa model performs much
better than the few-shot prompted larger models
(Llama-405b and GPT-40). This suggests that the
data that very large language models learn from
is too noisy for them to effectively learn temporal
reasoning.

The complexity is intrinsic to the problem and
does not arise from the lexical constructions.

In Fig. 2a, we see that the temporal domain and
logical domain perform similarly, except for the
case of 32 relationships, where the logical domain
maintains its performance. This may be because
the number of tokens is lower in the logical domain,
and never exceeds the limit of the context window.

The spatial domain is intrinsically harder to
parse than that of the temporal domain, which
shows that the temporal domain is not a lower-limit
for the task.

RoBERTa performs detrimental memoization
The performance of same_timelines and same_-
names are both lower than RoBERTa_strict. This
shows that during fine-tuning RoBERTa is perform-
ing memoization (i.e., learning axioms by rote)
rather than learning the patterns in a generalizable
manner. (Fig. 3c). This is undesirable behaviour
from a model that is expected to generalize to new
information.

We see in the same figure that when the test set
uses the same natural language templates as the
train set, performance improves which means the
fine-tuned model struggles to extend to different
sentence constructions that express relationships.

Sorting the relationships temporally improves
the performance of the NLI classification. By
sorting the timelines, the number of permutations
to describe the same timeline reduces to just one.
This in turn increases the probability that patterns
will repeat between the train and test sets.

These results allows us to predict the perfor-
mance of models of different types of data that may
be encountered in production: better performance
can be expected on data that follows a chronologi-
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cal structure than those that don’t.

The simultaneous relationship greatly in-
creases the complexity of the problem. In Fig.
2b we see that the datasets only after and simul-
taneous and only before and simultaneous obtain
similar scores. However, only before and after ob-
tains a much better score than that of the standard
specification.

This result corroborates our intuition (cf. §3)
that the formulation of the problem that included
simultaneous relationships were computationally
harder than those that didn’t have a simultaneous
relationship.

The formulation with only before is near ceil-
ing Finetuned RoBERTa achieves 0.95 macro-F1
on the dataset which has simultaneous relationships
removed and the after relationships to be inverted
to be before relationships.

GPT is confused by the undefined class.
RoBERTa is less so. Fig. 4a and Fig. 4b plots the
confusion matrices for both GPT-40 and RoBERTa.
Fig. 4a shows that GPT is prone to choosing the
True or False labels while being averse to choos-
ing the Undefined label. This shows a limitation
in identifying when the premise contradicts itself.
RoBERTa’s confusion matrix (Fig. 4b) appears bal-
anced in comparison. This means that an attention
model is able to learn (by fine-tuning) generalizable
patterns when given enough examples.

6 Related Work

Recent studies on the performance of LLMs on
temporal data (Xiong et al., 2024; Wang and Zhao,
2023) show that the problem is far from solved on
test suites such as TimeBench (Chu et al., 2024).
Both (Wang et al., 2024b) and (Xiong et al., 2024)
attempt to improve performance by using temporal
graphs. Xiong et al. (2024) show that converting
a textual description into a temporal graph and
performing chain-of-thought reasoning increases
performance. However, the study does not sys-
tematically vary the complexity of the reasoning
required, or diagnose the error patterns. We pro-
vide a systematic set of experiments and analysis
in understanding the failure modes of the language
models. We show that even the simplest descrip-
tions of events are not fully understood by language
models. Holtermann et al. (2025) find that models
are able to satisfactorily perform temporal reason-
ing over timezones, they are not able to perform
the same reasoning when asked to reason over both
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timezone and geographical locations.

Our work focuses on multi-hop reasoning on the
specific domain of temporal graphs. Other projects
(Lin et al., 2018; Misra et al., 2023) explore multi-
hop reasoning on knowledge graphs. Wang et al.
(2024a); Lin et al. (2024) study LLM capabilities
in reasoning about graph datastructures that arise
in other application areas. Their results resemble
ours in showing deterioration of performance with
increases in graph complexity. Works such as Han
et al. (2024), explore the language models’ ability
to perform multi-hop reasoning on datasets that
involve first-order logic (FOL) while Chen et al.
(2020) explores multi-hop reasoning on textual in-
formation for the task of question answering.

Qi et al. (2024) explores how well language mod-
els are able to solve problems of different theoret-
ical computational complexity. They show how
performance degrades as the complexity increases.
While the differences in complexities in their ex-
amples are more marked, the differences in com-
plexity for temporal reasoning, as we have shown,
are softer.
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7 Conclusion

This paper presents EventHopNLI, a dataset that
systematically identifies the error patterns of large
language models on the task of temporal order. The
dataset is designed to perform ablations across mul-
tiple factors (such as size of texts, temporal re-
lationships, number of logical hops) while isolat-
ing specific linguistic features. We use the dataset
to diagnose the error modes on examples of two
paradigms of language models.

The results show us that there are limitations
to language models’ ability to traverse temporal
graphs represented in texts. This prompts future
research to investigate whether the use of a logical
theorem solver (Pan et al., 2023; Olausson et al.,
2023) can help obtain better results on the temporal
ordering task.

Hopefully, this study will help everyday users of
such models understand the expected limitations
when they are applied to their specific data.

8 Limitations

As aresult of our design goals, the dataset is limited
to a specific set of linguistic features and tempo-
ral relations. It does not cover the further features
described in §1 and §2. We leave it to future stud-
ies to create equally controlled diagnostic datasets
that systematically include more of the linguistic
features described in §2 such that the gap between
natural data and this synthetic data is closed. We
only evaluate general-purpose large language mod-
els, and do not evaluate approaches that explicitly
construct temporal graphs or use scratchpads or
Chain-of-Thought reasoning.
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A Analysis of the general complexity of
temporal relationship extraction

In this section, we analyse a single paragraph from
the TempEval dataset and illustrate the general
complexity of the temporal relationship extraction
task, both for models and for the human-annotation
efforts. We identify and list below linguistic fea-
tures or structures that provide the complexity.

Embedded under a speech-act verb: The event
sent at (3) is embedded under the speech-act verb
(1). The time of occurrence of the (3) is dependent
on the time of occurrence of (1).

Expression of states indicate events that
caused them: (5) indicates a current state of the
expert, i.e., dead. This state indicates that a death
had occurred sometime before. The death event
remains implicit in the paragraph.

Vagueness: Compare temporal expressions (6)
and event (14). The modifier almost introduces
vagueness to the temporal expression. (14) is a
temporal expression signifying a particular particu-
lar month.

Accomplishments/Achievements/Processes:
The recovery at (7) is an accomplishment which
culminates a period of searching which in itself is
an implicit durative process. This implicit link will
have to be processed by annotators and models.

Irrealis events: (7) is an infinitive subordinate
of ‘hope’. This places it on the irrealis axis. This
means that though the event is reported it is un-
known if the event definitely happened if it is in the
past, or if is going to happen for sure if it is in the
future. Many annotation schemes ask annotators to
ignore such events since it is hard to provide a label
for events that may take place. Similar problems
exist for negative events.

Entity coreference resolution: (4) refers to a
person (an entity) by their occupation while (8)
refers to the entity by their name, without drawing
an explicit connection between the two references.
Entity coreference is itself a complex unsolved
problem in NLP. Its complexity is inherited in the
general task of temporal relationship classification.

Temporal markers: (9), (12) and (13) marks an
explicit temporal relationship between an event and
time. Obviously, having explicit temporal markers
between events greatly simplifies the problem as
compared to using implicit knowledge; however,
an aim of this paper is to stress-test models’ under-
standing given materials with only these explicit
markers.
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The top commander of a Cambodian resistance
force said' Thursday? he has sent® a team to
recover the remains of a British mine removal
expert? kidnapped and presumed killed® by
Khmer Rouge guerrillas almost two years ago®.
Gen. Nhek Bunchhay ... said in an interview
with The Associated Press at his hilltop head-
quarters that he hopes to recover’ the remains
of Christopher Howes® within? the next two
weeks. Howes had been working!? for the
Britain-based Mines Advisory Group when'!
he was abducted'? with his Cambodian inter-
preter Houn Hourth in'® March 19964,

Table 2: An abridged example of text
and events from the TempEval dataset. A
popular dataset for evaluating temporal
relationship extraction. This paragraph
has been taken from article
APW19980219.0476.tml. Each of the
linguistic features and a discussion for
them is presented in §2.

General knowledge and commonsense: (12)
working can only happen before (7) because a per-
son can only be working if they are alive. This is an
example of general knowledge and commonsense
being applied.

Therefore the task of temporal relationship ex-
traction involves the application of multiple linguis-
tic faculty. These features interact deeply with each
other further complicating the task.



Algorithm 1 Find if event_1 overlaps event_2: Check if epl,,,, before ep?,,,, and ep), ; is after ep?,,,.
Note that this assumes that el is before e2. The function will have to be called twice with swapped
parameters to check all conditions of overlap.
function DOES_OVERLAP_FORWARDS(el, e2)
sl1_s2 < is_epl_before_ep2(el.sp, €2.sp)
s2_sl < is_epl_before_ep2(e2.sp, el.sp)
el_sl < is_epl_before_ep2(el.ep, el.sp)
s2_el < is_epl_before_ep2(e2.sp, el.ep)
e2_s2 < is_epl_before_ep2(e2.ep, €2.sp)
check <+— (NOT el_s1) AND (NOT e2_s2) AND ((NOT s2_s1) OR s1_s2) AND s2_el
return check

end function

Algorithm 2 Find if event_point_1 occurs before but not simultaneous to event_point_2: Follow the
relations and adding events to the queue if they happen after or simultaneous to those already in the queue
function 1S_EP1_BEFORE_EP2(epl, ep2)
eps < [(epl, True)]
seen < set()
while eps.length > 0 do
ep, is_sim <— eps.pop()
if ep in seen then
continue
end if
seen.add(ep)
for rel in ep.rels do
if rel.reltype == "after’ AND ep == rel.ep2 then
eps.append((rel.epl, False))
end if
if rel.reltype() == ’before’ AND ep ==rel.epl then
eps.append((rel.ep2(), False))
end if
if rel.reltype == ’simultaneous’ then
eps.append((rel.other_point(ep), is_sim))
end if
if (ep2, False) in eps then return True
end if
end for
end while
return False
end function
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Algorithm 3 Find if the relationship between event_1 and event_2 cannot be determined because there is
contradictory evidence. Check if there is contradictory evidence between all pairs of extremities
function 1S_CONTRADICTORY_EVENT_PAIR(el, €2)
s1_s2 < is_contra_eps(el.sp, e2.sp)
sl_el < is_contra_eps(el.sp, el.ep)
sl_e2 + is_contra_eps(el.sp, e2.ep)
s2_e2 < is_contra_eps(e2.sp, e2.ep)
check +— sl s2orsl el orsl_e2ors2 e2
return check

end function

Algorithm 4 Find if event_point_1 and event_point_2 have contradictory relationships: Check if both ep1
is before and after ep2 as long as they are not simultaneous. If they are of the same event then make sure
the end is not before start
function IS_CONTRADICTORY_EVENT_POINTS(epl, ep2)
same_event_check + (ep2.event == ep2.event AND (epl.event.stp ==epl) AND
(ep2.event.enp == ep2)
check_forwards < is_ep1_before_ep2(epl, ep2)
check_backwards < is_ep1_before_ep2(ep2, epl)
check_simultaneous < is_simul_eps(epl, ep2)
check < check_forwards AND check_backwards AND NOT check_simultaneous and
NOT (same_event_check and check_backwards))
return check

end function

Algorithm 5 Find if event_1 overlaps with event_2: Check if the events are not contradictory and if they
overlap.
function 1IS_OVERLAP_EVENTS(el, e2)
is_contradictory <— is_contradictory_event_pair(el, e2)
el_e2 « self.does_overlap_forwards(el, e2)
e2_el < self.does_overlap_forwards(e2, el)
check <— NOT is_contradictory AND (el_e2 OR e2_el)
return check
end function
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Algorithm 6 Check if epl and ep2 are simultaneous. Accumulate events in a queue by adding event
points to the queue that are simultaneous to those already in the queue.
function 1S_SIMUL_EPS(epl, ep2)
eps < [event_point]]
seen < set()
while eps.length > 0 do
ep = eps.pop()
seen.add(ep)
for rel in ep.rels do
if rel.reltype == ‘simultaneous’ then
other_point <— rel.other_point(ep)
if other_point NOT in seen then eps.append(other_point)
end if
end if
if ep2 in eps then return True
end if
end for
end whilereturn False
end function

Algorithm 7 Find if event_1 occurs strictly before event_point_2: check if epl,,,, and eind are both

2 1o ; 1
before eps,;,,;, and e, ; is not simultaneous to e,

function IS_STRICTLY_BEFORE(el, €2)
s1_s2 < is_epl_before_ep2(el.startp, e2.startp)
el_s2 < is_epl_before_ep2(el.endp, e2.startp)
el_s2_is_simul < is_simul_eps(el.endp, e2.startp)
check < s1_s2 AND (el_s2 OR el_s2_is_simul)
return check
end function
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[INST] «SYS»
The premise is a set of battles and their temporal relationships
The hypothesis is a claim of the temporal relationship between two battles.

There are three answer choices:

1) True: The hypothesis is true given the premise

2) False: The hypothesis is False given the premise

3) Undefined: There is logically contradictory evidence in the premise regarding the events
in the hypothesis. So no claim can be made.

The first five are examples with the labels provided.

Your task is to predict the label for the given examples. Do not provide reasoning and provide
in the format of ‘answer: index: label’.

Examples: <examples>
«/SYS»
Provide the labels for the following sentences in the format of ‘answer: index: label’.

<uid> premise: <premise>
hypothesis: <hypothesis>

[INST]

Table 3: The baseline prompt used for Llama. The tokens in <> are replaced by actual values from
the dataset.
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Western edge of Stormforge is located to the
east of eastern edge of Bloodmoon Keep. East-
ern edge of Stormforge is located to the east
of eastern edge of Bloodmoon Keep. Western
edge of Sunfire Canyon is located to the west
of western edge of Bloodmoon Keep. Eastern
edge of Frostfang Pass is located to the west
of western edge of Ravenloft. Eastern edge
of Bloodmoon Keep is located to the west of
eastern edge of Ravenloft. Eastern edge of
Frostfang Pass is located to the east of west-
ern edge of Sunfire Canyon. Western edge of
Sunfire Canyon is on the same longitude as
western edge of Frostfang Pass. Eastern edge
of Bloodmoon Keep is on the same longitude
as western edge of Ravenloft. Western edge
of Stormforge is located to the east of eastern
edge of Ravenloft.

Table 4: Example of the NLI data in the
spatial domain.

27



