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Abstract

The rise of LLM-based approaches to dialogue
systems has created an increased need for con-
trollable dialogue. This paper addresses this
need by presenting an implementation of a dia-
logue system based on information state up-
date approach according to Larsson (2002).
This enables the integration of rule-based han-
dling of dialogue, expressed by Harel’s stat-
echarts (1987), and Larsson’s theoretical ac-
count grounded in theories of dialogue, ex-
pressed by information state update rules. We
demonstrate how our approach applies to dia-
logue domains involving form-filling. We also
propose how LLMs can be employed to inject
domain knowledge and be used in various com-
ponents of a hybrid dialogue system, while
maintaining control over the overall dialogue
logic.

1 Introduction

Despite considerable efforts to control large lan-
guage models (LLMs), risks of hallucinations and
related phenomena have yet to be eliminated (Xu
et al., 2024; Ayyamperumal and Ge, 2024). Still,
the otherwise impressive capabilities of LLMs have
raised the bar for conversational AI. This makes
a compelling argument for finding ways to com-
plement LLMs with rule-based approaches that can
mitigate the risks associated with using LLMs.

In this work we use the influential Information
State Update (ISU) framework (Larsson and Traum,
2000; Larsson, 2002). The basis of this framework
is a representation of the dialogue context as data
structure which includes the information available
to each participant of the dialogue (either a human
or an artificial agent). Being rich entails that the
information state contains a hierarchy of facts, in-
cluding the ones that are thought to be shared and
the ones that have not been yet publicised. We
believe that ISU is a good basis for formalising ex-
isting theories of human-human dialogue (Cann
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et al., 2005; Ginzburg, 2012; Cooper, 2022) as a
means to develop dialogue systems which produce
acceptable and natural behaviours.

In controlled 1SU-based systems, LLMs offer ben-
efits such as interpreting user utterances and pre-
generating dialogue domains (Larsson, 2024). Pre-
generating a complete dialogue description (all pos-
sible dialogue paths) is a complex matter due to
the inherent flexibility and variation in natural lan-
guage dialogue. By taking care of a lot of this com-
plexity using a flexible but controllable dialogue
manager, the ISU approach considerably simplifies
the pre-generation process. Instead of generating
all possible dialogue paths, it is sufficient to gener-
ate a default dialogue “blueprint” which can then be
used by rule-based dialogue manager as a resource
when carrying out flexible and complex dialogue
interactions.

At the same time, not all dialogue behaviours
are necessarily best treated on an 1SU level. This
applies in particular to more routinised and “reflex”
behaviours such as those involved in real-time in-
cremental turntaking (Skantze, 2021; Howes et al.,
2019, among others). Such behaviours are arguably
better coded as statecharts.

So, how do we best combine ISU-based dialogue
management, statecharts, and LLMs for flexible and
controllable A1? We argue that this is best done by
offering a single framework encompassing both
ISU and statecharts for managing dialogue based
on LLM-generated dialogue blueprints. We term
our approach Statecharts-based implementation of
Information State Update (sisu).!

The paper is organised as follows. Section 2 in-
troduces the main considerations behind SISU. In
Section 3 we describe the implementation of SISU,
while Sections 4 and 5 provide an outlook on two
main advantages of our framework: pre-generating

'Source code and online demo available at: https://
github.com/GU-CLASP/sisu
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dialogue blueprints and coding low-level dialogue
routines with statecharts. We provide brief conclu-
sions in Section 6.

2 Method

This section introduces SISU, an ISU framework
which combines the statecharts formalism (Harel,
1987) with modern features of the TypeScript pro-
gramming language. SISU implements a version
of IBiS1 (Larsson, 2002) and improves upon it by
providing the capacity to code routinised dialogue
phenomena using statecharts.

2.1 Information State Update

One of the central purposes of the ISU approach to
dialogue management (Larsson and Traum, 2000;
Larsson, 2002) is to enable the implementation
and comparison of dialogue theories by casting
them in a common form. Central questions in this
endeavour are: (1) what kind of information does a
dialogue participant need to keep track of, (2) how
does this information get updated by utterances in
dialogue and (3) how does this information license
subsequent utterances?

In the ISU approach, utterances in conversation
are seen as dialogue moves which trigger updates to
a rich conversational Information State (1S), which
then is used to select an appropriate followup dia-
logue moves. Update rules describe updates to the
IS, and selection rules describe conditions on IS un-
der which a move can be selected. For example, an
information state can include a stack of questions
that have been raised but not yet addressed. Given
this, one update rule may state that asking a ques-
tion (Q results in pushing () on the question stack,
and a selection rule may state that if a question is
on the question stack, and if an answer A to that
question is known, an answer move with content A
may be selected and uttered in the next turn.

An example of an 1SU-based dialogue manager
is Talkamatic Dialogue Manager (TDM) (Larsson
and Berman, 2016) which is a core component of
Talkamatic Studio?, a web-based tool for generat-
ing, curating and deploying Pre-Generative Con-
versational AT agents. TDM handles a wide variety
of dialogue behaviours and a wide range of dia-
logue types, including question-answering, search,
device control, educational, instructional and nego-
tiative dialogue. TDM uses Issue-Based Dialogue

Zhttps://studio. talkamatic.se
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Parrot ISU

Interpret ‘

LISTEN_COMPLETE | Recognising

SPEAK_COMPLETE, | entry /listen

RECOGNISED
/raise SAYS:$event.val

Generate ‘

Wl SPEAK_COMPLETE Speaking
e
NEXT_MOVE entry /speak:$event.val
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entry /assign $Im := "ping"

($Im I="")/raise NEXT_MOVE:$Im Update
Select

SAYS:$val /assign $Im := $val _|entry /assign $Im := "

Figure 1: A statechart for “parrot” dialogue system.
Events are typeset in all capitals, states — with initial
capital. Conditions are parenthesised and actions are
denoted by a starting “/”” symbol.

Management (Larsson, 2002) which is strongly in-
fluenced by KoS (Ginzburg, 2012).

2.2 Statecharts

Statecharts were originally developed by Harel
(1987) for complex systems (real-time, multi-
computer and concurrent). Harel introduces con-
ventional notation over deterministic Finite-State
Machines (FSMs), incorporating depth, orthogo-
nality and broadcast communication. Statecharts
can be represented graphically, as diagrams with
a variable level of detail. A number of studies
have demonstrated that statecharts can be useful
for designing dialogue systems (Kronlid and Lager,
2007; Brusk, 2008; Mehlmann et al., 2011).

Figure 1 illustrates the use of three orthogonal
(parallel) states in a simplest “parrot” dialogue sys-
tem? implementing ISU with only one element of
the 1S — $1m (latest move). Interpret state im-
plements speech recognition and can raise SAYS
event with a recognised value; Generate state im-
plements speech synthesis which speaks out the
value of NEXT_MOVE event. The Process state im-
plements dialogue management and is initiated
with $1m containing an initial move “ping”; it starts
in a Select state and, if $1m is not empty, raises
a NEXT_MOVE event with a value of $1m and transi-
tions to Update state. Then, upon receiving SAYS
event it updates $1m with the event value and tran-
sitions back to Select state.

S1SU is strongly inspired by Kronlid and Lager
(2007) system, which used a version of State Chart

3Previously used by Bos et al. (2003); Kronlid and Lager
(2007) to illustrate their implementations of ISU.
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XML (scxMmL) extended with Prolog-style condi-
tions for state transitions. Our implementation uses
XState®, a state management library for JavaScript
and TypeScript which implements Harel’s formal-
ism and uses actor model for concurrency. Despite
an abundance of commercially available dialogue-
building software based on FSMs and determinis-
tic flows, such as Dialogflow”, statecharts are sup-
ported by the World Wide Web Consortium (W3C)
specification®, which serves as a guidance for mod-
ern implementations, such as XState.

3 Architecture

In this section, we describe the general architec-
ture of SISU, exemplified by a simple form-filling
dialogue application in the context of scheduling.

3.1 Information state

For representing the information state, we utilise
the data storage of XState, and declare the IS as a

type:

type InformationState = {

next_moves: Move[];
domain: Domain;
database: Database;
private: {

agenda: Action[];

plan: Action[];

bel: Proposition[] };
shared: {

lu: { speaker: Speaker; moves: Move[] };

qud: Question[];

com: Proposition[]; };3;

The information state is composed of the following
data structures:

moves Moves are essentially dialogue acts that can
be performed by the user or the system. In
SISU, they consist of a type (e.g., “answer” or
“ask”) and content.” For example, the type of
the “ask” move is defined as follows:

{ type: "ask";
content: Question; };

type AskMove

questions There are several types of questions that
can be supported by the system, i.e. wh-
questions which contain a predicate to be ful-
filled.

4https://stately.ai/docs/xstate

Ssee Sabharwal and Agrawal (2020) and https://cloud.
google.com/dialogflow/cx/docs/basics

®https://www.w3.org/TR/scxml/

"There is some similarity with the notion of intents, but
those are typically domain-specific, whereas in our framework
we assume that the update rules can be domain-general which
requires operating over more abstract data structures.
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type WhQuestion = { type: "whq";

predicate: string };
For instance, a question concerning the loca-
tion of a booking can be represented as { type:
"whqg", predicate: "booking_room"}.

propositions A predicate combined with an ar-
gument forms a proposition. For instance,
a proposition that a lecture takes place in
G212 can be represented as {predicate:
"booking_room", argument: "G212"3}.

plans and actions Plans are domain-specific and
high-level descriptions of how goals are
achieved. Plans are represented as lists of ac-
tions. For example, a plan for responding to a
question concerning the location of a booking
can be represented as:
{ type: "issue",
content: { type: "whq",
predicate: "booking_room"” 3},
plan: [{ type: "findout”,
content: {
type: "whq",
predicate: "booking_course” }3},
{ type: "findout”,
content: {
type: "whq",
predicate: "booking_day"” }3},
{ type: "consultDB",
content: {
type: "whq",
predicate: "booking_room"3}3}]1}

This plan enables the system to respond to
questions concerning locations of a booking
by first finding out which course and day the
question concerns, and by then consulting a
database.

3.2 Update rules
In SISU, update rules have the type

type Rule
(context: InformationState) =>
((x: void) => InformationState) | undefined;

which takes an information state as input and,
depending on the truth value of the precondi-
tion, either, if the precondition is not met, returns
undefined, or else a function that returns the up-
dated state.® For instance, the following rule, which
implements rule 2.2 from Larsson (2002), pushes a
question recently uttered by the system, if such one
exists, onto the stack of questions under discussion
(QUDS).

8XState’s assign() method is used when the rule is in-
stantiated.
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Figure 2: SISU and DME statecharts (zoomed-out).

integrate_sys_ask: ({ is }) => {
if (is.shared.lu!.speaker "sys") {
for (const move of is.shared.lu!.moves) {
if (move.type === "ask") {
const g = move.content;
return () =>
..is, shared: {
...is.shared,
qud: [q, ...is.shared.qud]
I

We make use of spread (...) JavaScript syn-
tax, which effectively allows overriding parts of
information state as well as operating stacks (i.e.
pushing a question  into the stack of QUDs).’

3.3 Dialogue Move Engine (DME)

Overall architecture of SISU (statechart on Fig-
ure 2) extends the “parrot” example with a Dia-
logue Move Engine (DME) statechart. It is respon-
sible for updating the IS and selecting moves to be
produced. The structure of DME reproduces the
statechart introduced by Kronlid and Lager (2007).
Figures 3 and 4 show move selection and
state update processes. We use syntactic sugar
“(/condition)” to represent an update rule which
consists of an update action performed in case
when the condition is met. The update action and
evaluator for the condition are provided as func-
tions of the type introduced in Section 3.2. If no
update rules can be applied in a given state, it tran-
sitions to the next one (depicted with arrows with-
out conditions or event), except for the Grounding
state in which DME waits for the SAYS event (con-
taining either a recognised move or a move pro-
duced by the system) which triggers further update
process. When the move selection is done, the
move is taken up by the language generation state
orthogonal to DME (similarly to Figure 1).

°Ginzburg (2012); Cooper (2022) use asymmetric merge
operation for expressing updates of an information state. For
JavaScript object literals, when one object is spread into an-
other, the property can be overridden by the last assigned
value.
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SelectionDone
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Figure 3: Zoomed-in Select statechart.

3.4 Domain knowledge and database

Following Larsson and Berman (2016), SISU sep-
arates general knowledge about dialogue from
domain-specific knowledge. The developer (or a
LLM, as we will show in Section 4) supplies the
latter, e.g. dialogue plans and API integrations.

4 Pre-generating dialogue domains with
LLMS

Despite their sometimes impressive performance,
LLMs are associated with a host of well-known
problems (hallucinations, bias etc.) deriving from
the overall problem of controlling the behaviour of
LLMs (Kann et al., 2022). The absolute majority
of methods for dealing with this problem is of the
"guardrails" type. In LLM-based Conversational
AlI, however, the user is still interaction with an
LLM at runtime, and it is difficult or impossible to
guarantee that guardrails always work. Ayyampe-
rumal and Ge (2024) discuss various guardrail ap-
proaches such as layered protection models, system
prompts, Retrieval-Augmented Generation (RAG)
architectures and bias mitigation, and observe that
"[c]rucial challenges remain in implementing these
guardrails." Xu et al. (2024) show that hallucina-
tion is not just a temporary glitch, but are in fact
inevitable in LLMs.

An alternative to using LLMs is of course to man-
ually build dialogues, as done in e.g. Dialogflow
(Sabharwal and Agrawal, 2020) and many other
toolkits. In the SISU approach, we call such dia-
logue specifications dialogue domain descriptions,
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Figure 4: Zoomed-in Update statechart.

or dialogue domains for short. Although dialogue
domains are concise and expressed on a high level
of abstraction, coding them by hand can be time-
and resource-intensive. Furthermore, the formal-
ism can be challenging for non-technical domain
experts. Pre-Generative Conversational AT (Lars-
son, 2024) uses LLMs for pre-generating domain
knowledge to address these problems. Specifically,
the LLM is fed relevant information such as input
type definitions and example dialogues between
system and user, and returns a dialogue domain
and database integration. The interaction between
an LLM and dialogue developer can be included
in a workflow alongside user testing, enabling in-
sights from testing to be fed to the LLM to inform
subsequent improvements. We provide the details
of our approach in Appendix A, namely, how an
LLM can be used to generate domain and database
for a small scheduling scenario.!®

5 Coding low-level dialogue routines with
statecharts

In addition to FSMs being a prominent framework
for building dialogue systems (McTear, 2020), pre-
vious studies explained complex natural language
grounding phenomena using FSMs, such as vocab-
ulary enquiries in language tutoring (del Fresno
et al., 2022) and spelling out names (Howes et al.,
2019; Larsson et al., 2020). Such FSMs include
routinised adjacencies between dialogue acts in hu-
man dialogue; to build a dialogue system based on
these definitions one must include considerations
from system perspective and cast FSMs into a state-

19An industry strength implementation of Pre-Generative
Conversational Al is available in Talkamatic Studio. The
examples in this paper are illustrative toy examples intended
to convey the gist of the idea, and do not reflect how dialogue
pre-generation is implemented in Talkamatic Studio.
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chart.!! Figure 8 in Appendix B shows an example

a statechart based on a FSM from Larsson et al.
(2020). S1SU can include routinised procedures
defined in such way and involve ISU only when cer-
tain information is grounded, e.g., when the user
and the system have demonstrated agreement on a
particular spelling of a word.

6 Conclusions

In this paper we described a framework combining
statecharts and ISU approach. We described its ar-
chitecture and illustrated it with a small scheduling
scenario. We underlined two main advantages of
our approach, first, its adequacy for pre-generating
dialogues with LLMs and, secondly, the possibil-
ity of mixing routinised dialogue procedures, such
as task-specific grounding described with FSMs or
statecharts, with ISU based on theoretical princi-
ples.

Future work will include empirical evaluation of
the framework as well as expanding the case study
to cover a range of more complex domains.
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A Pre-generating a dialogue domain with
ChatGPT

In Pre-generative Conversational Al (Larsson,
2024) implemented on industrial level in Talka-
matic Studio, dialogue domain data is generated
by an LLM from content such as a database API or
a text. The TDM uses this data to enable flexible
dialogue in various types of dialogue, including
educational, customer service, instructional and
negotiative dialogue.

Here, as a simple demonstration of the feasi-
bility of pre-generating dialogue domains using
LLMs, we feed a dialogue example to ChatGPT
(GPT-40), together with the type definition for a do-
main and database, and ask it to generate a domain
and database that supports the dialogue (see Figure
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5). The model’s generated domain and database
are included in Figures 6 and 7 respectively!2.

Automated testing of the system’s resulting be-
haviour validates that the model’s generated code
works as intended, without any errors. It is worth
noting that except for a minimal amount of com-
ments in the type definition, no documentation of
the dialogue domain formalism or the overall dia-
logue system is provided.

One can also note that the code generated by
an LLM contains a semantic peculiarity: all predi-
cates and individuals are declared as a single sort
(course). This can seem unintuitive, since days
and locations are not courses. One consequence of
this peculiarity is that the answer "Thursday" will
be considered relevant in relation to the question
"Which course?". This problem can potentially
be addressed within an LLM-based development
framework by extending the set of dialogue exam-
ples fed to the LLM.

B Coding parts of dialogue with
statecharts

Figure 8 shows an example of how procedural FSM
for name-spelling derived from human-human di-
alogue (Howes et al., 2019; Larsson et al., 2020)
can be adapted to statechart definition for further
use in SISU-based dialogue system.

2Note that this is an illustrative toy example and does
not reflect how dialogue pre-generation is implemented in
Talkamatic Studio.
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Create a domain and database that supports the dialogue below between
(U) and system(S), and that adheres to the type definition below.

SUPPORTED DIALOGUE

Hello! You can ask me anything!
Where is the lecture?

Which course?

Dialogue Systems 2

Which day?

Thursday

The lecture is in G212.

ncunmucumucwm

TYPE DEFINITION

type Individuals = Predicates;
type Predicates = { [index: string]l: string 3};
export type Domain = {
plans: PlanInfol];
predicates: Predicates; // Mapping from predicate to sort

individuals: Individuals; // Mapping from individual to sort

3

export type PlanInfo = {

type: "action” | "issue";
content: null | Proposition | ShortAnswer | Question;
plan: Action[];

3

export type Database = {
consultDB: (q: Question, p: Proposition[]) => Proposition | null;

3

export type ShortAnswer string;
export type Proposition = {
predicate: string;
argument: string;

3

export type Question = WhQuestion;
type WhQuestion = { type: "whqg"; predicate: string };

export type Action = {

type:
| "greet"
| "respond” // not to be used in plans
| "raise”
| "findout"”
| "consultDB";

content: null | Question;

Figure 5: Input fed to ChatGPT.
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export const domain: Domain = {
predicates: {
course_day: "course”,
course_location: "course",
course_name: "course”,
}7
individuals: {
"Dialogue Systems 2": "course",
"Thursday": "course”,
"G212": "course",
}’
plans: [
{
type: "issue",
content: { type: "whq", predicate: "course_location” },
plan: [
{ type: "findout”, content: { type: "whq", predicate: "course_name"” } },
{ type: "findout”, content: { type: "whqg", predicate: "course_day" } 3},
{ type: "consultDB", content: { type: "whqg", predicate: "course_location” } }

Figure 6: Domain generated by ChatGPT.

export const database: Database = {
consultDB: (g, props) => {

if (
q.type === "whq"” &&
q.predicate === "course_location” &&
props.some(p => p.predicate === "course_name"” && p.argument === "Dialogue Systems 2") &&
props.some(p => p.predicate === "course_day"” && p.argument === "Thursday")
) {
return { predicate: "course_location"”, argument: "G212" };
3
return null;

}
3

Figure 7: Database generated by ChatGPT.
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Spelling

( ListenAll
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U: tenpin N
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‘ S: can you spell that one for me please”%

( SpeakReject w ( SpeakAcc w SpellOfferCR
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SpellOfferCL

entry /listen(CL)

()

Ack

SysAck

entry /speak(CR)

sc
sRO? O S:RO/yesD
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Figure 8: Above: name-spelling FSM adapted from Larsson et al. (2020). Below: a corresponding statechart. SC
= system Yyields the turn; LC = user yields the turn. Yellow notes exemplify possible utterances.



