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Abstract

Referring Expression Generation (REG) has
a long-standing tradition in computational lin-
guistics, and often aims to develop cognitively
plausible models of language generation and
dialogue modeling, in a multimodal context.
Traditional approaches to reference have been
mostly symbolic, recent ones have been mostly
neural. Inspired by the recent interest in neuro-
symbolic approaches in both language and vi-
sion, we revisit REG from these perspectives.
We review relevant neuro-symbolic approaches
to language generation on the one hand and vi-
sion on the other hand, exploring possible future
directions for cognitively plausible models of
reference generation/reference game modeling.

1 Introduction

Referring Expression Generation (REG) in visual
scenarios is a traditional and widely studied task in
cognitively motivated work on Natural Language
Generation (NLG). At its core, the task consists
of generating an expression that refers to a visual
object in a given scene, in a way that an addressee
can identify the intended target (Reiter and Dale,
2000). Although this task may seem basic and
constrained at first, it is multifaceted and involves
overcoming several implicit or explicit challenges
at the intersection of language and vision. These
challenges include segmenting and understanding
the low-level visual input (visual processing), de-
termining the properties of the referential target
that distinguish it from all distractors (content deter-
mination), and, finally, formulating the conceptual
information into well-formed linguistic expressions
(linguistic realization), see Schiiz et al. (2023).
Existing research in REG has approached this
problem using two different methodologies, see
Figure 1: The landscape can be roughly divided
into symbolic and neural (or visual) approaches,
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Figure 1: Conceptual illustration of processing steps in
common models for symbolic and neural-visual Refer-
ring Expression Generation (REG; Schiiz et al., 2023).
While symbolic REG focuses primarily on selecting
discriminative properties of the target, low-level inputs
and natural language outputs require further processing
steps or more general methods.

each with their own characteristics. Symbolic meth-
ods offer controllable, transparent, and cognitively
plausible ways of pragmatic reasoning, but most ap-
proaches focus on specific challenges (i.e., content
determination), and it is difficult to apply the algo-
rithms to natural scenarios due to their dependence
on symbolic inputs. In contrast, neural methods
can be easily applied to more natural or complex
scenarios, as the systems are trained end-to-end, im-
plicitly learning all the necessary steps from visual
processing to linguistic realization. However, neural
approaches are notoriously difficult to control, their
cognitive plausibility is debatable, and the exact
processing methods are generally concealed due to
the black-box nature of neural systems.

Against this background, neuro-symbolic ap-
proaches in computational linguistics and NLP
are currently attracting considerable research inter-
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(a) Symbolic input

(b) Natural visual input
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Figure 2: Examples for different REG settings. Settings like (a) (van Deemter et al., 2006) have been traditionally
addressed with symbolic approaches, whereas the settings in (b) (Kazemzadeh et al., 2014) and (c) (McDowell and
Goodman, 2019) call for (partially) neural approaches, due to the lack of symbolic input representations.

est: By combining neural and symbolic processing
methods, it becomes possible to build systems that
retain the flexibility and performance of neural sys-
tems, but become more robust, controllable, and
transparent (Hamilton et al., 2024).

In this paper, we review existing symbolic
and neural approaches to REG and discuss how
these lines of work can be integrated using neuro-
symbolic approaches. We argue that symbolic pro-
cessing methods can be applied to different stages
in a neural REG processing pipeline, potentially
leading to more transparent, cognitively plausible,
and robust REG systems. What exactly is con-
sidered a neuro-symbolic system is not always
consistently defined. Here, we treat approaches
as neuro-symbolic that include neural modeling
components, but also methods for reasoning about
symbolic information.

2 Background

2.1 Referring Expression Generation

Symbolic REG  Generating references to objects
has been a long-standing field of interest in compu-
tational linguistics see Krahmer and van Deemter
2012 for a survey). Influential work (e.g., Dale
1989; Dale and Haddock 1991) started to focus on
algorithms for content selection, comparing prop-
erties of a target object with potential distractors
to determine a set of properties that can be for-
mulated into discriminative descriptions. Building
on a Gricean notion of pragmatics (Grice, 1975),
algorithms are considered successful if they pro-
vide sufficient information to identify the intended
referent without being overly informative. A prime
example is the Incremental Algorithm (Dale and
Reiter, 1995), which iterates through attributes in a
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defined order of preference, selecting those that rule
out any distractors until only the target remains.
Subsequent work extended the scope by includ-
ing, e.g., relational descriptions (Krahmer and The-
une, 2002; Krahmer et al., 2003), references to
sets of multiple targets (Horacek, 2004; Gatt and
van Deemter, 2007), or notions of prominence or
salience to pre-select contextually relevant distrac-
tors (Kelleher and Kruijff, 2006; Belz et al., 2010).
Much of the work in symbolic REG consists
of deterministic, rule-based search algorithms for
content determination that operate on symbolic
knowledge bases (see Figure 2a). However, there
are alternative approaches such as the probabilistic
PRO (van Deemter et al., 2012) and RSA (Frank and
Goodman, 2012) models or the graph-based algo-
rithm in Krahmer et al. (2003). Further approaches
combine content determination with linguistic real-
ization (Horacek, 1997; Stone and Webber, 1998;
Siddharthan and Copestake, 2004), see van Deemter
(2016). However, the reliance on symbolic input
information remains as a characteristic feature.

Neural REG Visual environments are commonly
used as prime examples or application domains
for symbolic REG algorithms, but the reliance on
symbolic inputs largely prohibits direct application
in natural visual scenarios where this information
is not available (Schiiz et al., 2023). In recent years,
work on visual REG has reformulated the task
as an image-to-text generation problem, enabled
by corpora such as RefCOCO (Kazemzadeh et al.
2014; see Figure 2b) and more general advances
in neural vision-and-language modeling. Here, the
goal is to generate descriptions from raw visual
representations of objects in natural images.
Similar to image captioning (Vinyals et al., 2015),



neural REG models are commonly trained end-to-
end and follow the encoder—decoder scheme, where
raw visual inputs are transformed into intermedi-
ate representations by an image encoder and then
passed to a language decoder. Hence, neural ap-
proaches to visual REG differ fundamentally from
their symbolic counterparts: Low-level perceptual
inputs replace the high-level symbolic information,
and while symbolic approaches often focus on con-
tent determination, neural systems cover all steps
from visual processing to linguistic realization, al-
though the exact processes are largely concealed in
the connectionist structures of the neural systems.

Much of the existing work revolves around meth-
ods to optimize the discriminative power of gen-
erated expressions (see Schiiz et al., 2023), for
example by including different simulations of ad-
dressee behaviour (Mao et al.,, 2016; Luo and
Shakhnarovich, 2017; Yu et al., 2017; Schiiz and
Zarriel3, 2021), enriching visual input representa-
tions with discriminative information (Yu et al.,
2016; Liu et al., 2017) or directing systems to
pragmatically relevant features (Li and Jiang, 2018;
Tanakaetal.,2019; Liuetal., 2020; Kim et al., 2020;
Sun et al., 2022). Other works focus on aspects be-
yond discriminativeness, e.g., iteratively refined
expressions (Zarrief and Schlangen, 2016; Ye et al.,
2023), effects of decoding methods (Zarriel and
Schlangen, 2018), generating diverse expressions
(Panagiaris et al., 2020, 2021), REG in visual dia-
logue (Willemsen and Skantze, 2024) or the role
of visual scene context (Junker and Zarrie3, 2024).
More recently, work on neural REG has started to
incorporate vision-language models (Bracha et al.,
2023; Guo et al., 2024; Liang et al., 2024) and re-
ferring expressions have been included in multitask
frameworks (Wang et al., 2022b; Lu et al., 2023;
You et al., 2023; Xiao et al., 2024), although with
focus on the inverse referring expression compre-
hension task.

2.2 Neuro-symbolic approaches in general

Neuro-Symbolic Al is a growing research field
concerned with the development of Al systems
which should be able to simulate and integrate
the two cognitive processes commonly considered
as the core of intelligent behaviour, namely the
ability to learn from experience and to reason on
what has been learned (Valiant, 2003). Researchers
have been trying to pursue this goal by combining
neural networks and deep learning methods, excel-
lent at handling parallel computation, unstructured
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data, and pattern recognition, with purely symbolic
approaches, typically leveraging formal logic or
structured representations, which are verifiable and
data-efficient, and allow structured and logical rea-
soning about data and its patterns (Garcez and
Lamb, 2023; Hamilton et al., 2024).

The problem of how neural networks can han-
dle and represent symbolic knowledge has been
present in the literature since early attempts to
computationally model brain processes (Bader and
Hitzler, 2005). Over the past decade, however, it
was Deep Learning that got the most attention in
research and application. Lately, it was argued that
in order to achieve rich, semantically sound and
explainable Al systems, research efforts should fo-
cus on the integration between methods affording
reasoning abilities and Deep Learning (Garcez and
Lamb, 2023), resulting in a new interest in neuro-
symbolic integration. To clarify and systematize
the work on neuro-symbolic integration, highlight-
ing similarities and differences among the various
contributions, taxonomies have been devised. The
most well-known was proposed by Kautz (2022)
and further streamlined in Hamilton et al. (2024):

Sequential Sequential architectures are current
the dominant approach in Deep Learning when the
input and output of neural networks are symbolic
in nature, such as in the case of Natural Language
Processing, where symbolic inputs, namely words
and word sequences, are converted into vectors and
processed by a neural network.

Nested Nested architectures are those that loosely
couple a symbolic reasoning system, such as a prob-
lem solver or a planner, with a neural component
that will guide certain decision processes. One in-
stance is DeepMind’s AlphaGo (Silver et al., 2016),
where a Monte Carlo tree search algorithm is paired
with a neural network tasked to evaluate game states
and suggest moves.

Cooperative Cooperative architectures include a
neural component which receives raw inputs, such
as images’ pixels, and converts them into symbolic
data structures, for instance graphs or logic-based
representations, which will be used by a symbolic
reasoner. One example system is DeepProbLog
(Manhaeve et al., 2018), which involves a neural
network which parametrizes the truth distribution
of predicates with respect to an input, and a proba-
bilistic logic program for reasoning with them.



Compiled Compiled architectures are tightly cou-
pled approaches, as there is no modular sub-division
to handle learning and reasoning. In fact, these
systems involve standard neural networks under-
going training regimes based on symbolic rules,
by having knowledge compiled into the training
set or the network’s weights, or enforced via spe-
cific optimization functions. They are instantiated
by Logic Neural Networks (Riegel et al., 2020),
where symbolic rules are embedded directly into
the architecture, as neurons in the network’s layers
represent specific logical operations, and Logic Ten-
sor Networks (Badreddine et al., 2022), which are
optimized to maximize the satisfiability of grounded
(represented as real-valued tensors) formulas.

Ultimately, a neuro-symbolic system could have
a fully integrated architecture where the symbolic
reasoning component is embedded in the neural
one. Hamilton et al. (2024) include this potential
architecture in the Nested class, though, to this
day, there are no implemented solutions that truly
embody this definition.

3 Neuro-symbolic approaches to REG

Encoder-decoder models in vision-language gener-
ation tasks like REG always combine neural and
symbolic aspects, as they map raw inputs (images)
to symbolic outputs (text). However, in most ap-
proaches for visual REG (Section 2.1) the transfor-
mation from perceptual to symbolic information
takes place at the very end of the processing pipeline
and merely consists of a final mapping over the
model’s vocabulary during inference, without any
reasoning processes involving those symbolic units.
In this section we describe existing approaches
for reference generation that go beyond this level
of neuro-symbolic integration, and include further
sources of symbolic information or symbolic rea-
soning processes.

Chamorro-Martinez et al. (2021) propose a sys-
tem for referring expression generation (REG) that
combines deep learning with symbolic processing.
They use a Mask R-CNN model to segment im-
ages and detect objects with associated confidence
scores. Fuzzy modeling is then applied to derive
color attributes and spatial relationships between
objects, which are represented in a graph struc-
ture—nodes represent objects with category and
color labels, and edges represent spatial relations,
all annotated with fuzzy confidence values. This
symbolic graph is used by a content selection algo-
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rithm to identify the most discriminative properties
for referring to each object.

Tsvilodub et al. (2024) present a neuro-symbolic
Iterative Model (IM) for referring expression gener-
ation, inspired by the Incremental Algorithm (Dale
and Reiter, 1995). The model combines large lan-
guage models (LLMs) with symbolic reasoning.
An LL.M-based utterance proposer generates sim-
ple candidate descriptions, which a second LLM
module evaluates for semantic adequacy. A sym-
bolic contrastivity selector then assesses how well
each description distinguishes the target from dis-
tractors. If no maximally contrastive expression is
found, the process iterates by adding more details.
Designed for visual tasks, the model avoids process-
ing raw visual input by working with verbal scene
descriptions.

In Junker and Zarrie3 (2024), the low-level tar-
get representations used as input in their encoder-
decoder models are supplemented by symbolic
scene summaries that represent the relative area in
the visual context covered by different types of ob-
jects, in order to support the robustness of referring
expressions under visually challenging conditions.
The results show that by including scene-level sym-
bolic information, the models can correctly infer
the type of the target object, even when visual
representations of the target are severely distorted.

Apart from those works, the Rational Speech
Acts framework (RSA; Frank and Goodman, 2012;
Frank et al., 2016) emerges as the most promi-
nent approach for integrating neural processing and
symbolic reasoning. Here, generally, Bayesian in-
ference is used to model pragmatic behaviour, in
terms of rational speakers (S7) that reason about
how literal listeners (Lg) would understand utter-
ances produced by literal speakers (Sp).

Andreas and Klein (2016) propose an approach
for generating contrastive scene descriptions in a
reference game involving visual scenes as targets
and distractors. Ignoring distractor context, a neu-
ral language model acting as the literal speaker So
takes encoded images and produces descriptions
of them. A neural literal listener L takes an im-
age description and a set of possible referents and
produces a distribution over candidate scenes, for
each indicating the probability that this scene is
the referent described. Finally, a RSA reasoning
speaker S ties those models together by drawing
a set of samples from Sy and using Bayesian in-
ference to select a description scored high by both
So and Lg. Similar to Tsvilodub et al. (2024), this



system relies on symbolic feature representations
for objects depicted in the scenes.

In their work on pragmatically informative image
captioning, Cohn-Gordon et al. (2018) follow the
same intuition, but apply the pragmatic reasoning
at each step of the iterative inference process. Here,
So is a character-level image captioning model,
consisting of a CNN encoder and an LSTM decoder.
At each decoding step, Sy outputs a probability
distribution over possible continuations of a partial
caption consisting of the start token in the initial
run. For each possible continuation, Ly returns a
distribution over potential target images. Finally, S
takes the Lg distribution over images and re-weights
the Sg predictions for possible continuations by Lg’s
ability to infer the correct target image with this
continuation.

The decoding algorithm in Vedantam et al. (2017)
pursues the same idea, but with word-level caption-
ing models and without the recursive back-and-forth
between the speaker and listener agents as defined
in the RSA model.

Several papers in REG have adopted the idea
of performing pragmatic reasoning during the in-
ference of otherwise context-agnostic generation
models: Schiiz and ZarrieB (2021) directly apply
this approach to REG using the discriminative de-
coding methods from Cohn-Gordon et al. (2018)
and Vedantam et al. (2017), but define targets and
distractors as objects within a single image rather
than as separate images. Here, at first, the bounding
box content for a visual target object is encoded
and passed to the model decoder. During decoding,
output probabilities are compared at each step with
the predictions of the same model when processing
distractor objects instead of the target. On this basis,
the token probabilities for the target are adjusted
in favor of words that have a higher probability
for the target than for distractors. In line with find-
ings from image captioning (Schiiz et al., 2021),
the authors show that this method increases both
the pragmatic informativeness and the linguistic
diversity of generated expressions.

Zarrie3 and Schlangen (2019) use a similar
method to reason about possible categorizations of
target objects, assuming that very specific terms
should be avoided when models are uncertain about
object categories. Again, they incorporate RSA-
style reasoning into the iterative decoding process.
However, their model does not reason about which
words are informative for identifying the target, but
about which terms should be used for the target to
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avoid erroneous descriptions, given the uncertainty
about object categories. They show that their model
generates more expressions without any nouns or
category labels, consistent with the hypothesized
strategies for describing unknown objects. With
respect to an external listener model, the proposed
strategy increases the resolution accuracy for most
categories of objects.

Finally, White et al. (2020) consider further possi-
bilities for how the Rational Speech Acts framework
can be incorporated into neural generation models.
In addition to a full RSA model, which includes an
exhaustive reasoning process, where all possible
utterances are tested for how effectively they allow
the trained listener model to identify the target,
they also consider a sample re-rank model which
resembles Andreas and Klein (2016)’s approach in
that a smaller number of candidate utterances are
sampled from the speaker model and then re-ranked
by the listener. In addition, they present a model
that amortizes the computational costs of exhaustive
RSA reasoning by directly optimizing a speaker
model with respect to the utterances that an RSA
model would prefer. To this end, during training,
at each optimization step an utterance is sampled
from the speaker model to be trained, which is then
evaluated by the listener model and translated into
training signals depending on its communicative
success. This transfers the symbolic reasoning pro-
cess from the inference to the training stage; the
subsequent decoding process can thus be carried
out using computationally more efficient methods.
The results show that the amortized model almost
achieves the pragmatic effectiveness of the full RSA
model, but is significantly more efficient.

Overall, neuro-symbolic processing remains an
exception in REG and related tasks. Apart from
Junker and Zarrief3 (2024), symbolic components
generally target the linguistic level rather than the
visual processing of inputs. Most commonly, RSA
or related approaches are used to reason about the
pragmatic informativeness of linguistic symbols
(characters, words, or sentences), sometimes as part
of the training procedure (White et al., 2020). Simi-
lar to content selection in symbolic REG, Chamorro-
Martinez et al. (2021) and Tsvilodub et al. (2024)
employ similar procedures at a more conceptual
level, i.e., with regard to the question of which
attributes best describe the referent, regardless of
the concrete realization.

Regarding Hamilton et al. (2024)’s taxonomy,
the approaches can be placed at different levels:



The addition of symbolic inputs renders Junker and
Zarriel} (2024) a sequential system, while Tsvilo-
dub et al. (2024) can be seen as nested with sym-
bolic components controlling the entire process.
Chamorro-Martinez et al. (2021) and inference-
level RSA variants are cooperative because deep
learning methods form the basis for symbolic rea-
soning. Finally, White et al. (2020)’s amortized
model is a compiled system where symbolic rea-
soning is integrated into the training regime.

4 Neuro-symbolic NLG and Vision

Only a few approaches in REG surpass a level
of neuro-symbolic integration that is trivial for
vision-language generation tasks. This section will
therefore discuss some neuro-symbolic approaches
in two REG-relevant fields: NLG more generally
and visual processing in vision-language tasks.

4.1 Natural Language Generation

Graph-based methods One approach is to inte-
grate structured data representations, such as knowl-
edge graphs, into the language generation process.
This is often referred to as knowledge injection,
where knowledge from external sources is incorpo-
rated into models to improve their output quality
(Cadeddu et al., 2024). Knowledge graphs represent
general-purpose, or domain-specific (Ji et al., 2022)
data as nodes (entities) and edges (relations), a
flexible and powerful way of encoding knowledge.

Knowledge graphs have been used in various
NLG tasks (see Panchendrarajan and Zubiaga 2024
for a survey). In language modeling, knowledge
graphs can be used by converting them into vector
representations using graph embedding methods
and feeding them as input to a language model.
Other models adapt existing text-generation models
to generate text directly from knowledge graphs
(e.g., Koncel-Kedziorski et al., 2019). Knowledge
graphs have also been used in dialogue systems. For
instance, Zhang et al. (2020) proposed a method
that constructs concept graphs from dialogue inputs
and expands them to include related one-hop and
two-hop concepts from a commonsense knowledge
base. These graphs are then encoded into vector
representations using a graph neural network. The
resulting vectors are integrated with the original in-
put to incorporate external knowledge and guide the
model in generating coherent responses. Likewise,
knowledge graphs have been used in text summa-
rization tasks, where faithfulness to the original text
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is essential. Some models (e.g., Wang et al., 2022a)
introduce a knowledge graph pipeline that extracts
relational triplets from the source text and encodes
them using graph embeddings. A filtering step uses
a trained classifier to identify key facts from the
source by predicting their importance. This allows
the model to focus on salient and relevant infor-
mation. The filtered knowledge graph embeddings
are then combined with the hidden states from a
BERT-based encoder and passed to the decoder.

Planning and constraint-guided generation
Typical neural data-to-text models, which generate
text from inputs like databases, often suffer from re-
dundancy and lack factual faithfulness. Puduppully
et al. (2019) proposed an alternative data-to-text
approach where the input is a record table and the
output is a natural language text. Their model ex-
plicitly separates content determination and content
planning before passing the result to a neural genera-
tor for surface realization. The input is first encoded
using a neural encoder. A content selection gate
then determines relevant content using an attention
mechanism over the table entries, followed by a
sigmoid activation to determine which content is
selected for further processing. Next, the content
planning module decides what to say and in what
order by generating a sequence of selected records
using a pointer network. These plans are learned by
aligning the summary text with table records. The
resulting plan is then fed into a neural generator,
which uses a standard encoder-decoder architecture
to produce the output text.

Other data-to-text approaches include LogicNLG
(Chen et al., 2020) and Symbolic Reasoning with
Entity Scheduling (SORTIE; Zhao et al., 2023)
which frame the task as logical data-to-text gen-
eration and aim to produce text that is logically
consistent with the input data.

Lu et al. (2021) propose logic-guided, constraint-
based generation that controls the decoding stage of
neural text generation. It uses negative and positive
constraints expressed as predicate logic formulas,
which are converted into a penalty term and added
to the decoding objective. This allows the model
to generate fluent output while satisfying symbolic
constraints, effectively guiding generation through
inference-time decoding.

4.2 Vision

Graph-based methods In order to obtain agents
which are able to proficiently understand the tem-



poral, relational and causal dynamics that go into
performing everyday house-hold tasks, (Hazraetal.,
2023) proposes a benchmark called Egocentric Task
Verification (Egol'V), comprising a set of egocen-
tric videos of daily life tasks, accompanied by a
natural language description, as well as a novel
Neuro-Symbolic Grounding (NSG) approach to
counter the low performance exhibited by existing
vision-language models on the EgoTV benchmark.
The NSG architecture can convert a task description
into a graph through its different components. This
graph is then grounded in the video frames and
the information represented by its nodes is aligned
with the video. The NSG approach proposed by the
authors indeed proved able to outperform state-of-
the-art VLMs in capturing tasks’ steps on both the
EgoTV benchmark and on a dataset derived from
the CrossTask dataset (Zhukov et al., 2019).

Huang et al. (2025) show interest in the under-
standing of spatio-temporal dynamics in videos as
well. They introduce LASER, a neuro-symbolic
framework that converts videos into graphs repre-
senting the properties and relations of entities at
various time points. It then computes the alignment
between these graphs and video captions that have
been translated into formulas using an extended
Linear Temporal Logic. The model is trained using
weak supervision and displays enhanced perfor-
mance compared to previous solutions in capturing
relationships and dynamics in a range of video
datasets with rich spatio-temporal specifications.

He et al. (2023) aim at applying scene graph
generation to human-object interaction detection.
They propose the unified model SG2HOI+ based
on the Transformer architecture. The model is able
to extract semantic-spatial features from images
using a bounding box segmentation network, then
generating scene graphs using information from
said bounding boxes, and finally to convert the scene
graphs into human-object interactions. SG2HOI+
was tested on a variety on benchmarks (Visual
Genome, V-COCO, HICO-Det), and achieved better
results than pre-existing methods.

Methods with programmatic descriptions

Gupta and Kembhavi (2023) X presents VisProg,
a neuro-symbolic modular model that uses LLMs
prompted in a few-shot manner to generate Python-
like programs from image captions, questions and
instructions. At each step, the programmes invoke
one of the 20 modules currently supported (ranging
from other LLMs to CLIP-like models and logic and
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arithmetic reasoning modules). VisProg performs
at a high level on a range of of V&L tasks.

Hsu et al. (2023) introduce a modular architec-
ture with neuro-symbolic components to solve 3D
grounding tasks. It uses a language-to-code model
to convert instructions in natural language asking to
identify objects in pictures into symbolic programs.
It then extracts object features and relations using
an encoder, executes the program using the learned
features and retrieves the target object.

Li et al. (2020) focus on jointly modeling cam-
era poses, object locations and scene structures of
naturalistic images presenting pronounced pattern
regularities, treating the task as an inverse graphics
problem, generating a graphic program from an
input image, then reconstructing the picture and
computing a loss between the reconstruction and
the target.

Program-based neuro-symbolic approaches have
also been applied to video related tasks. Kulal
et al. (2021) introduces a framework designed to
enhance human motion understanding in videos. It
follows a hierarchical pipeline which first detects
key points in videos, then produces both a concrete
motion program, by assigning parameters to three
motion primitives, and an abstract motion program,
which generalizes over the concrete one by captur-
ing higher-level repeated sequences and loops of
primitives in the video.

5 Neuro-symbolic REG: Future directions

After reviewing approaches of neuro-symbolic inte-
gration methods in the area of REG and its closely
related fields of Natural Language Generation and
Vision (& Language), we will now discuss future
directions to neuro-symbolic REG. In doing so,
we will take into account the cognitively plausible
properties of neuro-symbolic approaches — in par-
ticular, the combination of bottom-up, data-driven
learning and structured reasoning about such data
based on prior knowledge as two key aspects of
human cognitive abilities and intelligent behaviour.
In our discussion, we focus on the challenges in two
different (but potentially overlapping) REG settings,
i.e., interactive reference games set up as visual task-
oriented dialogue, and reference generation under
naturalistic real-world conditions.

Various neuro-symbolic approaches, previously
discussed in Sections 3 and 4, seem fit to be adapted
and applied to reference games, specifically Coop-
erative solutions (such as Chamorro-Martinez et al.,



2021; Huang et al., 2025; He et al., 2023), which
are centered around the conversion of visual inputs
into graphs representing their properties and rela-
tions, further used to solve tasks involving reasoning
about those. Chamorro-Martinez et al. (2021) al-
ready applied such techniques, with an architecture
able to generate referring expressions to objects in
images employing fuzzy graphs.

Generating referring expressions in dialogical
reference games, however, should consider the ad-
dressee and treat reference as a collaborative pro-
cess (Clark and Wilkes-Gibbs, 1986), in which
feedback is provided and the interaction history is
available. While RSA-based models have a concept
of a ‘listener’, it is an abstract one and not an ac-
tual addressee the model is interacting with and to
whom the reference could be tailored. Adaptations
to the addressee should happen on different levels
of processing. Low level adaptations, such as inter-
active (lexical and syntactic) alignment (Pickering
and Garrod, 2004) can be handled neurally during
surface realization, whereas more strategic adap-
tations (Clark and Wilkes-Gibbs, 1986) could be
the result of symbolic planning processes, which,
however, could result from neural processing of the
addressee’s multimodal behaviors. If the addressee
makes an error in, or is unable to resolve an ini-
tial reference, a model such as Chamorro-Martinez
et al. (2021) could be adapted by implementing an
iterative process, which retrieves the fuzzy graph
previously produced and compares the target’s node
to that of the object wrongly selected by the ad-
dressee, in order to identify characteristics that were
mistakenly chosen for or left out of the generated
referring expression. The symbolic fuzzy graph is
therefore a useful intermediate (and mediating) rep-
resentation, that allows comparison of the speaker’s
and addressee’s conceptualization with features of
the target.

Nevertheless, more tightly integrated neuro-
symbolic solutions such as those belonging to the
Compiled class could be useful in modeling refer-
ence games, too. Methods including Logic Neural
Networks (Riegel et al., 2020) and Logic Tensor
Networks (Badreddine et al., 2022) could be used to
extract features from images, encode these features
as logical formulas, and then impose rules and con-
straints on them to guide the generation of referring
expressions. Adressee’s errors and feedback can be
accounted for by updating the model weights or
logic rules depending on whether the expression
generated was precise enough for resolution.
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A concern that can easily arise in REG tasks
revolves around those cases where the exact cate-
gory of an object that should be identified is not
clear (Zarriel and Schlangen, 2019). In such an
eventuality, the knowledge injection methods dis-
cussed in Section 4.1 could potentially prove useful.
In fact, through the use of knowledge graphs, it
could be possible to provide REG models with
knowledge bases granting them world knowledge,
and thus informing them of more generic and over-
arching characteristics of objects that they might
encounter in visual inputs, for instance common
uses and functions, which could be used in indirect
reference.

Cognitively oriented representations of the visual
scenes in which referential targets are embedded
also appear promising for generating referring ex-
pressions that are not only effective but also easy to
understand. For example, Vo (2021) provides an in
depth analysis of the rules and regularities of real
world scenes, referred to as Scene Grammars. They
include the notion of ‘anchor objects’, namely ob-
jects which are diagnostic of specific environments
and serve as points of reference to identify other
objects in a scene (e.g., the toilet in a bathroom).
Inside visual scenes, objects tend to cluster around
certain anchors, making it easier to identify them
by restricting the domain of attention. The ability to
take into consideration the pivotal role of anchors in
object identification could be useful for REG mod-
els, as they would be able to abide to the natural way
in which people parse visual scenes. Cooperative
techniques based on graph structures, such as those
presented in Section 4.2, could be optimized to
recognize anchor nodes and subsequently use them
to identify the target object in the scene, focusing on
the relevant phrase and using information contained
in it, such as the relationship the target has with the
anchor, to construct referring expressions which
can guide the listener’s attention to the target in a
way that is meaningful and familiar.

More generally, in vision and language tasks,
such as referring expression generation, neuro-
symbolic processing has great potential when pro-
viding both more autonomy as well as the ability
for bidirectional information flow to components
on all levels of processing. Neural vision compo-
nents could implement theories of visual attention
that respond to saliency and/or other features (e.g.,
Gestalts) from the visual scene such that they do not
provide an exhaustive representation of the scene
but are already selective or operate on a different



level of abstraction and thereby influence object
naming or attribute selection when generating ref-
erences with IA-like algorithms. Conversely, atten-
tion and visual processing could also be guided
top down through symbolic information that is
grounded in an interlocutor’s utterance (such as a
clarification), the broader interaction history, or the
speaker agent’s goal. Following theories of ‘ecolog-
ical perception’ (Gibson, 1979), this could afford a
neural re-conceptualization of objects in the scene,
possibly yielding completely different features and
object description that fit the speaker’s need at a
specific moment in a reference game.

6 Conclusion

Neuro-symbolic approaches are gaining consider-
able interest in computational linguistics and NLP,
as they allow to integrate the complementary char-
acteristics of symbolic and neural processing, po-
tentially leading to strong and adaptive, but also
transparent and cognitively plausible systems. In
this paper, we reviewed existing neuro-symbolic
approaches in REG and discussed possible future
directions, drawing on related research areas such
as NLG and vision. As an inherently multimodal
task with defined pragmatic objectives, REG opens
up many possibilities for linking these paradigms
at different levels, opening up exciting possibilities
for further research.
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