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Abstract

Argumentative patterns are recurrent strategies
adopted to pursue a definite communicative
goal in a discussion. For instance, in Q&A
exchanges during financial conference calls, a
pattern called Request of Confirmation of Infer-
ence (ROCOI) helps streamline conversations
by requesting explicit verification of inferences
drawn from a statement. Our work presents
two ROCOI extraction approaches from inter-
rogative units: sequence labeling and text-to-
text generation. We experiment with multiple
models for each task formulation to explore
which models can effectively and robustly per-
form pattern extraction. Results indicate that
machine-based ROCOI extraction is an achiev-
able task, though variation among metrics that
are designed for different evaluation dimen-
sions makes obtaining a clear picture difficult.
We find that overall, ROCOI extraction is per-
formed best via sequence labeling, though with
ample room for improvement. We encourage
future work to extend the study to new argu-
mentative patterns.

1 Introduction

An argumentative pattern is a recurrent and iden-
tifiable structure with a specific function in an ar-
gumentative discussion. Such a pattern offers valu-
able insights into the reasoning processes and di-
alectical strategies employed by interlocutors in
argumentative discourse.

Extracting argumentative patterns from natural
discourse presents a significant challenge in the
field of Argument mining (AM) (Lawrence and
Reed, 2019). Typically, AM involves three stages:
(1) the identification, segmentation, and classifi-
cation of argumentative discourse units (ADUs)
(Ghosh et al., 2014), (2) the characterization of
the relations between ADUs (Peldszus and Stede,
2013), and (3) the identification of argument
schemes, which denote implicit and explicit infer-
ential relations within and across ADUs (Macagno
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Figure 1: Example ROCOI and the two extraction ap-
proaches.

and Walton, 2014). This area of research is of-
ten challenged by the idiosyncrasies of spoken
language. For instance, in Earnings Conference
Call (ECC) Q&A sessions, argumentative content
is often embedded in complex statements aimed
at maximizing information content while minimiz-
ing exchanges (Keith and Stent, 2019). Instead
of employing a typical end-to-end AM pipeline,
leveraging linguistic patterns that are clearly identi-
fiable as part of argument schemes could be useful
for locating argumentative moves, unraveling the
complexities in such dialogues.

In this paper, we present a novel task and ap-
proach to the extraction of a prototypical argumen-
tative pattern called the Request Of Confirmation
Of Inference (ROCOI). Our work focuses on this
argumentative pattern that emerges in questions,
which presents some easily identifiable surface ele-
ments that complement the underlying argumenta-
tive function.

The ROCOI pattern is a structure that signals
the presence of a reasoning process, of which the
interrogative instance represents the conclusion
(or, more accurately, the request for confirmation
thereof). By carefully bridging lexical and syntac-
tic recurrent features with the pragmatic role that
such a pattern plays, ROCOIs constitute a unique
pattern whereby we shed light on the reasoning
process behind strategic inquiry. In the extraction
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process, we move beyond the analysis of entire
discourse units, instead allowing us to localize RO-
COlIs inside dialogues. This approach allows us
to maintain precise control over pattern detection
while dealing with the inherent complexity of argu-
mentative texts. In this sense, the current approach
moves beyond pattern identification—a task already
tackled by D’ Agostino and Rocci (2024)-towards
pattern extraction.

We specifically focus on the ROCOI pattern as
it represents an ideal proto-pattern for exploring
how well NLP methods can extract argumentative
patterns from text. These patterns exhibit char-
acteristics that make them readily identifiable by
trained human annotators, including their interroga-
tive nature on an inferential conclusion, and explicit
marking of prior reasoning. This clarity provides
an excellent starting point for developing and eval-
uating automated extraction methods. At the same
time, such characteristics are neither regular nor
exclusive to this task, so they must be paired with
recognition of the argumentative reasoning that
the patterns reside in Since LLMs may not behave
like human annotators in argumentative reasoning
(de Wynter and Yuan, 2024), with this study, we
probe the limits of pragmatic pattern recognition
by means of surface elements.

The selection of our domain of application is
mainly utilitarian: ECCs are strategic exchanges
that constrain discourse in a way that makes the
ROCOI pattern relatively frequent and prominent—
an optimal environment for an exploratory study.

Our experiments encompass two task formula-
tions, comparing a classification (sequence label-
ing) and generation (text-to-text extractive genera-
tion) paradigm. Comparing these two approaches
allows us to bridge traditional boundary-marking
techniques (Eger et al., 2017; Kuribayashi et al.,
2019; Bao et al., 2021) with state-of-the-art lan-
guage modeling approaches (Raffel et al., 2020;
Gorur et al., 2024).

This work represents a crucial step toward the
broader goal of comprehensive argumentative anal-
ysis, laying the groundwork for future exploration
of more complex patterns, as well as the incorpora-
tion of contextual features in detecting argumenta-
tive patterns. Furthermore, our models can support
humans in locating argumentation in financial con-
texts (van der Meer et al., 2024), with potential
applications in areas such as investor relations, cor-
porate communication, and financial analysis.
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2 Related Work

2.1 The Request of Confirmation of Inference:
An argumentative pattern in ECCs

The ROCOI (previously introduced and qualita-
tively studied by Rocci and Raimondo, 2018) is an
argumentative pattern in ECCs that is originated in
question units. It is relevant to the discussion in the
sense that it creates an argumentative confrontation
(van Eemeren and Grootendorst, 2004).

A ROCOlI is an assertive question, i.e., in which
a stance is asserted by the questioner. As a conse-
quence, when it is formulated directly, a ROCOI
is a closed question. Moreover, ROCOIs make
explicit by lexical means the fact that the stance as-
serted is the result of an inferential process, the con-
clusion of which is expected to be (dis)confirmed
by the interlocutor. This results in the ROCOI be-
ing a challenging question, regardless of the degree
of semantic indirectness of its formulation.

Example 1 shows some ROCOIs; underlined, the
lexical elements that indicate the inferential pro-
cess, which constitutes the keystone of the pattern.

(1) a. Does that mean that customers are
reluctant to term out these sort of
prices?

b. Should we think of the capital
commitment has a hard cap now.
c. Is it fair to say that you’ve maxed out

on what was pre-approved at the AGM
and that any incremental issue from
here would require AGM approval?

Previous studies on the ROCOI (Rocci and Rai-
mondo, 2018; D’ Agostino and Rocci, 2024) iden-
tify subcategories of the pattern. This article con-
siders the class that D’ Agostino and Rocci (2024)
call Type 1, that is, ROCOIs in which the infer-
ential conclusion—of which the questioner asks
confirmation—is part of the interrogative unit, as
shown in all questions of Example 1. On the other
hand, Type 2 ROCOIs correspond to patterns in
which the questioner’s inference is not explicitly
part of the interrogative sentence, such as in the fol-
lowing example (ROCOI in italics): “And looking
at the take rate in the fourth quarter, might have
slowed down a little bit. So just — is that true?”.
The reason behind the choice of experimenting
with Type 1 only is twofold: on the one hand, Type
1 ROCOIs are more compact, in the sense that the
conclusion and the question pertain to the same



unit, and are therefore more easily identifiable; on
the other hand, they are the most frequent ones.
Easiness in identification should not be mistaken
with triviality of the task, and so the retrieval of
this pattern cannot be simply achieved via rule-
based search of key-phrases such as those empha-
sized in Example 1. The reason is twofold. The
typical lexical signals that indicate the presence
of a ROCOI belong to the domain of knowledge
management (epistemicity and evidentiality) (Musi
and Rocci, 2017; Miecznikowski, 2020; Lucchini
et al., 2024); however, while not all ROCOIs dis-
play them, these indicators also have a much wider
scope of application than introducing this question
type. Conversely, the retrieval of such key-phrases
does not ensure the extraction of the entire pat-
tern, as it does not provide any indication about its
extension—which is not predefined.

3 Method

We outline the dataset, task formulation, and evalu-
ation setup for the ROCOI extraction approaches.

3.1 Dataset

Our work focuses on a dataset that comprises
60 Earnings Conference Calls (ECCs) between
2020-2023 for companies Airbnb (ABNB), British
Petroleum (BP), Credit Suisse (CS), Door Dash
(DASH), Hasbro (HAS), Shell (SHEL), Exxon Mo-
bil (XOM) and Zillow (Z), for a total of 1377 ques-
tion units. Manual annotation identified 180 ques-
tion units featuring ROCOIs, in total containing
193 unique ROCOI patterns. Of these, 134 were
Type 1 ROCOIs, and thus represent the final corpus
for this study.

The annotation was first carried out by trained
student assistants. Annotators were MA students
selected on the basis of their joint background in
linguistics/languages and financial communication.
Whereas financial literacy supports domain knowl-
edge and text comprehension, higher impact in an-
notation quality is credited to linguistic awareness:
ROCOIs are, in fact, a linguistic phenomenon that
happens to be frequent in this context, but whose
form is not influenced by the content.

Each document was analyzed by two to four an-
notators. The agreement on the request type label-
ing task (for which the ROCOI is one out of eight
possible values) is a = 0.79 (Krippendorff, 1970)';

'Disagreements relate to the selection of a different request
type, mostly biased by the content of the inference: a ROCOI
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agreement on ROCOI span length is I' = 0.52 (Ma-
thet et al., 2015). Two PhD students subsequently
curated the annotation until reaching a shared gold
standard. This was followed by an additional round
of dictionary-based search of (potential) remaining
instances, performed by the first contributor of the
current paper. Further information about the anno-
tation guidelines for request types is provided in
Lucchini and D’ Agostino (2023, p. 15-19); ROCOI
type classification is borrowed from D’ Agostino
and Rocci (2024). In total, 18% of tokens in the
dataset are part of a ROCOI, whereas 82% of to-
kens are non-ROCOI tokens. At the present stage
and to the best of our knowledge, this is the most ex-
tensive collection of manually annotated ROCOlIs.

3.2 Task formulation

We compare two task formulations for ROCOI ex-
traction: (1) sequence labeling and (2) text gen-
eration, applied to interrogative units that were
previously identified as exhibiting the pattern in
question. These two tasks allow us to compare the
results obtained from applying a classification and
a generation paradigm. Classification, where we
mark the boundaries between the presence and ab-
sence of a ROCOI, represents the standard method
of identifying a substructure. However, such an
approach usually requires ample training data. In
contrast, text-to-text extractive generation, which
involves generating the part of the input text that
contains the ROCOI pattern, is similar to more re-
cent state-of-the-art LLMs. We aim to investigate
which approach works better given our relatively
small dataset. We describe each task formulation
separately and provide details about hyperparam-
eters and training settings for all models in Ap-
pendix A. The results of both these experiments
are compared against an LLM-generated baseline
(decoder-only architecture), obtained by prompting
the GPT-40 API. Seven-shot in-context learning
was adopted as prompting technique for sequence
labeling, five-shot for text-to-text generation.

(1) Sequence labeling Sequence labeling for RO-
COI extraction is formulated as a task whereby we
mark the boundaries between the presence and ab-

may be tagged as a request for opinion if, for instance, the
inference is about an opinion that the management may hold.
No trends were found upon disagreement analysis.

Models GPT-40, GPT-40-mini, and GPT-4.1 were com-
pared across 0-, 3-, 5-, and 7-shot contexts; reported as “LLM
baseline” is the combination that performed best on average
across metrics for the task.



sence of the pattern. Each token is classified as
whether pertaining to the sequence (tags “B” and
“I”), or not (tag “O”). Such a format represents the
standard method of identifying a substructure in a
text—for instance, for Named Entity Recognition
(NER). Unlike traditional NER, we only consider
one type of pattern and thus do not need to specify
the class to which the tags pertain.

We experiment with 5 open-source models in
total; three of those are encoder-only models:

TinyBERT The smallest model to gauge task com-
plexity. If the smallest model can learn it well, we
do not need to train a more capable model (Jiao
et al., 2020).

Vanilla BERT Since it is commonly used as a
baseline (Devlin et al., 2019).

SpanBERT As a version of BERT that is opti-
mized to represent spans of text, since ROCOIs are
often single contiguous spans (Joshi et al., 2020).

In addition, we also experiment with two encoder-
decoder models:

TS Strong empirical results indicate that this
model may be used across contexts and tasks (Raf-
fel et al., 2020).

FlanT5 Updated version of TS5 that includes a
wider array of tasks, the model may generalize
better to unseen tasks (Longpre et al., 2023).

(2) Text-to-text generation For this task, the pat-
tern is considered a substring of the question unit
given as an input; hence, the output corresponds to
a verbatim generation of a portion of the wider unit
(similar to the use of the text-to-text architecture
already intended by Raffel et al. (2020)). There-
fore, particular attention must be devoted to the
quality of the generation and, specifically, that the
fine-tuned model reports an exact portion of the
original text (and not, for instance, a summariza-
tion of it) and learns that a pattern is a continuous
sequence within the text.

This portion of the study is carried out on two
text-to-text model families:

BART serves as the encoder-decoder counterpart
to our BERT baseline for sequence labeling. We
use the base and large varieties (Lewis et al., 2020)
to further investigate the impact of model size.

TS in the small, base, and large varieties, again
to see whether a more versatile text-to-text train-

ing procedure benefits performance (Raffel et al.,
2020).
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3.3 Evaluation

We outline how we evaluate models on each task
formulation.

3.3.1 Sequence labeling

We initially aimed to adopt a similar evaluation ap-
proach as Named Entity Recognition (NER), as it
shares the IOB tagging setup (Li et al., 2020). Per-
formance in NER and similar tasks is traditionally
evaluated at the token level (Tjong Kim Sang and
Buchholz, 2000). However, tagging is typically
performed (a) on short sequences, (b) in multiclass
classification, and (c) featuring multiple units in
a text; none of these characteristics strictly hold
for ROCOISs. Even in the NER extraction domain,
however, there has been a propensity towards evalu-
ation at the full entity level, especially if the predic-
tion is aimed at downstream tasks (Segura-Bedmar
et al., 2013). Since ROCOIs are long and complex
spans of text with potentially variable boundaries,
we additionally adopt span-level evaluation and
compare it to individual token-level evaluation.

Token-level evaluation At the token level, we
first provide an overview of the accuracy in the
prediction by individual tags (‘O’, ‘I’, ‘B’). Then
we aggregate the tags and provide a measure of
precision, recall, and F1 score, alongside the calcu-
lation of token-based Krippendorft’s o (Krippen-
dorff, 1970).

Span-level evaluation To evaluate the entire span
over which the ROCOI develops and not only the
individual tokens that constitute it, we make use
of the ROUGE-L metric, to determine the longest
matching string, as well as the Gamma (I') method
for inter-annotator agreement measure and align-
ment (Mathet et al., 2015)> in a basic, one-label,
positional dissimilarity detection configuration.

3.3.2 Text-to-text generation

For the text-to-text generation evaluation, we use
various metrics to investigate the quality of the ex-
tracted pattern. Each model is evaluated according
to six metrics, clustered into three classes, each
of which corresponds to a different way of inter-
preting the nature of the task: synractic (pattern
matching), semantic (embedding similarity), or an-
notation (inter-annotator agreement). The rationale
behind such a three-fold choice lies in the nature of
generative models: on the one hand, they tend to

3Taken from the Python library pygamma-agreement
(https://github.com/bootphon/pygamma-agreement)
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be too creative despite being nudged to extract ver-
batim text. This would not be captured by semantic
metrics but is counterbalanced by syntactic metrics.
On the other hand, syntactic evaluation cannot cap-
ture whether some slightly shifted boundary still
correctly identifies the core of the pattern—which
can however be reintegrated into the equation to
some extent by the use of semantic similarity (al-
though not entirely, since such metrics are not spe-
cialized in ROCOI core meaning detection, similar
to sequence labeling). Inter-annotator agreement
metris works as a sanity check that decidedly sig-
nals the presence of ill-formed sequences in gener-
ated patterns.

Syntactic evaluation In this view, the extraction
performance is evaluated in terms of string match-
ing. The first naive evaluation that establishes the
baseline consists of checking whether the pattern is
present in the extracted string. We call this evalua-
tion “pattern matching” and its most obvious flaws
are that (a) over-extraction to the point of reporting
the entire original string is a hit and (b) even slight
under-extraction is a complete miss. The three
possible values are ‘full match’ (if the retrieved
string contains exactly the correct pattern), ‘partial
match’ (if the retrieved string contains at least the
full correct pattern), and ‘no match’ otherwise; re-
ported are the frequency distributions across the
three classes. This is paired with a more refined
version of such an evaluation, that is, the calcula-
tion of the ROUGE score (Lin, 2004); specifically
the ROUGE-L metric, which identifies the longest
co-occurring sequence.

Semantic evaluation In this case, what is evalu-
ated is the semantic distance between the predicted
and the actual pattern. This is achieved by (1) cal-
culating a simple Euclidean distance between the
embedding representation of the patterns and (2)
applying some well-established evaluation methods
that are typically used for text generation and sum-
marization: notably (a) BERTScore (Zhang et al.,
2020) and (b) Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019).*

Annotation agreement evaluation The true pat-
tern can be considered a gold standard annotation
and the extracted pattern a machine-generated an-
notation; in this perspective, the two are compared
with a tool designed to capture the inter-annotator
agreement and the dissimilarity in span boundaries.

“SBERT in its base configuration measures cosine similar-
ity.
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Accuracy

Model 0 I B

BERT (base) 0.93 0.61 0.70
TinyBERT 0.92 0.39 040
SpanBERT 0.89 0.61 0.60
T5 (base) 0.95 0.67 0.65
FlanT5 (base) 0.92 0.67 0.70
GPT-40 083 0.40 0.05

Table 1: Sequence labeling accuracy by tag. The best
models are shown in bold, second best underlined. The
LLM baseline is in italic.

In particular, we use the Gamma (I") method for
inter-annotator agreement measure and alignment
(Mathet et al., 2015). The metric cannot compute
on instances in which the extracted pattern is not a
lexical match to a substring of the input text, and
thus tells us that the generated string is ill-formed.

4 Results and discussion

We describe our results after training the models
on the two tasks: sequence labeling and text-to-text
generation respectively.

4.1 Sequence labeling

Table 1 reports the accuracy values by individual
tag. As reported in Section 3.1, 82% of tokens
in the dataset are non-ROCOI elements; these are
identified by ‘O’ tags. Therefore, since they repre-
sent the most frequent type, as expected ‘O’ tokens
reach a higher accuracy across models. On the
contrary, ‘B’-type tokens understandably are the
least frequent ones in the corpus but its accuracy
levels are not far from that of ‘I’ tokens overall—
if not better. It is worth noticing that SpanBERT
appears to be performing badly despite being op-
timized for encoding contiguous spans of texts. It
achieves the lowest accuracy on the ‘O’ tag, indicat-
ing it most strongly mislocates ROCOI patterns in
the text. The LLM baseline confirms the accuracy
trends but uniformly scores lower than any other
model. At this stage, the best performing models
seem to be the two belonging to the TS family (both
best in two out of three accuracy values), followed
by vanilla BERT (second best in two out of three
accuracy values).

Further classification results aggregated over the
three tag categories are displayed in Table 2, both
at the token level (former four columns) and span
level (latter two columns). Token-level evaluation



appears to favor FlanT5, which achieves the high-
est results in three out of four metrics and is second
best in the remaining one. Surprisingly, SpanBERT
performs below par in full span detection, accord-
ing to span-level evaluation results, which are in-
stead dominated again by T5 (ROUGE-L = 0.90)
and FlanT5 (I' = 0.63). To conclude, the perfor-
mance exhibited by T5, FlanTS5, and TinyBERT
on sequence labeling at the span level compares
with or exceeds human agreement (i.e, I' > 0.52).
This indicates that we may use automatic ROCOI
extraction for machine annotation for new samples
in the future. However, the machine annotations
fail in a way that is not captured by this metric,
or disagree with human annotators in novel ways.
Hence, we set out to further understand the limita-
tions of the automatic ROCOI extraction approach
in Section 5.1.

The LLM baseline confirms weak over both
token- and span-level labeling, displaying for most
metrics below average to nearly zero agreement.
Tag sequences appear to be well formed, but not la-
beling the pattern correctly; moreover, the returned
sequence is shorter than the reference in 98% of
cases. This indicates that the model is unfit for the
job, even though sequence labeling is a generation
task in the linguistic domain—which is supposedly
the type of task at which these models excel.

4.2 Text-to-text generation

We present the evaluation results sorted by eval-
uation approach type (syntactic, semantic, annto-
tation), each of which is presented in a dedicated
table.

Table 3 reports syntactic evaluation. For both
evaluation methods, the two BART models appear
to be by far the best-performing ones, particularly
the large configuration—with best results across all
metrics. Semantic measures are reported in Table 4.
The baseline metric represented by raw Euclidean
distance between the true and predicted pattern
favors BART models; moreover, both SBERT and
BERTScore, again identify BART-large as the best-
performing model, reaching F'1 = 0.94. Similar
outcomes are shown in Table 5, which displays
surprisingly bad results for the T5 models on the
inter-annotator agreement metrics. This will be
appropriately discussed in Section 5.2.

Different metrics capture different aspects of the
ROCOI extraction task in a text-to-text generation
setup, For instance, syntactic pattern matching in-
forms us of the capability to lexically overlap with
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the ground truth patterns, while semantic evalua-
tion allows us to observe how well the model cap-
tures the underlying meaning and intent of the RO-
COI spans. We observe that BART models achieve
good performance along all three dimensions for
this task.

It is worth noting that for the text-to-text gen-
eration task, in contrast with what previously ob-
served for sequence labeling, the tested models are
often outperformed by the LLM baseline; this is
especially evident in the semantic and annotation
agreement metrics. This practically means that pat-
tern boundaries detection may not be extremely
accurate in the majority of cases, but the core con-
tent of the reference sequence is often included in
the generated one. The good level of annotation
agreement, moreover, ensures that the generated
text is sufficiently well-formed with reference to
the original pattern string.

5 Error analysis

In addition to our previous results, we present
a qualitative analysis of the predicted patterns.
Specifically, we observe the onset point and length
of all extracted patterns in the test set to identify
whether models tend to make consistent mistakes.

Further, we also present an overview of the dis-
tribution of ill-formed sequences in the prediction.
In the sequence labeling task, this corresponds to
cases in which a sequence onset is not correctly
followed by the next element in the sequence: a ‘B’
tag is immediately followed by an ‘O’ (not possible
in a well-formed ROCOI). In the text generation
task, this corresponds to token sequences that are
inconsistent with the original text.

While the results here summarize the findings,
Tables 9 and 10 for sequence labeling and text
generation respectively—available in Appendix B—
report by row the measures over each instance in
the test set.

5.1 Sequence labeling

We compare performance between TS5 and FlanT5.

As for TS5, perfect alignment with the start of the
pattern occurs in 60% of cases, while the major-
ity of predicted patterns appear to be shorter than
expected (55%). Worth noting is the near-perfect
acquisition of the IOB-tagging rules, which is re-
flected in a single instance of ill-formed sequence.

As for FlanT?5, the right starting point is detected
in 70% of cases; extraction of exact right length



Token-level

Span-level

Model Precision Recall F1 o ROUGE-L T

BERT (base) 0.22 025 023 0.58 0.87 0.49
TinyBERT 0.09 0.05 0.06 0.37 0.82 0.60
SpanBERT 0.27 030 0.29 0.51 0.83 0.47
T5 (base) 0.17 0.15 0.16 0.67 0.90 0.56
FlanT5 (base) 0.32 030 031 0.61 0.87 0.63
GPT-40 0.03 002 002 028 077 039

Table 2: Additional results for the sequence labeling approaches. The best models are shown in bold, second best

underlined. The LLM baseline is in italic.

Pattern matching

Model Full match Partial match No match ROUGE-L
BART (base) 0.20 0.50 0.30 0.63
BART (large) 0.20 0.60 0.20 0.67
TS5 (small) 0.00 0.45 0.55 0.43
T5 (base) 0.15 0.50 0.35 0.54
TS5 (large) 0.00 0.15 0.85 0.31
GPT-40 040 044 016 0.72

Table 3: Syntactic evaluation for text-to-text generation. For pattern matching, results must be read as “the higher
the better” for full and partial match, and “the lower the better” for no match. The best models are shown in bold,
second best underlined. The LLM baseline is in italic; additionally, baseline results are in bold if their value is equal

or better than the best result.

spurts to 30%. However, 100% of predicted pat-
terns contain 1 to 4 ill-formed sequences. If the
extraction process was integrated in a pipeline, this
would easily result in error propagation.

Following, a test instance misclassified by both
models (ROCOI pattern in italics): “And secondly,
on U.S. gas, you’re very well-positioned with I
believe pretty much fully hedged production for
this year, but I'm wondering if at $2 per MCF
gas, you're actually starting to see the opportunity
to perhaps take away some of the rigs and refo-
cus them in the Permian where you keep strongly
growing the activity. Thank you.”

In this example, FlanT5 recognizes three starting
points (underlined the tokens corresponding to a ‘B’
tag in the predicted sequence) and one well-formed
sequence roughly corresponding to the true pattern
(in bold the tokens corresponding to ‘I’ tags): “And
secondly, on U.S. gas, you're very well-positioned
with I believe pretty much fully hedged production
for this year, but I'm wondering if at $2 per MCF
gas, you're actually starting to see the opportunity
to pe%ps take away some of the rigs and refocus
them in the Permian where you keep strongly grow-
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ing the activity. Thank you.”. FlanT5 therefore not
only marks multiple onset points, but those may
also interrupt ongoing sequences.

In brief, T5 is the most reliable model for onset
position prediction (offset mean = 0.93); FlanT5
is the best at predicting pattern length (offset mean
—6.2), as confirmed by similar length distribu-
tion in Figure 2f compared to the gold standard
of Figure 2a. For further insight, we refer to the
overview of Figure 2 (Appendix B).

5.2 Text-to-text generation

The two varieties of BART models were the best
performing across metrics. They show similar be-
havior and the /arge configuration mostly hits some
of the misses of the base configuration (cf. Table
10). The right starting point is detected in 45% of
cases by BART base, increasing to 60% for BART
large. The distribution of predicted lengths was the
same across both varieties; this means that the base
configuration is already powerful enough to pick
up such a feature to the best that this model family
allows given the quantity of training data available.
In conclusion, both BART models learned to iden-
tify the start of the pattern in the vast majority of



Model r
BERTScore BART (basc) 056
Euclidean SBERT . ase) .

Model distance  similarity Precision Recall Fl1 BART (large) 0.54

T5 (small) 0.07
BART (base) 0.42 0.07 0.91 095 093 T5 (base) 0.26
BART (large) 0.46 0.08 0.92 0.96 0.94 T5 (large) _
TS5 (small) 0.46 0.05 0.86 0.93 090 GPT40  0.69
T5 (base) 0.59 0.06 0.89 094 0091
T§ glgrge) 77777 Q-§47 o QQZ 777777 07-8747 L 70;997 B Q§7 Table 5: Annotation agreement
GPT-4o 0.35 0.78 0.93 0.95  0.94 evaluation for text-to-text genera-

Table 4: Semantic evaluation for text-to-text generation. The best models
are shown in bold, second best underlined. The LLM baseline is in italic;
additionally, baseline results are in bold if their value is equal or better than the

best result.

cases; remaining errors, however, greatly diverge
from the gold standard and both models tend to
considerably overgenerate in the majority of cases
(by 77 tokens on average for BART base, 73 for
BART large).

T5-large is, conversely, a case of extremely
flawed generation: despite all safeguards imple-
mented, none of the retrieved patterns corresponds
to a substring of the original text-hence hinder-
ing the calculation of the I" metric in Table 5. For
example, compared to the true pattern “Are you
suggesting that you could potentially ship to Rus-
sia later this year?”, the corresponding generation
reads: “- And then my follow, as it is in terms of
Europe. I just want to clarify that? So this has the
potential risk from Russia for approximately 100
million.”.

6 Conclusions and future work

This paper introduces a prototypical argumentative
pattern that originates in the questions asked during
the Q&A sessions of financial dialogues, called the
Request Of Confirmation Of Inference (ROCOI).
Since argumentation is a pivotal aspect of human
communication, the identification and extraction of
argumentative patterns is argued to be fundamental
in the study of language in interaction. Particularly,
given that the identification of argumentative pat-
terns is a challenging yet doable task for trained
humans, this study seeks to answer the question of
whether language models can perform this task as
well.

We adopted two concurrent ML approaches to
the extraction of ROCOIs from a wider interrog-
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tion. The best models are shown
in bold, second best underlined.
The LLM baseline is in italic; ad-
ditionally, baseline results are in
bold if their value is equal or bet-
ter than the best result.

ative unit: sequence labeling and text-to-text gen-
eration. The sequence labeling approach, evalu-
ated both at the token- and span-level, shows that
FlanTS5 is the best-performing model. Qualitative
observation of the results, however, marks its out-
puts as potentially unreliable. TS is therefore the
best-performing model both for accuracy and re-
liability of the output. The text-to-text genera-
tion approach identifies BART-large as the best-
performing model across syntactic, semantic, and
annotation agreement evaluation measures.

GPT-40 was identified as the state-of-the-art rep-
resentative for the decoder-only category of lan-
guage models: appropriate for the task due to its
power and despite its limited reasoning abilities—
as pattern extraction is not formulated as a rea-
soning task. The LLM performed poorly in the
sequence labeling task in terms of pattern identifi-
cation, whereas it represents state-of-the-art for ex-
tractive generation. The increment in performance,
however, does not appear to hold effective positive
correlation with model size and its use price. Con-
sequently, we do not deem the LLM baseline as the
winning model-especially due to its unreliability
across tasks.

In conclusion, this task can be carried out by lan-
guage models. At the present stage, results suggest
that sequence labeling is still the most trustworthy
method to approach the task. While results would
improve with a larger training dataset, gathering
additional samples containing ROCOIs is difficult
due to their low absolute frequency (although it rep-
resents a relatively frequent argumentative pattern
in the ECC context).



Further work may include the insertion of in-
termediate steps to fine-tune for similar tasks
(such as argumentative sequence labeling) be-
fore applying them to ROCOI extraction (van der
Meer et al., 2022), alongside cross-domain ex-
traction and cross-pattern comparison in extrac-
tion performance. Additionally, ROCOI retrieval
may enhance current argument mining techniques
(D’ Agostino, 2025). Type 1 ROCOIs, in fact, al-
ways explicitly include the conclusion of a reason-
ing instance. Even if the rest of the inferential pro-
cess was omitted from the conversation (i.e., they
are enthymemic), the acknowledgment of the RO-
COI functions as a placeholder that marks where
an inference was drawn in the conversation—thus
supporting the retrieval of argumentative instances.

Limitations

Our work has several limitations to consider. While
we carefully selected the models for fine-tuning
that are open source and accepted baselines among
related work in Argument Mining literature, our
choice of model architecture remains limited. Fur-
ther, our relatively limited dataset size affects the
generalizability of our results, especially in cases
of context shift. Training models with more data or
increasing the size of the evaluation set may paint a
different image of the relative performance among
models. Despite using fixed model checkpoints and
consistent dataset splits, we observed that TS’s gen-
eration outputs exhibit high predictive variability.
In addition, we found that FlanT5 has a system-
atic tendency to overpredict multiple ROCOI spans
within individual samples, potentially inflating our
metrics.

Consideration must also be given to the inherent
limitations in the formulation of the current task.
All instances fed to the models did contain at least
one ROCOI by design—as the experimental setup
assumes the availability of candidate question units,
and considers their identification an upstream task
(see D’ Agostino and Rocci, 2024). However, it
is true that the current study neither accounts for
guardrails against potential error propagation, nor
explicitly handles cases that would entail empty
generation (alternatively, fully “O” labeling) as the
correct output. This can be addressed with the
development of a pipeline that performs pattern
identification before its extraction.

Lastly, the span length of the gold standard an-
notations over which a ROCOI develops is not a
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settled matter—in fact, IAA is only fair with value
I' = 0.52. The gold standard against which models
are tested in this experimental setup is a pairwise
expert curation of such annotations until almost
perfect agreement was achieved. Additionally, two
ROCOI configurations were defined: the minimal
and maximal extension of the pattern—the latter typ-
ically including a phrase or sentence that contains a
premise to the conclusion that constitutes the core
of a ROCOI (e.g., minimal ROCOI: “should we as-
sume that Premier Agent revenue growth should be
more muted for the remainder of the year?”, max-
imal ROCOI: “But given both of those are likely
to remain challenges for at least the remainder of
2022, should we assume that Premier Agent rev-
enue growth should be more muted for the remain-
der of the year?””). Experiments were conducted on
both settings; this study only reports on the mini-
mal setting, as it was the one consistently achieving
better results. Further studies will also include re-
finement of the characterization of the maximal
ROCOI extension and a comparison of the retrieval
of the two varieties.

Ethical Considerations

Recognizing argumentative content can be biased
to the content of the training set. This may result
in predictions that are poor in novel contexts or
edge cases. Responsible implementations of an ex-
traction system, especially in the financial domain,
should always be checked by a human. Our work
is a first attempt at creating a system for analyzing
argumentative patterns for financial dialogues. Sit-
uating our approach in an ecosystem that contains
checks and balances will not only ensure responsi-
ble use of the predictive model but also may yield
valuable insights into the actual use of the model.

Supplementary materials availability
statement

The dataset on which these experiments were
conducted is freely available on GitHub:
https://github.com/dagosgi/ROCOIs/tree/
main/LARP2025
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A Experimental details

A.1 Training parameters

We present additional details regarding the usage of pretrained models for the two formulations of the
ROCOI extraction. We present an overview of the initial model checkpoints and their parameter counts in
Table 6. The hyperparameters to train the models on the sequence labeling task are given in Table 7, and
the ones for text-to-text generation are given in Table 8. Training a single model generally takes up to one
hour at most on modern hardware (one RTX3090 or A100 GPU).

Model Checkpoint Size
BERT (base) google-bert/bert-base-uncased 109M
SpanBERT SpanBERT/spanbert-base-cased 108M
TinyBERT huawei-noah/TinyBERT_General_4L_312D 14M
TS5 (base) google-t5/t5-base 110M
Flan-T5 (base) google-t5/flan-t5-base 110M
BART (base) facebook/bart-base 139M
BART (large)  facebook/bart-large 406M
TS (small) google-t5/t5-small 61M
TS5 (base) google-t5/t5-base 223M
TS5 (large) google-t5/t5-large 738M

Table 6: Description of each model and the specific checkpoint we used.

Sequence labeling For the sequence labeling models, we train on the training set (75% of total available
samples) while observing metrics on a validation set (10% of samples). We pick the model iteration with
the highest token-level F score and evaluate that model on the test set (15% of samples) to obtain the
results reported in Tables 1 and 2. We use the same split for each experiment.

Model Parameter Value
BERT (base) learning rate 2e-05
SpanBERT learning rate 2e-05
TinyBERT learning rate 2e-05
TS (base) learning rate 4e-04
Flan-T5 (base) learning rate 4e-04
all batch size 16
all max sequence length 256
all max epochs 100

Table 7: Hyperparameters for the sequence labeling approaches.

Text-to-text sequence generation For the text-to-text generation models, we train on the training set
(75% of total available samples) while observing metrics on a validation set (10% of samples). We
optimized hyperparameters and picked the best model iteration with the lowest loss value, and evaluated
that model on the test set (15% of samples) to obtain the results reported in Tables 3, 4, and 5. We use the
same split for each experiment.

B Error analysis

We present additional details upon which we based our qualitative observations of Section 5. Particularly,
we display the the raw numerical data for each test instance, which in the body of the paper was instead
merged in the form of percentage over the total. Table 9 refers to the sequence labeling task and reports
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Model Parameter Value

all learning rate 6e-06
BART all batch size 4
TS5 (all) batch size 6
all max sequence length 256
all max epochs 100

Table 8: Hyperparameters for the text-to-text approaches.

begin- and length- offsets of the predicted patterns with respect to the gold standard, alongside the number
of ill-formed sequences in the tag sequence. Table 10 presents begin- and length- offset numbers only,
from the text-to-text generation task. Finally, Figure 2 displays the differences in predicted ROCOI lengths
across models for the sequence labeling approach, compared to gold standard.

begin length ill-formed begin length ill-formed

offset offset sequences offset offset sequences

0 -2 0 0 -1 4

n.a. n.a. 0 0 0 4

0 0 0 0 0 3

0 0 0 0 0 1

n.a. n.a. 1 0 10 2

0 -5 0 0 0 3

0 -9 0 0 4 2

0 -33 0 0 -33 3

0 -2 0 0 0 2

0 0 0 0 0 3

-41 -16 0 n.a. n.a. 2

n.a. n.a. 0 0 -1 2

0 -34 0 0 -34 3

n.a. n.a. 0 n.a. n.a. 2

0 3 0 0 5 3

1 -41 0 1 -14 3

0 3 0 12 -5 2

73 -5 0 69 -1 2

-18 -6 0 -18 -6 2

0 -15 0 0 -26 4
(a) TS (base) (b) FlanT5 (base)

Table 9: Qualitative error analysis: sequence labeling approach. Reported the two best performing models. For each
sub-table, the first two columns indicate offsets (predicted-true) and the third one indicates the absolute number of
instances. The best value is zero for all features.
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begin offset length offset
-218 187
0 0
n.a. n.a.
0 0
0 78
158 5
0 71
-47 47
0 0
-160 77
-179 34
-196 196
0 0
n.a. n.a.
0 33
n.a. n.a.
0 70
-4 87
-74 74
0 38

(a) BART (base)

begin offset length offset
0 182
0 228
n.a. n.a.
0 0
0 78
158 5
0 22
-47 47
0 0
0 35
-179 34
0 0
0 0
-186 85
0 33
n.a. n.a.
0 70
-4 87
n.a. n.a.
0 38
(b) BART (large)

Table 10: Qualitative error analysis: text-to-text sequence generation approach. Reported the two best performing
models. For each sub-table, the two columns indicate offsets (predicted-true). The best value is zero for all features.

Frequency

7
6
5
4
3
2
0
0 20 40 60 80

ROCOI length

(a) Labeled data

N
S

Frequency
-
)

10

. m i
0 20 40 6

0
ROCOI length

(d) SpanBERT

Frequency
-
s
°

100

Frequency
=
G

=
o

100

15.0

12.5

7.5

5.0

2.5

0.0
0 20 40 60

ROCOI length

(b) TinyBERT

20 20

10

5 5

0 II I I 0
0 20 40 6 80

0
ROCOI length

(e) T5

Frequency
o

4

0
80 100

-
@

Frequency

100

0 20 40 60 80 100

ROCOI length
(c) BERT
0 20 40 60 80 100
ROCOI length
(f) FlanT5

Figure 2: Error analysis: sequence labeling approach. True (upper left) and predicted (others) ROCOI lengths.

64



