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Preface

We are delighted to welcome you to the CLASP conference on Language Models and RePresentations
or LARP 2025! This volume consists of the archival papers presented at LARP, held at the Department
of Philosophy, Linguistics and Theory of Science (FLoV), University of Gothenburg on September 8 –
9, 2025. The purpose of this conference was to bring together researchers in computational linguistics,
artificial intelligence, and their intersections to discuss ideas on how language can be represented,
and how computational language systems can both integrate neural (sub-symbolic) and symbolic
representations. The conference covers areas such as computational linguistics, machine learning,
artificial intelligence, natural language processing, and more.

The recent advances in language technology have been driven by the large language models (LLMs) built
using transformers, large architectures, with representations built out of high dimensional feature spaces.
These systems have been highly successful, however, much of human reasoning occurs on a symbolic
level following the rules of logic, mathematics, or other systems. Classical AI was focused on symbolic
systems, creating expert systems, planners, and search algorithms which manipulated systems, not
tensors. There is a growing interest in the idea that these two methods can be combined in order to take
advantage of the strengths of each. Many questions arise around these topics. How can neuro-symbolic
architectures be created, what are the benefits and problems with them? Can these systems be used to
create more explainable machine learning models? Can logical constraints imposed on neural networks
increase both explainability, safety, and control over those models? Can automated reasoning provide
human interpretable rationals for decisions? LARP invited papers on these topics and more. Accepted
papers and invited talks included topics ranging from evaluating the reasoning capabilities of LLMs,
bridging the gap between symbolic and neural approaches, abstractions for AI problem solving, to
specific implementations of neuro-symbolic and reasoning systems. The conference, and by extension
these proceedings, is a discussion about these related topics which examine various approaches and how
they can mutually inform each other.

The event included 7 oral talks with presentations of 5 accepted peer-reviewed papers, including 1
archival short paper and 4 archival long papers. The event also had 3 invited keynote talks and a panel
discussion. We would like to thank all our contributors, programme committee members, reviewers
and volunteers, with special thanks to CLASP for organising the hybrid conference and the Swedish
Research Council for funding CLASP.

Nikolai Ilinykh, Erik Lagerstedt, and Mattias Appelgren

Gothenburg, Sweden

September 2025
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Keynote Talk
PACE: Procedural Abstractions for Communicating

Efficiently
Moa Johansson

Chalmers University of Technology
2025-09-08 09:30:00 – Room: J222

Abstract: A central but unresolved aspect of problem-solving in AI is the capability to introduce and
use abstractions, something humans excel at. Work in cognitive science has demonstrated that humans
tend towards higher levels of abstraction when engaged in collaborative task-oriented communication,
enabling gradually shorter and more information-efficient utterances. In this talk, I will describe a
neuro-symbolic method for introducing such abstractions called PACE. On the symbolic side, we draw
on work from library learning in program synthesis for proposing abstractions. We combine this with
neural methods for communication and reinforcement learning, via a novel use of bandit algorithms
for controlling the exploration and exploitation trade-off in introducing new abstractions. Accepted for
CogSci 2025 (oral), preprint: https://arxiv.org/abs/2409.20120

Bio: Moa Johansson is an Associate Professor in the Data Science and AI division at Chalmers University
of Technology. She is interested in neuro-symbolic AI: the combination of neural machine learning
methods and symbolic methods from e.g. theorem proving and program synthesis. Her group works on
applications in maths and reasoning, cognitive science, and language.
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Keynote Talk
On Retrieving & Reasoning LLMs: Myths, Merits, and How

to Move Forward
Dan Roth

University of Pennsylvania and Oracle
2025-09-08 15:00:00 – Room: J222

Abstract: The rapid progress made over the last few years in generating linguistically coherent
natural language has blurred, in the mind of many, the difference between natural language generation,
understanding, knowledge retrieval and use, and the ability to reason with respect to the world.
Nevertheless, reliably and consistently supporting high-level decisions that depend on natural language
understanding and heterogenous information retrieval is still difficult, mostly, but not only, since most of
these tasks are computationally more complex than language models can support. I will discuss some of
the challenges underlying reasoning and information access and argue that we should exploit what LLMs
do well while delegating responsibility to special purpose models and solvers for decision making. I will
present some of our work in this space, focusing on supporting reasoning and information access via
neuro-symbolic methods.

Bio: Dan Roth is the Eduardo D. Glandt Distinguished Professor at the Department of Computer and
Information Science, University of Pennsylvania and the Chief AI Scientist at Oracle. Until June 2024
Dan was a VP/Distinguished Scientist at AWS AI. In his role at AWS Roth led over the last three
years the scientific effort behind the first-generation Generative AI products from AWS, including Titan
Models, Amazon Q efforts, and Bedrock, from inception until they became generally available. Dan
is a Fellow of the AAAS, ACM, AAAI, and ACL. In 2017, Dan was awarded the John McCarthy
Award; he was recognized for “for major conceptual and theoretical advances in the modeling of natural
language understanding, machine learning, and reasoning”. He has published broadly in natural language
processing, machine learning, knowledge representation and reasoning, and learning theory, was the
Editor-in-Chief of the Journal of Artificial Intelligence Research (JAIR) and has served as a Program
Chair and Conference Chair for the major conferences in his research areas. Roth has been involved in
several startups; most recently he was a co-founder and chief scientist of NexLP, a startup that leverages
the latest advances in Natural Language Processing, Cognitive Analytics, and Machine Learning in the
legal and compliance domains. NexLP was acquired by Reveal. Dan received his B.A Summa cum laude
in Mathematics from the Technion, Israel and his Ph.D. in Computer Science from Harvard University
in 1995.
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Keynote Talk
Reasoning with Large & Small Models: Bridging Symbolic

and Neural Approaches
Vaishak Belle

University of Edinburgh
2025-09-09 10:00:00 – Room: J222

Abstract: This talk explores the intersection of large language models (LLMs) and reasoning systems,
with a focus on addressing fundamental challenges in developing correct and reliable systems.
We’ll examine our work on augmenting LLMs with external “symbolic executors”, creating hybrid
architectures that leverage the strengths of both paradigms. The presentation will then talk about how
LLMs represent and manipulate beliefs - standing for interactions with human or artificial users. We’ll
also discuss a few considerations for agentic pipelines, and how these sit with the broader paradigm
of agent modelling, which has a long history in AI. We’ll preface this development by first briefly
reviewing the paradigm of neuro-symbolic AI, and emergent ideas such as loss functions and neural
program induction.

Bio: Dr Vaishak Belle (he/him) is a Chancellor’s Fellow and Reader at the School of Informatics,
University of Edinburgh. He is an Alan Turing Institute Faculty Fellow, a Royal Society University
Research Fellow, and a member of the RSE (Royal Society of Edinburgh) Young Academy of Scotland.
He was previously at KU Leuven (Belgium), University of Toronto (Canada), Aachen University of
Technology (Germany) and University of Trento (Italy). At the University of Edinburgh, he directs a
research lab on artificial intelligence, specialising in the unification of logic and machine learning, with
a recent emphasis on explainability and ethics. He has given research seminars at academic institutions
such as MIT and Oxford, tutorials at AI conferences, and talks at venues such as Ars Electronica and the
Samsung AI Forum. He has co-authored close to 120 peer-reviewed articles on AI, at venues such as
IJCAI, UAI, AAAI, MLJ, AIJ, JAIR, AAMAS, and along with his co-authors, he has won the Microsoft
best paper award at UAI, the Machine learning journal best student paper award at ECML-PKDD, and
the Machine learning journal best student paper award at ILP. In 2014, he received a silver medal by the
Kurt Goedel Society. He has served on the senior program committee/area chair of major AI conferences,
co-chaired the ML track at KR, among others, and as PI and CoI secured a grant income of close to 8
million pounds. Recently, he has consulted with major banks on explainable AI and its impact in financial
institutions.
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Simple Morphology, Complex Models: A Benchmark Study and Error
Analysis of POS Tagging for Martinican Creole

Ludovic Mompelat
Department of Modern Languages and Literatures

University of Miami
Miami, FL, USA

lvm861@miami.edu

Abstract
Part-of-speech (POS) tagging is a foundational
task in NLP pipelines, but its development for
Creole languages remains limited due to sparse
annotated data and structural divergence from
high-resource languages. This paper presents
the first POS tagging benchmarks for Martini-
can Creole (MC) as well as a linguistically mo-
tivated evaluation framework, comparing three
fine-tuned transformer-based models (mBERT,
XLM-Roberta, and CreoleVal). Rather than
focusing solely on aggregate metrics, we per-
form detailed error analysis, examining model-
specific confusion patterns, lexical disambigua-
tion, and out-of-vocabulary behavior. Our re-
sults yield F1 scores of 0.92 for mBERT (best
on the X tag and connector distinctions), 0.91
for XLM-Roberta (strongest on numeric tags
and conjunction structures), and 0.94 for Cre-
oleVal (leading on both functional and content
categories and lowest OOV error rate). We pro-
pose future directions involving model fusion,
targeted and linguistically motivated annota-
tion, and reward-guided Large Language Mod-
els data augmentation to improve our current
tagger. Our linguistically grounded error anal-
ysis for MC exposes key tagging challenges
and demonstrates how targeted annotation and
ensemble methods can meaningfully boost ac-
curacy in under-resourced settings.

1 Introduction

Despite significant progress in multilingual lan-
guage modeling (Qin et al., 2024; Huang et al.,
2024), natural language processing (NLP) for
Creole languages remains underdeveloped. This
is largely due to the scarcity of annotated re-
sources and the unique linguistic features of Cre-
oles such as morphosyntactic restructuring and re-
alignment (Mufwene, 2013), and frequent code-
switching/code-mixing (Vaillant, 2023) which chal-
lenge existing models trained on high-resource
languages (Mompelat et al., 2022). This pa-
per introduces the first benchmark part-of-speech

(POS) tagging dataset for Martinican Creole (MC)
and presents a comparative evaluation of three
transformer-based models: XLM-Roberta (Con-
neau et al., 2019), mBERT (Devlin et al., 2018),
and CreoleVal (Lent et al., 2024), the latter being a
recent adaptation specifically designed for Creole
NLP tasks.

Accurate POS tagging is an important aspect of
NLP pipelines, directly affecting the performance
of downstream applications such as dependency
parsing (Zhou et al., 2020), machine translation
(Hlaing et al., 2022), and information extraction
(Chiche and Yitagesu, 2022). Yet for languages like
MC, both the lack of training data and the linguistic
divergence from typologically dominant languages
like French present ongoing obstacles. In previ-
ous work, Mompelat et al. (2022) demonstrated
that cross-lingual transfer from French improved
syntactic parsing performance for MC, but it also
introduced cascading errors in the POS tagging
stage, therefore highlighting the need to treat POS
tagging as a distinct problem.

Rather than focusing solely on accuracy met-
rics, this paper takes a linguistically informed ap-
proach to model evaluation. We analyze tagging
errors across the three models, with particular at-
tention to phenomena such as lexical and syntac-
tic ambiguity, as well as out-of-vocabulary (OOV)
words. By examining classification reports, con-
fusion matrices, support-F1 dynamics, and error
patterns linked to specific linguistic features, we re-
veal model-specific strengths and weaknesses that
would be obscured by aggregate scores alone.

This analysis not only benchmarks current POS
tagging performance for MC but also informs
future work on multi-model strategies, such as
weighting predictions across models or imple-
menting multi-task learning. It also guides an-
notation efforts, helping to determine which lin-
guistic phenomena and patterns most merit atten-
tion in resource-constrained settings. Ultimately,
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this study sets a precedent for linguistically mo-
tivated model evaluation and resource develop-
ment for underrepresented languages. As part of
a larger project aimed at improving parsing tools
for MC and other Creole languages, it illustrates
how targeted, linguistically grounded interventions,
beginning with POS tagging, can incrementally
strengthen performance and serve as a founda-
tion for future applications, including rule-based
data augmentation, transfer learning, and hybrid
symbolic-neural modeling.

2 Review of the Literature

2.1 Martinican Creole and Its Relation to
French

Martinican Creole (MC) is a French-lexified At-
lantic Creole spoken predominantly in Martinique.
Despite heavy lexical overlap with Modern French,
MC exhibits several typological divergences: it is
largely isolating, with minimal inflectional mor-
phology for tense, aspect, or agreement (see tense
marker ké and mood marker ka in example (1)),
and it uses post-posed determiners and possessives
(see definite marker an in example (1)).

French and Creole have historically been de-
scribed to coexist in a diglossic relationship, with
French historically associated with institutional and
high-prestige functions, and Creole with informal
and oral domains. However, this diglossic split
is starting to break down and we see both lan-
guages sharing space in virtually all functions of
society (Prudent, 1981; Bernabé, 1983; Managan,
2016). This constant language contact situation in
all functions results in the two languages to often
be mixed within the same discourse. This func-
tional break down between MC and French leads to
prevalent code-mixing and code-switching, neces-
sitating models that are robust to lexical variation.
This close genealogical and historical link justifies
cross-lingual transfer approaches, yet the subtle or-
thographic and phonological differences between
French and MC, together with MC’s unique syntac-
tic patterns, pose challenges for direct transfer of
standard POS tagsets.

2.2 Polyfunctionality in MC versus
Homonymy

In MC, many closed-class items exhibit polyfunc-
tionality: the capacity to serve multiple grammat-
ical categories without any overt morphological
change. We follow the terminology of Wang et al.

(2021) whereby words that have more than one part
of speech are called polyfunctional words, while
words with only one part of speech are called mono-
functional words. Polyfunctionality differs from
polysemy, since all senses of a polysemous word
may belong to the same POS category.

In our MC corpus, several high-frequency items
display PF > 1, driving much of the POS-tagging
ambiguity. Below are illustrative examples for the
marker ki (PF = 3):

(1) KI = PRON, SCONJ, DET

a. Sé
COP

pa
not

mwen
me

ki
who

pou
must

réparé
fix

lektrisité
electricity

[...]

‘I’m not the one who must fix the elec-
tricity [...]’ PRON

b. chak
each

moun-an
person-DET

ja
already

ka
PROG

di
say

ki
that

yo
3PL

pa
not

dakò.
agree

‘Each of them are already saying that
they disagree’ SCONJ

c. Jik
until

ki
which

tan
time

nou
we

ké
FUT

asepté
accept

yo
3PL

fè
make

nou
2PL

wont
shame

kon
like

sa
that

?

‘Until when will we let them embarass
us like that?’ DET

Similarly, kon alternates among coordinating
conjunction (CCONJ), subordinating conjunction
(SCONJ), and adposition (ADP) as shown in exam-
ple (2).

(2) KON = CCONJ, SCONJ, ADP

a. Rad-maré
tidal-wave

anni
only

balié
sweep

lakot
coast

Atlantik
atlantic

kon
as_well_as

lakot
coast

karayib
caribbean

‘The tidal wave only swept the Atlantic
Coast as well as the Caribbean Coast’
CCONJ

b. Kon
like

di
say

Kolo,
Kolo,

‘si
‘if

ou
2SG

pa
not

ri
laugh

yo,
3PL,

yo
3PL

ké
FUT

ri’w’.
laugh’2PL

‘Like Kolo says, "If you don’t laugh at
them, they’ll laugh at you’ SCONJ

c. Jik
until

ki
which

tan
time

nou
we

ké
FUT

asepté
accept

yo
3PL

fè
make

nou
2PL

wont
shame

kon
like

sa
that

?

‘Until when will we let them embarass
us like that?’ ADP
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By contrast, true homonymy involves two or more
unrelated lexical entries sharing form but with dis-
tinct, non-overlapping etymologies and meanings
(e.g. MC sé1 "it is" from French "c’est" acting as a
copula vs. sé2 from French "ces" acting as a plural
marker).

(3) Kataloy,
Catalonia,

sé
COP

réjion
region

ki
that

pi
most

rich
rich

adan
in

tout
all

sé
PLUR

réjion
region

l’Espay
Spain

la
DET

‘Catalonia, it’s the richest region in all the
regions of Spain’ COP/DET

In example (3), we see that the homonym sé serves
as a determiner and a copular predicate marker.

The frequent polyfunctionality of closed-class
words is typical of isolating Creoles and under-
scores the importance of a UD-compliant annota-
tion that preserves each usage and motivates our
linguistically informed error analysis.

2.3 Neural Approaches to POS Tagging and
Its Role in NLP

Part-of-speech (POS) tagging is an valubale task in
natural language processing, as it provides essential
grammatical structure that enables models to make
more informed linguistic predictions. For example,
Hlaing et al. (2022) showed that POS tags can be
leveraged as syntactic signals to improve neural
machine translation in low-resource language pairs.

While POS tagging systems for high-resource
languages now achieve near-human accuracy, their
development and evaluation are relatively straight-
forward due to the abundance of annotated corpora.
In contrast, the task assumes greater importance
in low-resource settings, where POS tags may be
the only structured representation available. They
can serve as scaffolding for downstream tasks such
as dependency parsing (Mompelat et al., 2022) or
Machine Translation, and as a way to stabilize train-
ing in scenarios where full syntactic or semantic
annotations are lacking.

However, POS tagging for low-resource lan-
guages faces challenges on multiple fronts. First,
the scarcity of labeled data makes it difficult for su-
pervised models to learn robust tag distributions or
to use unsupervised training methods. Multilingual
languages models such as mBERT and XLM-R
have become widely adopted as they excel in trans-
ferring knowledge from high-resource languages
(like English) to low-resource ones, even without
parallel data (Pires et al., 2019). However, their per-

formance is uneven across languages, particularly
when faced with typological distance, orthographic
variability, or underrepresentation in pretraining
data. Many low-resource languages, especially Cre-
oles, diverge typologically from the languages on
which these multilingual models have been trained
as they often exhibit minimal inflection, fluid cate-
gory boundaries, and weak morphological cues that
may be underrepresented in current multilingual
models (Hedderich et al., 2020).

These challenges warrant the need for typo-
logical and linguistically-aware modeling choices,
whether neural, symbolic, or hybrid, using insights
from more detailed parsing error analysis.

2.4 Approaching POS Tagging for Creole
Languages

Despite advances in low-resource NLP, Creole lan-
guages remain severely underrepresented in the
development of computational resources and tools.
Only a handful of projects have produced anno-
tated corpora for Creoles, and among these, part-of-
speech (POS) tagging has received limited focused
attention. The recent CreoleVal benchmarks (Lent
et al., 2024) introduced a multilingual POS tagging
dataset for Haitian, Mauritian, and 26 other Cre-
oles, alongside a transformer-based model trained
on these data. We note that MC is not included in
the dataset from the CreoleVal project. Therefore,
although this represents a significant step forward
for Creole languages, the datasets remain modest in
size, often domain-restricted, unevenly distributed
across tasks, and the model necessitates fine-tuning
for MC.

Prior work by Mompelat et al. (2022) proposed
a dependency parser for MC that leveraged French
as a support language via cross-lingual transfer.
Although this approach improved parsing perfor-
mance, it also revealed notable shortcomings in the
POS tagging layer. The overall accuracy scores for
dependency parsing relying on TAG embeddings
showed evidence that differences in morphosyn-
tactic structure between French and MC may be
the source of the tagging inconsistencies. These
results underscore the need to treat POS tagging in
Creole languages as a task in its own right, rather
than a secondary artifact of parsing models trained
on other languages.

However, relying solely on coarse metrics such
as overall accuracy or macro-F1 scores, especially
in structurally complex or data-scarce settings has
its limitations. In this paper, we propose a more
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comprehensive evaluation framework aimed at pro-
viding a deeper understanding of model behavior,
uncovering patterns of misclassification that would
otherwise be obscured by aggregate performance
metrics. As Schöffel et al. (2025) show in their
study of Old Occitan, low-frequency categories
such as interjections, proper nouns, or borrowed
terms are especially prone to misclassification by
neural taggers, even when macro metrics remain
high. In doing so, it also helps identify gaps in the
annotated data and motivates more targeted annota-
tion strategies.

2.5 Error Analysis in POS Tagging
Error analysis is a critical tool for understanding
the systematic failures of NLP models, especially
in contexts where structural ambiguity and low-
resource constraints compound the difficulty of
robust language modeling. Studies such as Gar-
cia and Gamallo (2010) have demonstrated that
error-driven rule-based correction can significantly
improve tagging accuracy, particularly when errors
are concentrated in predictable linguistic contexts
such as confusion between adjectives and nouns,
or misinterpretation of closed-class items like de-
terminers, adpositions, and subordinating conjunc-
tions. This suggests that error analysis not only
diagnoses model weaknesses but can actively guide
remediation strategies through symbolic or hybrid
interventions.

In our study, we build on these precedents by in-
troducing a comprehensive statistical error analysis
of POS tagging in MC. This includes confusion ma-
trix interpretation, per-tag F1 tracking, identifica-
tion of homonymous/polysemous tokens, Out-Of-
Vocabulary (OOV) error reports, and a support-F1
LOESS analysis to capture the interaction between
tag frequency and performance. Our proposed met-
rics are motivated by MC’s high levels of lexical
ambiguity/polyfunctionality, frequent borrowing,
and minimal morphological marking. To date, no
comprehensive error analysis has been conducted
for POS tagging in MC or other French-lexified
Creoles.

Importantly, our goal is not only to better under-
stand model behavior, but to use these findings to
inform the design of targeted data augmentation
strategies via large language models. In contrast
to Schöffel et al. (2025) who use LLMs directly
for tagging evaluation, we intend to leverage them
as generative and augmentation tools, guided by
linguistic insights extracted through error analysis.

3 Methodology

Our approach is organized into two main phases:
first, the creation of a POS tagging benchmark for
Martinican Creole (MC) using transformer-based
models, and second, the creation of an evaluation
framework for fine-grained error analysis to inform
linguistically and symbolically future annotation
efforts, automatic data augmentation methods and
new, hybrid strategies for the development of NLP
tools for MC and other low resource languages.

3.1 Dataset and Annotation Process

The dataset used in this study combines the de-
pedency parsing corpus introduced in Mompelat
et al. (2022), containing 236 manually dependency-
annotated sentences in MC and from which we
only extracted the POS annotations, with 298 addi-
tional sentences annotated for POS for this project.
Although ideally multiple native-speaker linguists
would adjudicate, all 298 new sentences were an-
notated by the author, a heritage speaker of MC
with formal training in Universal Dependencies
schemas, due to a severe lack of Martinican UD
experts, typical for underrepresented languages. To
ensure quality, we conducted two full consistency
passes over the data and spot-checked ambiguous
tokens against a small panel of native speakers. The
full dataset thus comprises 534 sentences, 9470 to-
kens, and 1780 types, making it the most extensive
POS-annotated corpus for MC. The data are drawn
from online news sources, blogs, and social me-
dia, reflecting contemporary usage and the frequent
presence of code-mixed French elements. These
mixed tokens are essential for capturing the diglos-
sic and bilingual nature of Martinican linguistic
practice.

Annotation followed the Universal Dependen-
cies (UD) guidelines for POS tagging (De Marn-
effe et al., 2021). A key annotation tag concerns
the treatment of foreign words, particularly French
lexical items. When a French-origin word is syn-
tactically integrated into the MC sentence, func-
tioning as a noun, verb, or modifier, it was tagged
according to its grammatical role using standard
UPOS categories. However, when the foreign word
appeared as a translation equivalent or gloss, not
syntactically integrated into the clause structure, it
was assigned the X tag, in line with UD conven-
tions for unclassifiable or extragrammatical tokens.
Although the “X” tag is often excluded or mini-
mized in evaluation tasks, we chose to preserve it
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as a focus in our error analysis since this decision
enables us to track annotation ambiguity and model
behavior around edge cases, rather than suppress-
ing them from the training and evaluation process.

After initial submission of this paper, we dis-
covered annotation inconsistencies in the MC POS
corpus. We have corrected these and fixed a ran-
dom seed (seed=42) for our train/dev/test splits.
All results below reflect this finalized dataset.

3.2 Model Selection and Experimental Design
To evaluate POS tagging performance on MC,
we selected three transformer-based models: 1)
XLM-Roberta (xlm-roberta-base), a multilingual
transformer pretrained on CommonCrawl data
containing 100 languages, 2) mBERT (bert-
base-multilingual-cased), a widely used multilin-
gual model pretrained on the BooksCorpus and
Wikipedia, and 3) CreoleVal, a domain-adapted
XLM-R transformer model fine-tuned on the Creol-
eVal benchmark (Haitian, Mauritian, and 26 other
Creoles; Lent et al. 2024). Its subword vocabulary
and pre-training did not include any MC data, mak-
ing it directly comparable to XLM-R and mBERT
for MC POS tagging. Although CreoleVal and
XLM-R share the same tokenizer and subword vo-
cabulary, their parameter distributions diverge dur-
ing CreoleVal’s in-domain fine-tuning. By adapting
XLM-R weights on a multilingual Creole bench-
mark (Haitian, Mauritian, etc.), CreoleVal becomes
highly specialized on core Creole patterns, boost-
ing closed-class and function-word tagging, but
can “forget” some of XLM-R’s broader multilin-
gual robustness. In practice, this leads XLM-R to
outperform CreoleVal on proper nouns and rare
connectors: its untouched pre-training retains more
general representations for named entities and low-
frequency items, whereas CreoleVal’s weights have
shifted toward the distributions encountered in its
fine-tuning data.

Each model was fine-tuned on our annotated
dataset using an 80/10/10 split for training (427
sentences), development (53 sentences), and testing
(54 sentences). The splits also broadly preserve the
overall distribution of common POS tags.

3.3 Evaluation and Error Analysis
To assess the behavior and weaknesses of our POS
tagging models in a linguistically informed manner,
we adopt a suite of diagnostic metrics tailored to
the structural characteristics of MC.

We begin with the standard classification report

shown in Table 1, which provides precision, recall,
and F1 scores per tag. We further examine the
relationship between data availability and tagging
performance through a support-F1 analysis shown
in Figure 1. By plotting F1 scores against tag fre-
quency using LOESS smoothing, we can estimate
the number of examples required for each tag to
achieve reliable performance/information balance
that directly informs future annotation priorities.
Then, to uncover more nuanced patterns of misclas-
sification, we analyze confusion matrices, shown
in Figure 2, that reveal frequent tag-level confu-
sions such as NOUN versus PROPN or ADP versus
SCONJ. These confusion patterns are particularly
relevant in MC, where the absence of morpholog-
ical cues often makes syntactic functions harder
to disambiguate and where homonymy/polysemy
is frequent. To evaluate the model’s ability to re-
solve morphosyntactic ambiguity, we conduct a
homonymy/polysemy error analysis by tracking
tokens that occur with multiple POS tags in the
corpus. Finally, we perform an OOV error analysis,
examining how models handle test-set tokens not
seen during training. This includes measuring the
overall OOV error rate and identifying common
misclassification patterns, such as overpredicting
NOUN or confusing named entities and borrowed
forms.

4 Results & Discussion

4.1 Overall Model Comparison: Tagging
Accuracy by Category

We begin our evaluation with overall accuracy: fine-
tuned mBERT achieves 92% , XLM-Roberta 91%,
and CreoleVal tops at 94%. Table 1 presents per-
tag F1 scores on the Martinican Creole (MC) test
set.

All three models achieve perfect or near-perfect
scores on the most frequent, low-ambiguity classes:
PUNCT, PART, and PRON. They also perform
strongly on PROPN. By contrast, rare tags such
as INTJ (support=2) remain challenging.

Mid– and low–frequency tags reveal clear differ-
entiation. CreoleVal leads on most functional and
content categories, while mBERT retains the edge
on coordinators and interjections. In sum, Creol-
eVal delivers the highest overall F1 by excelling
on both function- and content-POS tags; mBERT
and XLM-Roberta bring complementary strengths
on rare or subtle categories, motivating the model-
fusion strategies described in Section 4.6.
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Table 1: Per-tag F1 scores across models. Highest val-
ues per row are in bold.

POS Tag mBERT XLM-R CreoleVal

ADJ 0.77 0.77 0.82
ADP 0.81 0.74 0.84
ADV 0.81 0.82 0.86
AUX 0.95 0.95 1.00
CCONJ 0.90 0.83 0.86
DET 0.90 0.91 0.95
INTJ 0.67 0.50 0.50
NOUN 0.88 0.89 0.91
NUM 0.86 0.92 0.89
PART 0.98 0.99 0.99
PRON 0.99 0.97 1.00
PROPN 0.93 0.92 0.93
PUNCT 1.00 1.00 1.00
SCONJ 0.74 0.67 0.77
VERB 0.94 0.95 0.96
X 0.94 0.94 0.94

TOTAL 0.92 0.91 0.94

4.2 LOESS F1 vs. Support Analysis

The analysis presented here utilizes Locally Es-
timated Scatterplot Smoothing (LOESS), a non-
parametric regression method, to explore how the
number of annotated examples per POS tag (sup-
port) relates to model performance (F1-score).
LOESS smoothing is particularly beneficial when
dealing with limited, unevenly distributed data
points.

To derive a practical annotation threshold for
each model, we first compute a smoothed F1-vs-
support curve via LOESS. Rather than simply pick-
ing the support level at which the smoothed curve
first crosses our target F1 of 0.90 (which can be
susceptible to isolated “spikes” or noise), we iden-
tify all contiguous runs of support values where
the LOESS-smoothed F1 remains at or above 0.90.
We then select the longest such run, namely the
largest consecutive region of stable, high perfor-
mance, then take its minimum support value as our
recommended threshold. This ensures the thresh-
old reflects a region where performance truly “stabi-
lizes” above the target, not just a brief local bump.

Although this method only provides an approx-
imate guide (it does not guarantee per-tag mini-
mums in every context), it offers a more robust
estimate of how many annotated tokens are needed,
on average, before a model can be expected to

perform reliably above an F1 of 0.90. These thresh-
olds can then inform future corpus development
and annotation planning.

From the LOESS smoothed curves, shown in
Figure 1, we observe that models differ signif-
icantly in their data requirements for achieving
a high-performance threshold. Specifically, the
analysis reveals that the CreoleVal model reaches
this threshold with fewer annotated instances (sup-
port threshold = 54) compared to XLM-R (support
threshold = 121) and mBERT (support threshold =
78). Overall, this analysis clarifies the data-driven
relationship between annotation volume and model
performance, directly informing practical decisions
on corpus annotation strategies and model deploy-
ment.

4.3 Error Profile per Model : Tag Confusions
In this section, we analyze the confusion matrices
and polyfunctionality-driven errors to understand
where models tend to confuse tags, and which types
of tokens are consistently hard to disambiguate.

The confusion matrices shown in Figure 2 high-
light two interrelated sources of error that stem
from the structural characteristics of MC (and
many other Creoles). First, content words in
MC are highly polyfunctional: A single word
can freely serve as a NOUN, ADJ or VERB,
which leads our models to routinely confuse
our ADJ/VERB/NOUN labels. Second, the
lack of overt morphological marking on func-
tional tokens makes it difficult to distinguish
conjunctions (SCONJ/CCONJ) from preposi-
tional markers (ADP), resulting in systematic
SCONJ↔ ADP↔ CCONJ errors.

Figure 2 shows that when we aggregate off-
diagonal confusions among ADJ, NOUN, and
VERB, CreoleVal commits only 12 such errors,
compared to 16 by mBERT and 16 by XLM-
Roberta. The fact that CreoleVal produces the
fewest misclassifications here highlights its supe-
rior handling of MC’s polyfunctional content items
as a Creole-specific language model. Addition-
ally, for the triad ADP–CCONJ–SCONJ, mBERT
makes the fewest confusions (11 total), with Cre-
oleVal next (12) and XLM-Roberta last (16). This
suggests that mBERT’s broader multilingual pre-
training better preserves subtle distinctions among
functional markers, whereas CreoleVal’s in-domain
adaptation trades away a small amount of this fine-
grained discrimination.

Together, these patterns reveal complemen-
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Figure 1: F1-score/support LOESS-smoothed curves for CreoleVal, mBERT, and XLM-Roberta models.

Figure 2: Confusion Matrices for mBERT, XLM-Roberta, and CreoleVal on the Martinican Creole test set.

tary strengths: CreoleVal excels at polyfunc-
tional content-word tagging, mBERT at conjunc-
tion/preposition boundaries, and XLM-Roberta
lags on both fronts, motivating our fusion strategies
to combine their niche advantages in Section 4.6.

4.4 Error Profile per Model : Lexical
Ambiguity

Several polyfunctional tokens stand out as persis-
tent error sources, illustrating how MC’s category-
shifting forms challenge neural taggers. In particu-
lar:

• ki (30 occurrences): error rates are 3.3% for
CreoleVal (1/30), 16.7% for XLM-R (5/30),
and 10% for mBERT (3/30). Confusions swap
primarily between PRON and SCONJ, with
occasional DET misassignments.

• kon (6 occurrences): error rates climb to 50%
for CreoleVal (3/6), 33.3% for mBERT (2/6),

and 66.7% for XLM-R (4/6), reflecting its tri-
functional usage as CCONJ, SCONJ, and
ADP.

• pou (21 occurrences): errors occur at 19%
for both CreoleVal and XLM-R (4/21), and
23.8% for mBERT (5/21), with frequent flips
between ADP and SCONJ.

Comparing these three confirms a strong and
expected correlation between frequency and error
rate : the more examples a form has, the more
reliably it is tagged. Overall, CreoleVal makes the
fewest errors on polyfunctional items, except for
kon, where its mid-rank performance suggests that
exceptionally low support still hampers even the
Creole-adapted model.

The homophonous word sé (“c’est” vs. “ces”, 25
occurrences) exemplifies true homophony rather
than just polyfunctionality. Here CreoleVal fully
resolves the distinction, while mBERT and XLM-R
each mislabels the word on 8% of cases (2/25) as
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AUX instead of DET. This difference suggests that
in-domain Creole fine-tuning helps models learn
language-specific lexical disambiguations that mul-
tilingual pretraining alone may miss.

We see that it is these high-frequency poly-
functional and homophonous tokens (and not rare,
monofunctional forms) that drive most systematic
tagging failures. Remedying them will require
richer syntactic context (e.g. dependency relations)
or targeted annotation of ambiguous constructions
to guide models toward the correct POS distinc-
tions.

4.5 Generalization Limits: OOV Word
Behavior

Generalization to unseen vocabulary remains a crit-
ical challenge in MC tagging. In our low-resource
setting, OOV tokens account for 144 tokens (1.5%
of the test set), spanning proper names, phonologi-
cal variants, idiomatic compounds, and loanwords.
CreoleVal mislabels 19 / 144 OOV tokens (13.2%),
compared to 23 / 144 (16.0%) for XLM-Roberta
and 29 / 144 (20.1%) for mBERT.

A closer look at the misclassified OOV items
reveals three dominant error patterns. First, verbs
that are morphologically or phonologically sim-
ilar to the French variants, like lavé (laver),
payé (payer), prononsé (prononcer) are persis-
tently mis-tagged as adjectives or nouns. Sec-
ond, adjectives like diféran (different) or ad-
verbs like asé (enough) were frequently flipped
between ADJ, ADV, or NOUN. Third, proper-
name errors are rare: mBERT alone errs on
Martinique (PROPN→NOUN), and XLM-R on
guardia (NOUN→PROPN), underscoring Creole-
Val’s in-domain fine-tuning advantage for named
entities. Finally, foreign words (galaxie, gravita-
tion) were mis-tagged as NOUN instead of X(2 er-
rors each in CreoleVal and XLM-R, 2 in mBERT),
indicating that fully integrated loanwords might
confuse the “unclassifiable” category "X" as de-
scribed in the UD guidelines. Therefore, none of
the taggers seem to easily discriminate between
fully-integrated borrowed words and foreign inser-
tions. The ability to perform such discrimination is
of great importance when dealing with context of
enhanced code-switching and code-mixing.

While additional pre-training data can help re-
duce low-coverage gaps, such large-scale pre-
training is often impossible for truly low-resource
communities. Our focus here is on fine-tuning ex-
isting multilingual models, which offers a more ac-

cessible path to improved accuracy. Effective strate-
gies may include explicit linguistically-motivated
lexicon augmentation for proper names, enhanced
subword tokenization for morphologically complex
variants, and hybrid approaches that combine neu-
ral tagging with lookup tables for fixed expressions.
Only by addressing these structural gaps can we
push beyond the generalization limits of our current
fine-tuned systems.

4.6 Towards Model Fusion: Leveraging
Complementary Strengths

Our analyses confirm that each model brings dis-
tinct advantages: CreoleVal delivers the strongest
performance on many functional and closed-class
tags, leading on DET (0.95 vs. 0.90 vs. 0.91),
PART (0.99 vs. 0.98 vs. 0.99), AUX (1.00 vs. 0.95
vs. 0.95), and ADV (0.86 vs. 0.81 vs. 0.82). It also
yields the lowest OOV error rate (13.2% vs. 16.0%
vs. 20.1%).

XLM-Roberta excels on numeric tags (NUM
= 0.92 vs. 0.89 vs. 0.86), reflecting its potential
for robust subword representations for rare mor-
phosyntactic constructions. CreoleVal and mBERT
both top the named-entity tag (PROPN = 0.93 vs.
0.93 vs. 0.92), while CreoleVal and XLM-R share
the highest X performance (0.94 vs. 0.94 vs. 0.92),
demonstrating superior handling of fully foreign
insertions. mBERT remains the most balanced gen-
eralist, with particularly strong scores on CCONJ
(0.90), and PRON (0.99).

This clear complementarity suggests several fu-
sion strategies. First, per-token weighted voting,
where each model’s tag-specific validation F1 deter-
mines its vote weight, could improve accuracy on
challenging categories like SCONJ (F1 0.67–0.77).
Second, per-tag delegation, assigning each POS to
its top specialist, would directly leverage Creole-
Val’s mastery of function words, XLM-Roberta’s
numeric proficiency, and mBERT’s connector ex-
pertise. Third, a multi-task architecture combining
all three contextual embeddings into a unified clas-
sifier may learn to trust each representation dynam-
ically.

Beyond accuracy gains, this fusion approach
also informs annotation priorities: SCONJ tags
and highly polyfunctional items (e.g. ki, kon) still
incur error rates up to 66.7% under XLM-R. Tar-
geted annotation or data augmentation for these
high-ambiguity forms, and enriching their syntactic
contexts with dependency relations, may amplify
the benefits of any ensemble, ensuring future MC
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taggers combine the best of each model’s strengths.

4.7 Linguistic Insights for Targeted
Annotation and Data Augmentation

This study offers key linguistic takeaways that can
directly inform future annotation priorities and data
augmentation strategies for MC and other contact-
influenced low-resource languages. The errors
made by even the strongest taggers are not arbi-
trary; they reveal systematic patterns shaped by the
typological characteristics of Creole morphosyn-
tax.

First, the fluidity of Creole categories where the
same form can function as verb, noun, adjective, or
connective without overt inflection emerges as the
root cause of many systematic confusions. Rather
than dispersing annotation effort evenly, we should
concentrate on sentences that illustrate this fluid-
ity. In practice, this means mining the corpus (or
synthetic data) for contexts where high-ambiguity
items like ki, kon, and pou appear in each of their
roles, then creating compact annotation batches
that cover all readings of a single token. By focus-
ing scarce human effort on these multifunctional
“edge cases” we ensure the model sees the precise
contextual cues needed to resolve category over-
lap, rather than redundantly tagging unambiguous
examples.

Second, our LOESS-informed support thresh-
olds identify which POS tags remain under-
supported even in the best model. In total, 10
of the 16 UPOS categories fall below the 54-
instance mark required for stable F1 under Cre-
oleVal: specifically ADJ (35), AUX (18), CCONJ
(32), INTJ (2), NUM (20), PROPN (41), SCONJ
(28), X (19), alongside marginal cases of ADP (54)
and ADV (78). A targeted annotation drive that
brings each of these tags up to at least 54 examples
would allow significant gains rather than spread-
ing effort at random across already well-learned
categories.

Third, the remaining OOV errors on phonologi-
cal variants, loanwords, and code-switched items
spotlight the need for lexicon-aware augmentation.
Instead of relying on larger pre-training corpora,
which may be infeasible for MC, we can inject syn-
thetic examples of rare compounds (e.g. alé-vini),
phonetic spellings (lwen, vré), and integrated bor-
rowings (vulgaire) into the training data. Using
few-shot LLM prompting, guided by our linguistic
error profile, we can generate minimal pairs that
contrast these forms in their correct contexts, help-

ing the tagger anchor them to the right POS class.
This is to be tested in a near-future experiment.

Finally, these insights advocate for an active-
learning loop in which model disagreement and
low-confidence predictions drive both annotation
selection and augmentation design. By letting the
taggers themselves flag the most contentious to-
kens, we turn our error analyses into a continuous
feedback mechanism. Over successive cycles, this
linguistically informed, resource-efficient strategy
may allow us to deliver MC taggers that not only
achieve higher accuracy but also demonstrate a
deeper understanding of the language’s typological
complexity.

5 Conclusion

In this work we have presented the first fine-tuned
transformer models for part-of-speech tagging of
Martinican Creole (MC) along with a linguistically
grounded evaluation framework. Building on a
UD-style POS corpus of 534 sentences, we com-
pared mBERT, XLM-Roberta, and CreoleVal. Our
results yield accuracy scores of 0.92 for mBERT,
0.91 for XLM-Roberta, and 0.94 for CreoleVal.
Beyond scores, our analyses uncover the linguistic
dimensions of tagging difficulty in MC: polyfunc-
tional word classes, blurred syntactic boundaries,
and code-switching all contribute to high tag ambi-
guity.

The complementary model strengths we observe
suggest lightweight ensemble strategies: for exam-
ple, per-tag delegation can assign each POS to its
specialist model; weighted voting can boost per-
formance on the most ambiguous categories; and
a multi-task fusion architecture can learn to trust
each model’s representations dynamically.

Looking ahead, we advocate a targeted annota-
tion and augmentation pipeline that focuses scarce
human effort where it matters most. By combin-
ing linguistically informed strategies with model
fusion strategies, we anticipate substantial gains
in POS-tagging robustness for MC, and we hope
this work serves as a blueprint for other under-
resourced, contact-influenced languages.

Limitations

This study is constrained by the relatively small
size of the annotated MC corpus, which limits
model generalization and makes evaluation sen-
sitive to lexical overlap. Additionally, while we
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provide detailed post hoc analysis, our tagging ar-
chitectures remain model-centric.

Future work will address these gaps by 1) Devel-
oping a reward-modeling framework to guide anno-
tation and tagging across ambiguous categories; 2)
Exploring ensemble and voting-based approaches
informed by per-tag performance; 3) Designing lin-
guistically controlled data augmentation pipelines,
including LLM-generated MC sentences; and 4) in-
tegrating POS tagging with downstream tasks such
as dependency parsing and translation, forming
part of a unified Creole NLP pipeline.

Together, these directions aim to move Cre-
ole NLP beyond passive transfer and toward
linguistically-aware, low-resource-first modeling
strategies.
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Abstract
This paper presents EventHopNLI, a simpli-
fied functional diagnostic dataset for the task of
event temporal ordering. This paper uses this
diagnostic dataset to improve the interpretabil-
ity of the performance of attention-based lan-
guage models on this task. Existing datasets
based on natural data have multiple overlapping
linguistic features. Simplifying and isolating
these features improves interpretability. Even-
tHopNLI is a programmatically-created NLI
dataset that systematically varies over various
complexity factors such as number of events,
number of logical hops etc. Even though Even-
tHopNLI is highly simplified, it still proves
challenging to language models. Being func-
tional, the dataset is dynamic. This reduces
the risk that the data is available to language
models during training. We ablate over the
different complexity parameters and illustrate
different shortcomings of attention-based mod-
els at this task. We discuss the performance
of RoBERTa-large, Llama-405B and GPT-4o.
The code and data is available at https://
github.com/vedmathai/eventhopnli.

1 Introduction

Identifying events in time and reasoning about their
relationships is critical for many NLP application
areas such as text summarization and fact checking.
However, off-the-shelf large language models per-
form rather poorly in temporal reasoning (Xiong
et al., 2024; Wang and Zhao, 2023). Despite the
advances they report in building explicit temporal
graphs and applying chain-of-thought reasoning,
the problem cannot be viewed as solved. One rea-
son the task is difficult is that multiple linguistic
factors need to be brought to bear concurrently.
A related challenge is that human annotators find
it difficult and sometimes confusing to supply ex-
plicit temporal annotations, and as a result anno-
tated natural data is expensive and often noisy. A
core challenge – and the one that the present pa-
per addresses – is that reasoning about temporal

Figure 1: An example of the generated premise and
an illustration of the timeline that the premise depicts.
The actual dataset does not contain the emojis. They
have been included in the figure to help readers parse the
paragraph. The dataset is created to test the upper-bound
of language models on the the temporal ordering task.
The current naturalistic datasets are have confounding
linguistic features making it hard to identify specific
areas of improvements. Simplifying the task to this
format helps us better understand models’ ability to
perform multi-hop reasoning for temporal reasoning.

relationships is a multi-hop reasoning problem on
a graph of relationships, and classic algorithms for
solving such problems exactly are recursive.

Most annotated temporal datasets (UzZaman
et al., 2013) are created by asking experts or crowd-
workers to provide temporal labels on naturally
occurring text articles. In general, the set of tempo-
ral relationships in a text has a O(n2) complexity
on the number of events. Annotating all relation-
ships quickly becomes intractable as the text length
increases, so it is necessary to select events for
which relations are to be annotated. UzZaman et al.
(2013) leaves the choice of the pair of events for
which a relationship is to be identified to the an-
notators. As a result, these datasets are sparsely
labeled. Later annotation efforts attempt to remedy
the sparsity problems. For example, Cassidy et al.
(2014) make annotators provide temporal relation-
ship labels between all events in a two-sentence
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window. Ning et al. (2018) perform two-rounds
of annotations. The first classifies the member of
events to multiple orthogonal axes, i.e., one axis
for events that have happened and another axis for
events that are only planned to happen but haven’t
as yet. The second round of annotation then places
these events in temporal order on their respective
axes. This discussion illustrates that the annota-
tion completeness is already limited by the specific
design of the annotation process.

One additional – and critical – limitation of cur-
rent datasets is Lack of diversity. Most annotation
efforts were carried out on news data, which is
dominated by the past tense. This introduces biases
which can limit performance on other types of text,
such as planning documents. A second critical lim-
itation is linguistic coverage. The materials are not
balanced or controlled for the linguistic markers
of temporal relations. This makes it impossible to
carry out a diagnostic evaluation of which types of
expressions are the causes of difficulties in perfor-
mance.

Both of these points motivate EventHopNLI.
The dataset focuses on analysing the performance
of models when multiple logical hops are required
to perform the temporal reasoning. We system-
atically vary the complexity in terms of number
of events, relationships, hops and analyse the per-
formance. An inventory of the full variety of lin-
guistic features found in naturalistic data can be
found in §2. A technical description of how the
EventHopNLI dataset isolates and balances for the
specific features in its scope is found in §3.

Our contributions are the following:
1. The dataset: EventHopNLI, which is pre-

sented in the form of a Natural Language Inference
task. Each datapoint presents a paragraph (premise)
and a corresponding claim (hypothesis) about the
temporal order between two events in the para-
graph. The task posed to the model is to decide
whether the claim is true, false or undecidable due
to logical inconsistencies in the text.

2. An illustration of programmatic data gen-
eration for the task of temporal relationship ex-
traction: As discussed above, EventHopNLI is
designed to alleviate the problems of imbalance
and excessive overlap of linguistic phenomena by
generating the data points programatically. This
forms a functional test (Fan et al., 2024). Static
benchmarks run the risk of being accessible to lan-
guage models during their training. Evaluating on

data that the language model has already seen dur-
ing their training doesn’t give us a true estimated
of their expected behaviour on out-of-domain data.
Functional tests create data that tests a particular
functionality but has enough adaptation to the lex-
ical representation of the data. Therefore, it guar-
antees that the evaluation provides a true estimate
on the out-of-domain examples. We hope that this,
along with the previously motivated argument to
isolate linguistic phenomena when designing tem-
poral datasets provides a template for future tempo-
ral datasets targeting other linguistic phenomena.

3. Analysis of the model performance on this
dataset. We report the performance of three mod-
els on EventHopNLI. We find that even the best-
performing model struggles on the dataset, for all
but the simplest premises. Given that we have
distilled down the dataset to a very simplified ver-
sion with all the additional challenges removed, it
is clear that reasoning capabilities beyond those
provided by a transformer model using pure atten-
tion will be required to fully solve the problem of
temporal-order classification.

The rest of the paper is as follows: §2 analyses
the different linguistic features a model would need
to have the ability to understand in order to perform
the task of temporal-ordering. §3 describes the data
and its creation. §4 describes the experiments per-
formed on the dataset, followed by the presentation
and analysis of the results in §5.

2 Desiderata

2.1 Target particular linguistic features while
abstracting away from other features

Understanding temporal relationships involves un-
derstanding multiple linguistic features.

We argue that to systematically understand the
failure modes of language models, datasets have to
be designed such that linguistic features are isolated
from each other in the datasets.

The specific linguistic feature that EventHopNLI
focuses on are temporal markers such as before,
after, during etc. that position events in relations
to each other in time. EventHopNLI analyses how
language models perform on chains of such rela-
tionships in text.

Below, we enumerate the linguistic features that
often co-occur in temporal and event expressions.
The text in EventHopNLI is designed such that the
choice of label does not depend on any of the fol-
lowing features. In Appendix A, we take an exam-
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ple from the TempEval dataset and show how these
features often occur in overlapping ways. Note
that each of the following are often studied sub-
stantially in isolation in theoretical linguistics. For
each, we provide an explanation that highlights the
main difficulty of that feature.

Events embedded under a speech-act verb:
For example, fly in John said that Mary will fly
tomorrow, is embedded under said. The tempo-
ral location of embedded events is understood in
relation to that of the speech act.

Events presupposed by a corresponding state:
Referring to an entity being dead presupposes that
a death event happened sometime before.

Vagueness: Stating that World War II happened
during the last century specifies a broader time
window than saying that it took place from 1939
to 1945. Such vagueness can lead to uncertainty in
inferences about temporal ordering.

Accomplishments/Achievements/Processes: If
a process of drawing a circle stopped halfway then
a circle is not drawn. But if the process of jogging
is stopped halfway, it is still true that jogging took
place.

Entity coreference resolution: The same real-
world event may be referred to by different lexical
descriptors. These co-references have to be cor-
rectly resolved to create the chain of event occur-
rences. A related yet important point is that a noun
such as recovery alludes to a verbal event of an
entity recovering.

Irrealis events are events that were or are
planned to occur and haven’t or are yet to occur.
These are more difficult to model on a timeline
because they may not occur or many simultaneous
timelines of the future may exist.

General knowledge and commonsense: Inau-
gurating a new president of the USA entails that an
election has taken place. Understanding this entail-
ment involves the use of world knowledge about
how elections occur.

In the next section, we show how the text of
EventHopNLI is designed such that a model that
has to solve EventHopNLI task (described in the
next section) does not have to understand any of
the linguistic features mentioned above.

2.2 Provide for rich ablations

Balancing the data across different parameters and
labeling individual data points with the parameter
value allows us to recognize patterns of failures in a

model’s behaviour. The data should be balanced for
size and temporal relationships. The dataset should
tackle questions such as: Are models able to deci-
pher ambiguity in the facts stated? Do language
models benefit from the temporal relationships be-
ing presented in a sorted order? It should also probe
whether difficulties are intrinsic to the problem or
to the lexical form of the temporal domain.

2.3 Avoid the need for human annotations

In §1 we discussed the general difficulty previous
annotation efforts have faced since this task is dif-
ficult for humans too. By programmatically gen-
erating the data we can i) inexpensively create a
large dataset ii) balance the dataset across a range
of attributes and their values iii) guarantee the avail-
ability of a ground truth, correct, answer for each
query. Inspired by (Kim and Schuster, 2023), we
argue that it is beneficial to create data program-
matically, with controllable parameters that system-
atically limit the number of linguistic factors that
need to be simultaneously used.

Generating data does not preclude the need for
annotated natural data. Performance metrics ob-
tained on annotated natural data gives us a good
understanding of how models will perform on data
that is available in production. However, in order
to improve their performance, it is important to di-
agnose where, why and how they fail so that future
interventions can be made to either the algorithm or
training data to improve performance. Testing on
data that is isolated by linguistic features helps us
understand the features that prove difficult for the
model. Such data with isolated linguistic features
can be obtained by filtering natural data, which is
labour intensive and expensive. Alternatively, it
can be obtained by generating data: the method
used by this paper.

3 Data

Formally, we have a set of events E ; and relation-
ship types T = {before, after, simultaneous}. Each
event has a start and an end. The premise is a set
of temporal relationships r that are in the format of
a triple (estart/end1 , t, estart/end2 ) where e ∈ E and
t ∈ T , the superscript of e indicates the extremity
and the subscript indicates the index of e. The hy-
pothesis is of the form (e1, r, e2) where r ∈ R and
R={before, after, overlaps}. The label l ∈ L and
L = {true, false, undefined}. The task is a modifi-
cation of a natural language inference (NLI) task.
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Each data point consists of a premise, a hypothesis
(or claim) and a label.

The premise is a set of n relationships between
m events while the hypothesis makes a claim about
a single relationship r. A simpler formulation of
the problem would involve the temporal relation-
ship between point events. However, we choose
to test durative events because they form an inher-
ently harder problem and one that forms a better
representation of those events available in the nat-
ural texts. In our formulation, one has to keep
track of the extremities of the event and compare
all four points in order to find the ordering of events
versus just the two required of point events. This
includes keeping track of when the events mentions
are under-specified, i.e., only the start or the end of
an event is mentioned.

1) true labels cases where the hypothesis is true
given the premise. 2) false labels cases where the
hypothesis is false given the premise. A pair can
be false either because an alternative claim is true
or no claim can be derived. For example: if the
premise makes a claim (estart1 , before, eend2 ) and
the hypothesis makes the claim (estart1 , after, eend2 ).
Then the pair is labeled as false. 3) undefined
labels cases when there are two more logical paths
that involve the two events that present in a cyclical
chain. For example, i.e., both (estart1 , before, eend2 )
and (estart1 , after, eend2 ) exist or are derivable from
the evidence available.

In general, there are 13 different temporal re-
lationships (Allen, 1983). It is undesirable to tie
the architecture of a model to the subset of rela-
tionships that need to be classified. Setting up an
NLI task allows the set of labels to remain constant
while the set of temporal relationships tested can
be varied easily without affecting existing learning
architectures.

Examples of generated data points are presented
in Fig.1. The following are particular design
choices and the particular desiderata that they ad-
dress:

Dataset is agnostic to world knowledge: Our
dataset has the flavour of a miniature language that
could be employed in the context of a multi-player
on-line game. By using fictional battle names
such ‘The Raid on Firestone’, we guarantee that
the proposed evaluation methodology is testing the
model’s ability to understand the logic of temporal
relationship markers and not using any facts about
real historical battles that it may have learned dur-

ing its pre-training phase.
Minimalistic descriptions of temporal rela-

tionships: The premise is made up of only rela-
tionships in the form of start/end of event 1 af-
ter/before/simultaneous start/end of event 2. Using
the full names of events in the specification of ev-
ery relationship removes the need for models to
apply entity coreference resolution that is more
complex than simple lexical matching. No com-
monsense or world-knowledge beyond that of the
temporal relationship markers has to be applied.
There is no verbal event therefore there is no need
to understand tense. All events are realis, (i.e, have
actually occurred versus possibly occurring in the
future) and are named events (i.e, there is no use of
anaphora or events rooted in verbs). There are no
descriptions of states.

Ablating over sizes: Ablating over the sizes
of the premise in terms of relationships, events,
logical hops1 gives us an understanding of how
increased complexity due to size and increased
number of relationships affect language models’
performance.

By ablating over the temporal relationships
in the premise we can identify if any particular
temporal relationship proves to be more difficult
than others. We predict that simultaneous would
be more difficult than that of before and after for
the following reasons.

Finding the temporal order between events or
event identifying contradictions in the premise in-
volves performing a depth first search on the graph.
Traversing a graph with only after and before re-
lationships is computationally easier than travers-
ing a graph with simultaneous relationships. Both
traversals involve maintaining a stack. However,
with simultaneous relationships the stack size at
any given point can be larger.

We explain with an example: Assume event A
is earlier than event B. It is not necessary to add
events earlier than A or later than B to the stack
since they do not provide useful information to the
temporal chain that connects event A and event
B. However, assume a simultaneous relationship
between A and C. Now all of the nodes related to
C will have to be added to the stack, which means
that with many simultaneous relationships there are

1We define a temporal chain to be a sequence of two or
more events ordered temporally such that traversing the chain
provides the temporal relationship between the two events at
its endpoints. We further define each individual relationship
on the chain to be a logical hop.
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higher chances of the size of the stack being larger
than if there were no simultaneous relationships.

Sorting: Providing the temporal relationships
in the premise in a sorted order resembles how
events are often described in text, i.e., in temporal
order. Sorting relationships reduces the number
of permutations in which the same timeline can
be expressed to just one. This would increase the
probability that patterns between the train and test
sets repeat.

Comparison with other domains: Testing on
only the temporal domain raises the question of
whether the difficulty of the task is intrinsic to the
task of timeline resolution or to the lexical prop-
erties of the temporal relationships. The dataset
consists of computationally equivalent tasks but in
two following domains:

i) Spatial domain: Events are mapped to loca-
tions and the start and stop points are mapped to
east and west edges and the temporal relationships
are mapped to east of and west of. An example is
provided in Table 4.

ii) Logical axioms: Relationships are mapped
to {<,>,=} and the event names to simple tokens.
This formulation strips away the natural language
aspect of the task.

Generalizability versus memoization: We ex-
pect a language model to generalize the logic of
temporal relationships from the training data while
not memoizing (learning by rote) event names, spe-
cific lexical forms or timelines. We create train-test
pairs that individually keep event names, lexical
forms or timelines common between the train and
test datasets.

Impossible logical chains: A logically coher-
ent temporal graph is a directed acyclic graph. If
a cycle exists in a temporal graph then the tem-
poral relationships among the events on the cycle
are undefined. Annotated natural text data may
have cyclic relations either because the text itself
contains contradictions, or because the annotators
made mistakes. A language model should recog-
nize such cycles and report them. Our dataset con-
tains instances of cycles only by design, when the
claims in the text are contradictory.

A note on complexity of the task: Since the
data points were created using an algorithm and
natural language templates, it is trivial to write a
parser that parses the data points back into a tem-
poral graph to obtain 100% accuracy. This places
performance of the language models in perspective.

Kim and Schuster (2023) argues that their task
of entity-tracking may be hard for humans when
the stimuli, which are quite long, are presented
orally. However, when provided with a scratch-
pad, humans were able to solve the task exactly.
Our task is similar in that it can be solved exactly
with a scratchpad and careful reasoning. Human
annotators may not obtain a perfect score due to fac-
tors such as fatigue, carelessness or simple errors.
However, when provided with a written version, a
scratchpad and no time constraints, one of the au-
thors was able to solve the question exactly. With
these experiments, we provide similar standards to
the language model. We ask if the language mod-
els can solve the task exactly if they had no time
constraints. Language models are increasingly be-
ing deployed in applications that help students and
researchers who expect a high level of correctness
from the models especially on such logical prob-
lems that don’t involve subjective decisions (Kooli,
2023), therefore it is instructive to understand the
upper-limit of their logical performance.

3.1 Generation of the EventHopNLI dataset

The following are salient points about the imple-
mentation details of the program that generates the
dataset, more information including pseudocode is
included in Appendix 8.

The program has four sections: i) timeline data
structure; ii) timeline generator; iii) verifier; iv)
data-structure-to-natural-language translator.

Timeline data structure: The timeline itself
is a graph of events connected by temporal rela-
tionships. The events are partially ordered and the
dataset is balanced to have timelines with internal
contradictions.

Timeline generator: The set of fictional battle
names are generated using ChatGPT. We create a
list of names for the test set mutually exclusive
from the names in the train dataset. The extrem-
ities (start or end) of two events are selected at
random and a relationship with a specific temporal
relationship is generated between them.

Verifier: In some cases in the timeline graph
there may be internal logical contradictions. A
hypothesis is generated by choosing two events
and assigning a relationship between them. The
verifier traverses the generated timeline graph and
decides whether the hypothesis is true, false or
undefined.

It is possible for the relationship between the two
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events in the hypothesis to be under-specified. For
example, given two events A and B, the premise
specifies that the start of event A is before the start
of B, however, the premise does not specify if the
relationship is between the end points. Assume the
claim in the hypothesis is: event A being before,
after or overlapping with B. It is unclear which one
of these temporal orderings is true without knowing
the exact temporal ordering between the end-points.
Therefore we label the pair as false.

A closed cycle in the graph is evidence of a
logical contradiction. Using a depth-first search
traversal on a directed graph allows us to find cycles
easily, because visiting a previously visited node
would present a cycle.

Data-structure-to-natural-language transla-
tor: The temporal graph is converted to natural
language descriptions using templates. Later, we
describe how we create different sets of these tem-
plates for an ablation study.

3.2 Balancing EventHopNLI and defining its
variations

We balance EventHopNLI across the following at-
tributes: {number of events, number of relation-
ships, number of hops, whether an internal logical
contradiction exits, temporal relationship, label}.

The number of events vary over a exponentially
increasing set of sizes, i.e., ∈ {4, 8, 16, 32}.

The number of relationships vary as function
of the number of events. number of relationships =
min(max(number of events, 3), 32) where relation-
ship_number = relationship_multiplier× number
of events and relationship_multiplier ∈ {0.5, 1, 2}.

The dataset represents a Cartesian product of the
following form: number of events × number of
relationships × temporal relationship × whether
there exists an internal contradiction × label.

We create different train-set tests with the fol-
lowing strategies. Each of the strategies inform us
about the models’ capabilities.

Each of the train datasets are about 14,000 data
points. The test set are 2,500 data points.

Strict: In this pairing, the names of events, nat-
ural language templates for the relationships and
the timelines are mutually exclusive between the
train and test set. Naturalistic data would have a
high degree of mutual exclusivity between the train
and test set, therefore an efficient model would be
expected to not perform memoization.

Same names/templates/timelines: To system-

Random 0.323
RoBERTa standard 0.762
RoBERTa spatial domain 0.66
RoBERTa logical domain 0.79
Llama 405B strict 0.4
GPT-4o strict 0.36

Table 1: Main results reported on the
standard specification of the dataset

atically check for the models ability to generalize
vs. memoizing (cf §3) we remove the mutual ex-
clusivity between the train and test set and create
the following three sets of train datasets. In each
one of i) event names ii) the natural language
templates used to create the premise iii) the set of
timeline graphs are maintained as common infor-
mation between the train and test set.

Ablating temporal relationship type and sort-
ing: We create the following deviations from the
strict dataset by varying the relationship types al-
lowed and sorting the relationships in the premise
temporally:

i) only after and before relationships
ii) only after and simultaneous relationships
iii) only before and simultaneous relationships
iv) only before relationships: this is the same as

(iii) but the after relationships are inverted to make
them before relationships

v) All relationships sorted 2

vi) Only before relationships sorted: same as (iv)
but sorted temporally.

These ablations will inform us i) whether the
simultaneous relationship-type is indeed more dif-
ficult than after/before ii) Whether sorting relation-
ships temporally benefits learning because it re-
duces the entropy in terms of presentation of infor-
mation.

Alternate domains: Following §3, we create
two sets of test-train pairs. One for the spatial
domain and the second for the logical domain.

4 Experiments

Finetuning-based experiments: We experiment
with fine-tuning a RoBERTa-large (Liu et al., 2019)
model on the given data to see how well the model
can learn this task with fine-tuning. We deliberately

2All of the cases in which the premise is sorted, the rela-
tionships are sorted temporally by the earliest event present
in the relationship. Arbitarily choosing events in the case of
logical cycles.

16



(a) Performance of RoBERTa on dif-
ferent domains

(b) Ablation performed with RoBERTa
on datasets systematically designed
to maintain common information be-
tween the train and test set.

(c) Ablation study performed on the
datasets with the data points parti-
tioned by the relationship-to-event ra-
tios in the premise.

Figure 2

use RoBERTa because it is an example of a large
model which can easily be fully fine-tuned without
the use of adapters.

We use a learning rate of 1e-6.
In-context demonstration: In this setting, the
large language model is prompted with only the
task description, label description and the expected
response format as shown in Table 3. We prompt
GPT-4o (Hurst et al., 2024), a large commercial
closed model 3 and Llama-405b (Grattafiori et al.,
2024), a large open-weight model.

It is instructive to evaluate the ability of these
large-language on this task without any fine-tuning,
with the understanding that a low performance on
this task will automatically translate to a low per-
formance on an even more complex task.

5 Results

We use macro-F1 as the basic metric for all of the
results reported.

5.1 Simple Baselines

We report the simple baseline of random selection
to show that the dataset is both not trivial and is bal-
anced. An F1 score of 0.33 on the random selection
shows that the dataset is balanced.

5.2 Main Results

Table 1 reports the main results. Each of the result
reports the mean of five runs.

3We attempted experiments on GPT-o1, OpenAI’s latest
reasoning model and we found the the results varied drastically
between multiple runs over multiple weeks. Therefore, we do
not report the performance.

Performance drops as complexity increases
Fig. 2a shows that as the number of relationships in-
creases, the performance of the models deteriorates.
This is an indicator of the expected performance
of models on production data. Timeline creation is
a direct downstream task of temporal relationship
extraction and regardless of having a larger context
window, lower performance can be expected from
the models when the number of relationships that
need to be parsed increase.

The rate of decrease in performance as the num-
ber of events increases (shown in Fig. 3a) is not
as prominent as when the number of relationships
increase, this indicates that it is the number of rela-
tionships and not the number of events is the source
of complexity for the task.

Fig. 2c provides further evidence. It plots perfor-
mance as a function of the relationships to events ra-
tio. Decreasing performance as the ratio increases
shows that the performance is more influenced by
the number of relationships rather than events.

As the number of logical hops required increases,
the performance first falls and then asymptotes out.
(Fig. 3b). We attribute this to the fact that as the
number of permutations in which smaller temporal
chains are presented is exponentially smaller than
the ways relationships with larger temporal chains
can be presented. This makes it easier for the model
to memoise the different patterns that represent the
temporal chains.

Surprisingly, this effect is not seen in GPT-4o,
suggesting that its higher number of parameters,
larger training data and larger context window en-
able it to perform the same regardless of the number
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of hops required to solve the particular data point,
even though its overall performance is low.

Larger parameter size and pre-training data
does not provide an advantage The performance
of models with a larger parameter capacity on this
simplified dataset shows that even in its highly-
simplified formulation temporal relationship ex-
traction is still computationally challenging for lan-
guage models.

The fine-tuned RoBERTa model performs much
better than the few-shot prompted larger models
(Llama-405b and GPT-4o). This suggests that the
data that very large language models learn from
is too noisy for them to effectively learn temporal
reasoning.

The complexity is intrinsic to the problem and
does not arise from the lexical constructions.

In Fig. 2a, we see that the temporal domain and
logical domain perform similarly, except for the
case of 32 relationships, where the logical domain
maintains its performance. This may be because
the number of tokens is lower in the logical domain,
and never exceeds the limit of the context window.

The spatial domain is intrinsically harder to
parse than that of the temporal domain, which
shows that the temporal domain is not a lower-limit
for the task.

RoBERTa performs detrimental memoization
The performance of same_timelines and same_-
names are both lower than RoBERTa_strict. This
shows that during fine-tuning RoBERTa is perform-
ing memoization (i.e., learning axioms by rote)
rather than learning the patterns in a generalizable
manner. (Fig. 3c). This is undesirable behaviour
from a model that is expected to generalize to new
information.

We see in the same figure that when the test set
uses the same natural language templates as the
train set, performance improves which means the
fine-tuned model struggles to extend to different
sentence constructions that express relationships.

Sorting the relationships temporally improves
the performance of the NLI classification. By
sorting the timelines, the number of permutations
to describe the same timeline reduces to just one.
This in turn increases the probability that patterns
will repeat between the train and test sets.

These results allows us to predict the perfor-
mance of models of different types of data that may
be encountered in production: better performance
can be expected on data that follows a chronologi-

cal structure than those that don’t.
The simultaneous relationship greatly in-

creases the complexity of the problem. In Fig.
2b we see that the datasets only after and simul-
taneous and only before and simultaneous obtain
similar scores. However, only before and after ob-
tains a much better score than that of the standard
specification.

This result corroborates our intuition (cf. §3)
that the formulation of the problem that included
simultaneous relationships were computationally
harder than those that didn’t have a simultaneous
relationship.

The formulation with only before is near ceil-
ing Finetuned RoBERTa achieves 0.95 macro-F1
on the dataset which has simultaneous relationships
removed and the after relationships to be inverted
to be before relationships.

GPT is confused by the undefined class.
RoBERTa is less so. Fig. 4a and Fig. 4b plots the
confusion matrices for both GPT-4o and RoBERTa.
Fig. 4a shows that GPT is prone to choosing the
True or False labels while being averse to choos-
ing the Undefined label. This shows a limitation
in identifying when the premise contradicts itself.
RoBERTa’s confusion matrix (Fig. 4b) appears bal-
anced in comparison. This means that an attention
model is able to learn (by fine-tuning) generalizable
patterns when given enough examples.

6 Related Work

Recent studies on the performance of LLMs on
temporal data (Xiong et al., 2024; Wang and Zhao,
2023) show that the problem is far from solved on
test suites such as TimeBench (Chu et al., 2024).
Both (Wang et al., 2024b) and (Xiong et al., 2024)
attempt to improve performance by using temporal
graphs. Xiong et al. (2024) show that converting
a textual description into a temporal graph and
performing chain-of-thought reasoning increases
performance. However, the study does not sys-
tematically vary the complexity of the reasoning
required, or diagnose the error patterns. We pro-
vide a systematic set of experiments and analysis
in understanding the failure modes of the language
models. We show that even the simplest descrip-
tions of events are not fully understood by language
models. Holtermann et al. (2025) find that models
are able to satisfactorily perform temporal reason-
ing over timezones, they are not able to perform
the same reasoning when asked to reason over both
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(a) Ablation on event count performed
with different models

(b) Ablation study performed on the
datasets partitioned by the number of
logical hops in the premise (cf 2).

(c) Ablation performed with RoBERTa
on datasets systematically designed
to maintain common information be-
tween the train and test set.

Figure 3

(a) Confusion matrix on the
labels for GPT-4o

(b) Confusion matrix on the
labels for RoBERTa-large

Figure 4: Confusion Matrices

timezone and geographical locations.

Our work focuses on multi-hop reasoning on the
specific domain of temporal graphs. Other projects
(Lin et al., 2018; Misra et al., 2023) explore multi-
hop reasoning on knowledge graphs. Wang et al.
(2024a); Lin et al. (2024) study LLM capabilities
in reasoning about graph datastructures that arise
in other application areas. Their results resemble
ours in showing deterioration of performance with
increases in graph complexity. Works such as Han
et al. (2024), explore the language models’ ability
to perform multi-hop reasoning on datasets that
involve first-order logic (FOL) while Chen et al.
(2020) explores multi-hop reasoning on textual in-
formation for the task of question answering.

Qi et al. (2024) explores how well language mod-
els are able to solve problems of different theoret-
ical computational complexity. They show how
performance degrades as the complexity increases.
While the differences in complexities in their ex-
amples are more marked, the differences in com-
plexity for temporal reasoning, as we have shown,
are softer.

7 Conclusion

This paper presents EventHopNLI, a dataset that
systematically identifies the error patterns of large
language models on the task of temporal order. The
dataset is designed to perform ablations across mul-
tiple factors (such as size of texts, temporal re-
lationships, number of logical hops) while isolat-
ing specific linguistic features. We use the dataset
to diagnose the error modes on examples of two
paradigms of language models.

The results show us that there are limitations
to language models’ ability to traverse temporal
graphs represented in texts. This prompts future
research to investigate whether the use of a logical
theorem solver (Pan et al., 2023; Olausson et al.,
2023) can help obtain better results on the temporal
ordering task.

Hopefully, this study will help everyday users of
such models understand the expected limitations
when they are applied to their specific data.

8 Limitations

As a result of our design goals, the dataset is limited
to a specific set of linguistic features and tempo-
ral relations. It does not cover the further features
described in §1 and §2. We leave it to future stud-
ies to create equally controlled diagnostic datasets
that systematically include more of the linguistic
features described in §2 such that the gap between
natural data and this synthetic data is closed. We
only evaluate general-purpose large language mod-
els, and do not evaluate approaches that explicitly
construct temporal graphs or use scratchpads or
Chain-of-Thought reasoning.
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A Analysis of the general complexity of
temporal relationship extraction

In this section, we analyse a single paragraph from
the TempEval dataset and illustrate the general
complexity of the temporal relationship extraction
task, both for models and for the human-annotation
efforts. We identify and list below linguistic fea-
tures or structures that provide the complexity.

Embedded under a speech-act verb: The event
sent at (3) is embedded under the speech-act verb
(1). The time of occurrence of the (3) is dependent
on the time of occurrence of (1).

Expression of states indicate events that
caused them: (5) indicates a current state of the
expert, i.e., dead. This state indicates that a death
had occurred sometime before. The death event
remains implicit in the paragraph.

Vagueness: Compare temporal expressions (6)
and event (14). The modifier almost introduces
vagueness to the temporal expression. (14) is a
temporal expression signifying a particular particu-
lar month.

Accomplishments/Achievements/Processes:
The recovery at (7) is an accomplishment which
culminates a period of searching which in itself is
an implicit durative process. This implicit link will
have to be processed by annotators and models.

Irrealis events: (7) is an infinitive subordinate
of ‘hope’. This places it on the irrealis axis. This
means that though the event is reported it is un-
known if the event definitely happened if it is in the
past, or if is going to happen for sure if it is in the
future. Many annotation schemes ask annotators to
ignore such events since it is hard to provide a label
for events that may take place. Similar problems
exist for negative events.

Entity coreference resolution: (4) refers to a
person (an entity) by their occupation while (8)
refers to the entity by their name, without drawing
an explicit connection between the two references.
Entity coreference is itself a complex unsolved
problem in NLP. Its complexity is inherited in the
general task of temporal relationship classification.

Temporal markers: (9), (12) and (13) marks an
explicit temporal relationship between an event and
time. Obviously, having explicit temporal markers
between events greatly simplifies the problem as
compared to using implicit knowledge; however,
an aim of this paper is to stress-test models’ under-
standing given materials with only these explicit
markers.

The top commander of a Cambodian resistance
force said1 Thursday2 he has sent3 a team to
recover the remains of a British mine removal
expert4 kidnapped and presumed killed5 by
Khmer Rouge guerrillas almost two years ago6.
Gen. Nhek Bunchhay ... said in an interview
with The Associated Press at his hilltop head-
quarters that he hopes to recover7 the remains
of Christopher Howes8 within9 the next two
weeks. Howes had been working10 for the
Britain-based Mines Advisory Group when11

he was abducted12 with his Cambodian inter-
preter Houn Hourth in13 March 199614.

Table 2: An abridged example of text
and events from the TempEval dataset. A
popular dataset for evaluating temporal
relationship extraction. This paragraph

has been taken from article
APW19980219.0476.tml. Each of the
linguistic features and a discussion for

them is presented in §2.

General knowledge and commonsense: (12)
working can only happen before (7) because a per-
son can only be working if they are alive. This is an
example of general knowledge and commonsense
being applied.

Therefore the task of temporal relationship ex-
traction involves the application of multiple linguis-
tic faculty. These features interact deeply with each
other further complicating the task.
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Algorithm 1 Find if event_1 overlaps event_2: Check if ep1start before ep2start and ep1end is after ep2start.
Note that this assumes that e1 is before e2. The function will have to be called twice with swapped
parameters to check all conditions of overlap.

function DOES_OVERLAP_FORWARDS(e1, e2)
s1_s2← is_ep1_before_ep2(e1.sp, e2.sp)
s2_s1← is_ep1_before_ep2(e2.sp, e1.sp)
e1_s1← is_ep1_before_ep2(e1.ep, e1.sp)
s2_e1← is_ep1_before_ep2(e2.sp, e1.ep)
e2_s2← is_ep1_before_ep2(e2.ep, e2.sp)
check← (NOT e1_s1) AND (NOT e2_s2) AND ((NOT s2_s1) OR s1_s2) AND s2_e1

return check

end function

Algorithm 2 Find if event_point_1 occurs before but not simultaneous to event_point_2: Follow the
relations and adding events to the queue if they happen after or simultaneous to those already in the queue

function IS_EP1_BEFORE_EP2(ep1, ep2)
eps← [(ep1, True)]
seen← set()
while eps.length > 0 do

ep, is_sim← eps.pop()
if ep in seen then

continue
end if
seen.add(ep)
for rel in ep.rels do

if rel.reltype == ’after’ AND ep == rel.ep2 then
eps.append((rel.ep1, False))

end if
if rel.reltype() == ’before’ AND ep == rel.ep1 then

eps.append((rel.ep2(), False))
end if
if rel.reltype == ’simultaneous’ then

eps.append((rel.other_point(ep), is_sim))
end if
if (ep2, False) in eps then return True
end if

end for
end while
return False

end function
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Algorithm 3 Find if the relationship between event_1 and event_2 cannot be determined because there is
contradictory evidence. Check if there is contradictory evidence between all pairs of extremities

function IS_CONTRADICTORY_EVENT_PAIR(e1, e2)
s1_s2← is_contra_eps(e1.sp, e2.sp)
s1_e1← is_contra_eps(e1.sp, e1.ep)
s1_e2← is_contra_eps(e1.sp, e2.ep)
s2_e2← is_contra_eps(e2.sp, e2.ep)
check← s1_s2 or s1_e1 or s1_e2 or s2_e2

return check

end function

Algorithm 4 Find if event_point_1 and event_point_2 have contradictory relationships: Check if both ep1
is before and after ep2 as long as they are not simultaneous. If they are of the same event then make sure
the end is not before start

function IS_CONTRADICTORY_EVENT_POINTS(ep1, ep2)
same_event_check← (ep2.event == ep2.event AND (ep1.event.stp == ep1) AND

(ep2.event.enp == ep2)
check_forwards← is_ep1_before_ep2(ep1, ep2)
check_backwards← is_ep1_before_ep2(ep2, ep1)
check_simultaneous← is_simul_eps(ep1, ep2)
check← check_forwards AND check_backwards AND NOT check_simultaneous and

NOT (same_event_check and check_backwards))
return check

end function

Algorithm 5 Find if event_1 overlaps with event_2: Check if the events are not contradictory and if they
overlap.

function IS_OVERLAP_EVENTS(e1, e2)
is_contradictory← is_contradictory_event_pair(e1, e2)
e1_e2← self.does_overlap_forwards(e1, e2)
e2_e1← self.does_overlap_forwards(e2, e1)
check← NOT is_contradictory AND (e1_e2 OR e2_e1)
return check

end function
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Algorithm 6 Check if ep1 and ep2 are simultaneous. Accumulate events in a queue by adding event
points to the queue that are simultaneous to those already in the queue.

function IS_SIMUL_EPS(ep1, ep2)
eps← [event_point1]
seen← set()
while eps.length > 0 do

ep = eps.pop()
seen.add(ep)
for rel in ep.rels do

if rel.reltype == ‘simultaneous’ then
other_point← rel.other_point(ep)
if other_point NOT in seen then eps.append(other_point)
end if

end if
if ep2 in eps then return True
end if

end for
end whilereturn False

end function

Algorithm 7 Find if event_1 occurs strictly before event_point_2: check if ep1start and e1end are both
before ep2start and e1end is not simultaneous to e1end

function IS_STRICTLY_BEFORE(e1, e2)
s1_s2← is_ep1_before_ep2(e1.startp, e2.startp)
e1_s2← is_ep1_before_ep2(e1.endp, e2.startp)
e1_s2_is_simul← is_simul_eps(e1.endp, e2.startp)
check← s1_s2 AND (e1_s2 OR e1_s2_is_simul)
return check

end function
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[INST] «SYS»
The premise is a set of battles and their temporal relationships
The hypothesis is a claim of the temporal relationship between two battles.

There are three answer choices:
1) True: The hypothesis is true given the premise
2) False: The hypothesis is False given the premise
3) Undefined: There is logically contradictory evidence in the premise regarding the events
in the hypothesis. So no claim can be made.

The first five are examples with the labels provided.

Your task is to predict the label for the given examples. Do not provide reasoning and provide
in the format of ‘answer: index: label’.

Examples: <examples>

«/SYS»

Provide the labels for the following sentences in the format of ‘answer: index: label’.

<uid> premise: <premise>
hypothesis: <hypothesis>

[INST]

Table 3: The baseline prompt used for Llama. The tokens in <> are replaced by actual values from
the dataset.
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Western edge of Stormforge is located to the
east of eastern edge of Bloodmoon Keep. East-
ern edge of Stormforge is located to the east
of eastern edge of Bloodmoon Keep. Western
edge of Sunfire Canyon is located to the west
of western edge of Bloodmoon Keep. Eastern
edge of Frostfang Pass is located to the west
of western edge of Ravenloft. Eastern edge
of Bloodmoon Keep is located to the west of
eastern edge of Ravenloft. Eastern edge of
Frostfang Pass is located to the east of west-
ern edge of Sunfire Canyon. Western edge of
Sunfire Canyon is on the same longitude as
western edge of Frostfang Pass. Eastern edge
of Bloodmoon Keep is on the same longitude
as western edge of Ravenloft. Western edge
of Stormforge is located to the east of eastern
edge of Ravenloft.

Table 4: Example of the NLI data in the
spatial domain.
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Abstract

The rise of LLM-based approaches to dialogue
systems has created an increased need for con-
trollable dialogue. This paper addresses this
need by presenting an implementation of a dia-
logue system based on information state up-
date approach according to Larsson (2002).
This enables the integration of rule-based han-
dling of dialogue, expressed by Harel’s stat-
echarts (1987), and Larsson’s theoretical ac-
count grounded in theories of dialogue, ex-
pressed by information state update rules. We
demonstrate how our approach applies to dia-
logue domains involving form-filling. We also
propose how LLMs can be employed to inject
domain knowledge and be used in various com-
ponents of a hybrid dialogue system, while
maintaining control over the overall dialogue
logic.

1 Introduction

Despite considerable efforts to control large lan-
guage models (LLMs), risks of hallucinations and
related phenomena have yet to be eliminated (Xu
et al., 2024; Ayyamperumal and Ge, 2024). Still,
the otherwise impressive capabilities of LLMs have
raised the bar for conversational AI. This makes
a compelling argument for finding ways to com-
plement LLMs with rule-based approaches that can
mitigate the risks associated with using LLMs.

In this work we use the influential Information
State Update (ISU) framework (Larsson and Traum,
2000; Larsson, 2002). The basis of this framework
is a representation of the dialogue context as data
structure which includes the information available
to each participant of the dialogue (either a human
or an artificial agent). Being rich entails that the
information state contains a hierarchy of facts, in-
cluding the ones that are thought to be shared and
the ones that have not been yet publicised. We
believe that ISU is a good basis for formalising ex-
isting theories of human-human dialogue (Cann

et al., 2005; Ginzburg, 2012; Cooper, 2022) as a
means to develop dialogue systems which produce
acceptable and natural behaviours.

In controlled ISU-based systems, LLMs offer ben-
efits such as interpreting user utterances and pre-
generating dialogue domains (Larsson, 2024). Pre-
generating a complete dialogue description (all pos-
sible dialogue paths) is a complex matter due to
the inherent flexibility and variation in natural lan-
guage dialogue. By taking care of a lot of this com-
plexity using a flexible but controllable dialogue
manager, the ISU approach considerably simplifies
the pre-generation process. Instead of generating
all possible dialogue paths, it is sufficient to gener-
ate a default dialogue “blueprint” which can then be
used by rule-based dialogue manager as a resource
when carrying out flexible and complex dialogue
interactions.

At the same time, not all dialogue behaviours
are necessarily best treated on an ISU level. This
applies in particular to more routinised and “reflex”
behaviours such as those involved in real-time in-
cremental turntaking (Skantze, 2021; Howes et al.,
2019, among others). Such behaviours are arguably
better coded as statecharts.

So, how do we best combine ISU-based dialogue
management, statecharts, and LLMs for flexible and
controllable AI? We argue that this is best done by
offering a single framework encompassing both
ISU and statecharts for managing dialogue based
on LLM-generated dialogue blueprints. We term
our approach Statecharts-based implementation of
Information State Update (SISU).1

The paper is organised as follows. Section 2 in-
troduces the main considerations behind SISU. In
Section 3 we describe the implementation of SISU,
while Sections 4 and 5 provide an outlook on two
main advantages of our framework: pre-generating

1Source code and online demo available at: https://
github.com/GU-CLASP/sisu
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dialogue blueprints and coding low-level dialogue
routines with statecharts. We provide brief conclu-
sions in Section 6.

2 Method

This section introduces SISU, an ISU framework
which combines the statecharts formalism (Harel,
1987) with modern features of the TypeScript pro-
gramming language. SISU implements a version
of IBiS1 (Larsson, 2002) and improves upon it by
providing the capacity to code routinised dialogue
phenomena using statecharts.

2.1 Information State Update

One of the central purposes of the ISU approach to
dialogue management (Larsson and Traum, 2000;
Larsson, 2002) is to enable the implementation
and comparison of dialogue theories by casting
them in a common form. Central questions in this
endeavour are: (1) what kind of information does a
dialogue participant need to keep track of, (2) how
does this information get updated by utterances in
dialogue and (3) how does this information license
subsequent utterances?

In the ISU approach, utterances in conversation
are seen as dialogue moves which trigger updates to
a rich conversational Information State (IS), which
then is used to select an appropriate followup dia-
logue moves. Update rules describe updates to the
IS, and selection rules describe conditions on IS un-
der which a move can be selected. For example, an
information state can include a stack of questions
that have been raised but not yet addressed. Given
this, one update rule may state that asking a ques-
tion Q results in pushing Q on the question stack,
and a selection rule may state that if a question is
on the question stack, and if an answer A to that
question is known, an answer move with content A
may be selected and uttered in the next turn.

An example of an ISU-based dialogue manager
is Talkamatic Dialogue Manager (TDM) (Larsson
and Berman, 2016) which is a core component of
Talkamatic Studio2, a web-based tool for generat-
ing, curating and deploying Pre-Generative Con-
versational AI agents. TDM handles a wide variety
of dialogue behaviours and a wide range of dia-
logue types, including question-answering, search,
device control, educational, instructional and nego-
tiative dialogue. TDM uses Issue-Based Dialogue

2https://studio.talkamatic.se

Parrot ISU

Interpret

Id le
Recognising

entry /lis tenSPEAK_COMPLETE

LISTEN_COMPLETE RECOGNISED
/raise SAYS:$event.val

Generate

Idle
Speaking

entry /speak:$event.valNEXT_MOVE

SPEAK_COMPLETE

Process
entry /assign $lm := "ping"

Select
Update

entry /assign $lm  := ""

($lm != "")/raise NEXT_MOVE:$lm

SAYS:$val /assign $lm := $val

Figure 1: A statechart for “parrot” dialogue system.
Events are typeset in all capitals, states – with initial
capital. Conditions are parenthesised and actions are
denoted by a starting “/” symbol.

Management (Larsson, 2002) which is strongly in-
fluenced by KoS (Ginzburg, 2012).

2.2 Statecharts

Statecharts were originally developed by Harel
(1987) for complex systems (real-time, multi-
computer and concurrent). Harel introduces con-
ventional notation over deterministic Finite-State
Machines (FSMs), incorporating depth, orthogo-
nality and broadcast communication. Statecharts
can be represented graphically, as diagrams with
a variable level of detail. A number of studies
have demonstrated that statecharts can be useful
for designing dialogue systems (Kronlid and Lager,
2007; Brusk, 2008; Mehlmann et al., 2011).

Figure 1 illustrates the use of three orthogonal
(parallel) states in a simplest “parrot” dialogue sys-
tem3 implementing ISU with only one element of
the IS – $lm (latest move). Interpret state im-
plements speech recognition and can raise SAYS
event with a recognised value; Generate state im-
plements speech synthesis which speaks out the
value of NEXT_MOVE event. The Process state im-
plements dialogue management and is initiated
with $lm containing an initial move “ping”; it starts
in a Select state and, if $lm is not empty, raises
a NEXT_MOVE event with a value of $lm and transi-
tions to Update state. Then, upon receiving SAYS
event it updates $lm with the event value and tran-
sitions back to Select state.

SISU is strongly inspired by Kronlid and Lager
(2007) system, which used a version of State Chart

3Previously used by Bos et al. (2003); Kronlid and Lager
(2007) to illustrate their implementations of ISU.
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XML (SCXML) extended with Prolog-style condi-
tions for state transitions. Our implementation uses
XState4, a state management library for JavaScript
and TypeScript which implements Harel’s formal-
ism and uses actor model for concurrency. Despite
an abundance of commercially available dialogue-
building software based on FSMs and determinis-
tic flows, such as Dialogflow5, statecharts are sup-
ported by the World Wide Web Consortium (W3C)
specification6, which serves as a guidance for mod-
ern implementations, such as XState.

3 Architecture

In this section, we describe the general architec-
ture of SISU, exemplified by a simple form-filling
dialogue application in the context of scheduling.

3.1 Information state
For representing the information state, we utilise
the data storage of XState, and declare the IS as a
type:

type InformationState = {
next_moves: Move[];
domain: Domain;
database: Database;
private: {
agenda: Action[];
plan: Action[];
bel: Proposition[] };

shared: {
lu: { speaker: Speaker; moves: Move[] };
qud: Question[];
com: Proposition[]; };};

The information state is composed of the following
data structures:

moves Moves are essentially dialogue acts that can
be performed by the user or the system. In
SISU, they consist of a type (e.g., “answer” or
“ask”) and content.7 For example, the type of
the “ask” move is defined as follows:
type AskMove = { type: "ask";

content: Question; };

questions There are several types of questions that
can be supported by the system, i.e. wh-
questions which contain a predicate to be ful-
filled.

4https://stately.ai/docs/xstate
5see Sabharwal and Agrawal (2020) and https://cloud.

google.com/dialogflow/cx/docs/basics
6https://www.w3.org/TR/scxml/
7There is some similarity with the notion of intents, but

those are typically domain-specific, whereas in our framework
we assume that the update rules can be domain-general which
requires operating over more abstract data structures.

type WhQuestion = { type: "whq";
predicate: string };

For instance, a question concerning the loca-
tion of a booking can be represented as {type:
"whq", predicate: "booking_room"}.

propositions A predicate combined with an ar-
gument forms a proposition. For instance,
a proposition that a lecture takes place in
G212 can be represented as {predicate:
"booking_room", argument: "G212"}.

plans and actions Plans are domain-specific and
high-level descriptions of how goals are
achieved. Plans are represented as lists of ac-
tions. For example, a plan for responding to a
question concerning the location of a booking
can be represented as:

{ type: "issue",
content: { type: "whq",

predicate: "booking_room" },
plan: [{ type: "findout",

content: {
type: "whq",
predicate: "booking_course" }},

{ type: "findout",
content: {

type: "whq",
predicate: "booking_day" }},

{ type: "consultDB",
content: {

type: "whq",
predicate: "booking_room"}}]}

This plan enables the system to respond to
questions concerning locations of a booking
by first finding out which course and day the
question concerns, and by then consulting a
database.

3.2 Update rules
In SISU, update rules have the type

type Rule =
(context: InformationState) =>

((x: void) => InformationState) | undefined;

which takes an information state as input and,
depending on the truth value of the precondi-
tion, either, if the precondition is not met, returns
undefined, or else a function that returns the up-
dated state.8 For instance, the following rule, which
implements rule 2.2 from Larsson (2002), pushes a
question recently uttered by the system, if such one
exists, onto the stack of questions under discussion
(QUDs).

8XState’s assign() method is used when the rule is in-
stantiated.
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Figure 2: SISU and DME statecharts (zoomed-out).

integrate_sys_ask: ({ is }) => {
if (is.shared.lu!.speaker === "sys") {

for (const move of is.shared.lu!.moves) {
if (move.type === "ask") {

const q = move.content;
return () => ({
...is, shared: {
...is.shared,
qud: [q, ...is.shared.qud]

}});}}}};

We make use of spread (...) JavaScript syn-
tax, which effectively allows overriding parts of
information state as well as operating stacks (i.e.
pushing a question Q into the stack of QUDs).9

3.3 Dialogue Move Engine (DME)

Overall architecture of SISU (statechart on Fig-
ure 2) extends the “parrot” example with a Dia-
logue Move Engine (DME) statechart. It is respon-
sible for updating the IS and selecting moves to be
produced. The structure of DME reproduces the
statechart introduced by Kronlid and Lager (2007).

Figures 3 and 4 show move selection and
state update processes. We use syntactic sugar
“(/condition)” to represent an update rule which
consists of an update action performed in case
when the condition is met. The update action and
evaluator for the condition are provided as func-
tions of the type introduced in Section 3.2. If no
update rules can be applied in a given state, it tran-
sitions to the next one (depicted with arrows with-
out conditions or event), except for the Grounding
state in which DME waits for the SAYS event (con-
taining either a recognised move or a move pro-
duced by the system) which triggers further update
process. When the move selection is done, the
move is taken up by the language generation state
orthogonal to DME (similarly to Figure 1).

9Ginzburg (2012); Cooper (2022) use asymmetric merge
operation for expressing updates of an information state. For
JavaScript object literals, when one object is spread into an-
other, the property can be overridden by the last assigned
value.

Select

SelectAction

SelectMove

SelectICM

SelectionDone

(/select_icm_negative_understanding)

(/select_respond) (/select_from_plan)

(/select_ask) (/select_answer) (/select_other)

/sendBackNextMoves

Figure 3: Zoomed-in Select statechart.

3.4 Domain knowledge and database
Following Larsson and Berman (2016), SISU sep-
arates general knowledge about dialogue from
domain-specific knowledge. The developer (or a
LLM, as we will show in Section 4) supplies the
latter, e.g. dialogue plans and API integrations.

4 Pre-generating dialogue domains with
LLMs

Despite their sometimes impressive performance,
LLMs are associated with a host of well-known
problems (hallucinations, bias etc.) deriving from
the overall problem of controlling the behaviour of
LLMs (Kann et al., 2022). The absolute majority
of methods for dealing with this problem is of the
"guardrails" type. In LLM-based Conversational
AI, however, the user is still interaction with an
LLM at runtime, and it is difficult or impossible to
guarantee that guardrails always work. Ayyampe-
rumal and Ge (2024) discuss various guardrail ap-
proaches such as layered protection models, system
prompts, Retrieval-Augmented Generation (RAG)
architectures and bias mitigation, and observe that
"[c]rucial challenges remain in implementing these
guardrails." Xu et al. (2024) show that hallucina-
tion is not just a temporary glitch, but are in fact
inevitable in LLMs.

An alternative to using LLMs is of course to man-
ually build dialogues, as done in e.g. Dialogflow
(Sabharwal and Agrawal, 2020) and many other
toolkits. In the SISU approach, we call such dia-
logue specifications dialogue domain descriptions,
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(/remove_findout)
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Figure 4: Zoomed-in Update statechart.

or dialogue domains for short. Although dialogue
domains are concise and expressed on a high level
of abstraction, coding them by hand can be time-
and resource-intensive. Furthermore, the formal-
ism can be challenging for non-technical domain
experts. Pre-Generative Conversational AI (Lars-
son, 2024) uses LLMs for pre-generating domain
knowledge to address these problems. Specifically,
the LLM is fed relevant information such as input
type definitions and example dialogues between
system and user, and returns a dialogue domain
and database integration. The interaction between
an LLM and dialogue developer can be included
in a workflow alongside user testing, enabling in-
sights from testing to be fed to the LLM to inform
subsequent improvements. We provide the details
of our approach in Appendix A, namely, how an
LLM can be used to generate domain and database
for a small scheduling scenario.10

5 Coding low-level dialogue routines with
statecharts

In addition to FSMs being a prominent framework
for building dialogue systems (McTear, 2020), pre-
vious studies explained complex natural language
grounding phenomena using FSMs, such as vocab-
ulary enquiries in language tutoring (del Fresno
et al., 2022) and spelling out names (Howes et al.,
2019; Larsson et al., 2020). Such FSMs include
routinised adjacencies between dialogue acts in hu-
man dialogue; to build a dialogue system based on
these definitions one must include considerations
from system perspective and cast FSMs into a state-

10An industry strength implementation of Pre-Generative
Conversational AI is available in Talkamatic Studio. The
examples in this paper are illustrative toy examples intended
to convey the gist of the idea, and do not reflect how dialogue
pre-generation is implemented in Talkamatic Studio.

chart.11 Figure 8 in Appendix B shows an example
a statechart based on a FSM from Larsson et al.
(2020). SISU can include routinised procedures
defined in such way and involve ISU only when cer-
tain information is grounded, e.g., when the user
and the system have demonstrated agreement on a
particular spelling of a word.

6 Conclusions

In this paper we described a framework combining
statecharts and ISU approach. We described its ar-
chitecture and illustrated it with a small scheduling
scenario. We underlined two main advantages of
our approach, first, its adequacy for pre-generating
dialogues with LLMs and, secondly, the possibil-
ity of mixing routinised dialogue procedures, such
as task-specific grounding described with FSMs or
statecharts, with ISU based on theoretical princi-
ples.

Future work will include empirical evaluation of
the framework as well as expanding the case study
to cover a range of more complex domains.
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A Pre-generating a dialogue domain with
ChatGPT

In Pre-generative Conversational AI (Larsson,
2024) implemented on industrial level in Talka-
matic Studio, dialogue domain data is generated
by an LLM from content such as a database API or
a text. The TDM uses this data to enable flexible
dialogue in various types of dialogue, including
educational, customer service, instructional and
negotiative dialogue.

Here, as a simple demonstration of the feasi-
bility of pre-generating dialogue domains using
LLMs, we feed a dialogue example to ChatGPT
(GPT-4o), together with the type definition for a do-
main and database, and ask it to generate a domain
and database that supports the dialogue (see Figure
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5). The model’s generated domain and database
are included in Figures 6 and 7 respectively12.

Automated testing of the system’s resulting be-
haviour validates that the model’s generated code
works as intended, without any errors. It is worth
noting that except for a minimal amount of com-
ments in the type definition, no documentation of
the dialogue domain formalism or the overall dia-
logue system is provided.

One can also note that the code generated by
an LLM contains a semantic peculiarity: all predi-
cates and individuals are declared as a single sort
(course). This can seem unintuitive, since days
and locations are not courses. One consequence of
this peculiarity is that the answer "Thursday" will
be considered relevant in relation to the question
"Which course?". This problem can potentially
be addressed within an LLM-based development
framework by extending the set of dialogue exam-
ples fed to the LLM.

B Coding parts of dialogue with
statecharts

Figure 8 shows an example of how procedural FSM

for name-spelling derived from human-human di-
alogue (Howes et al., 2019; Larsson et al., 2020)
can be adapted to statechart definition for further
use in SISU-based dialogue system.

12Note that this is an illustrative toy example and does
not reflect how dialogue pre-generation is implemented in
Talkamatic Studio.
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Create a domain and database that supports the dialogue below between user
(U) and system(S), and that adheres to the type definition below.

SUPPORTED DIALOGUE

S: Hello! You can ask me anything!
U: Where is the lecture?
S: Which course?
U: Dialogue Systems 2
S: Which day?
U: Thursday
S: The lecture is in G212.

TYPE DEFINITION

type Individuals = Predicates;
type Predicates = { [index: string ]: string };
export type Domain = {

plans: PlanInfo [];
predicates: Predicates; // Mapping from predicate to sort
individuals: Individuals; // Mapping from individual to sort

};

export type PlanInfo = {
type: "action" | "issue";
content: null | Proposition | ShortAnswer | Question;
plan: Action [];

};

export type Database = {
consultDB: (q: Question , p: Proposition []) => Proposition | null;

};

export type ShortAnswer = string;
export type Proposition = {

predicate: string;
argument: string;

};

export type Question = WhQuestion;
type WhQuestion = { type: "whq"; predicate: string };

export type Action = {
type:

| "greet"
| "respond" // not to be used in plans
| "raise"
| "findout"
| "consultDB ";

content: null | Question;
}

Figure 5: Input fed to ChatGPT.
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export const domain: Domain = {
predicates: {

course_day: "course",
course_location: "course",
course_name: "course",

},
individuals: {

"Dialogue Systems 2": "course",
"Thursday ": "course",
"G212": "course",

},
plans: [

{
type: "issue",
content: { type: "whq", predicate: "course_location" },
plan: [

{ type: "findout", content: { type: "whq", predicate: "course_name" } },
{ type: "findout", content: { type: "whq", predicate: "course_day" } },
{ type: "consultDB", content: { type: "whq", predicate: "course_location" } }

]
}

]
};

Figure 6: Domain generated by ChatGPT.

export const database: Database = {
consultDB: (q, props) => {

if (
q.type === "whq" &&
q.predicate === "course_location" &&
props.some(p => p.predicate === "course_name" && p.argument === "Dialogue Systems 2") &&
props.some(p => p.predicate === "course_day" && p.argument === "Thursday ")

) {
return { predicate: "course_location", argument: "G212" };

}
return null;

}
};

Figure 7: Database generated by ChatGPT.
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Figure 8: Above: name-spelling FSM adapted from Larsson et al. (2020). Below: a corresponding statechart. SC
= system yields the turn; LC = user yields the turn. Yellow notes exemplify possible utterances.
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Abstract

Referring Expression Generation (REG) has
a long-standing tradition in computational lin-
guistics, and often aims to develop cognitively
plausible models of language generation and
dialogue modeling, in a multimodal context.
Traditional approaches to reference have been
mostly symbolic, recent ones have been mostly
neural. Inspired by the recent interest in neuro-
symbolic approaches in both language and vi-
sion, we revisit REG from these perspectives.
We review relevant neuro-symbolic approaches
to language generation on the one hand and vi-
sion on the other hand, exploring possible future
directions for cognitively plausible models of
reference generation/reference game modeling.

1 Introduction
Referring Expression Generation (REG) in visual
scenarios is a traditional and widely studied task in
cognitively motivated work on Natural Language
Generation (NLG). At its core, the task consists
of generating an expression that refers to a visual
object in a given scene, in a way that an addressee
can identify the intended target (Reiter and Dale,
2000). Although this task may seem basic and
constrained at first, it is multifaceted and involves
overcoming several implicit or explicit challenges
at the intersection of language and vision. These
challenges include segmenting and understanding
the low-level visual input (visual processing), de-
termining the properties of the referential target
that distinguish it from all distractors (content deter-
mination), and, finally, formulating the conceptual
information into well-formed linguistic expressions
(linguistic realization), see Schüz et al. (2023).

Existing research in REG has approached this
problem using two different methodologies, see
Figure 1: The landscape can be roughly divided
into symbolic and neural (or visual) approaches,

∗These authors share first authorship.

Visual Processing

Linguistic Realization

Linguistic Output

Visual Input

Symbolic Input

Content Determination

Semantic 
Representation

Core REG

Symbolic REG Visual REG

Figure 1: Conceptual illustration of processing steps in
common models for symbolic and neural-visual Refer-
ring Expression Generation (REG; Schüz et al., 2023).
While symbolic REG focuses primarily on selecting
discriminative properties of the target, low-level inputs
and natural language outputs require further processing
steps or more general methods.

each with their own characteristics. Symbolic meth-
ods offer controllable, transparent, and cognitively
plausible ways of pragmatic reasoning, but most ap-
proaches focus on specific challenges (i.e., content
determination), and it is difficult to apply the algo-
rithms to natural scenarios due to their dependence
on symbolic inputs. In contrast, neural methods
can be easily applied to more natural or complex
scenarios, as the systems are trained end-to-end, im-
plicitly learning all the necessary steps from visual
processing to linguistic realization. However, neural
approaches are notoriously difficult to control, their
cognitive plausibility is debatable, and the exact
processing methods are generally concealed due to
the black-box nature of neural systems.

Against this background, neuro-symbolic ap-
proaches in computational linguistics and NLP
are currently attracting considerable research inter-
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Figure 2: Examples for different REG settings. Settings like (a) (van Deemter et al., 2006) have been traditionally
addressed with symbolic approaches, whereas the settings in (b) (Kazemzadeh et al., 2014) and (c) (McDowell and
Goodman, 2019) call for (partially) neural approaches, due to the lack of symbolic input representations.

est: By combining neural and symbolic processing
methods, it becomes possible to build systems that
retain the flexibility and performance of neural sys-
tems, but become more robust, controllable, and
transparent (Hamilton et al., 2024).

In this paper, we review existing symbolic
and neural approaches to REG and discuss how
these lines of work can be integrated using neuro-
symbolic approaches. We argue that symbolic pro-
cessing methods can be applied to different stages
in a neural REG processing pipeline, potentially
leading to more transparent, cognitively plausible,
and robust REG systems. What exactly is con-
sidered a neuro-symbolic system is not always
consistently defined. Here, we treat approaches
as neuro-symbolic that include neural modeling
components, but also methods for reasoning about
symbolic information.

2 Background
2.1 Referring Expression Generation
Symbolic REG Generating references to objects
has been a long-standing field of interest in compu-
tational linguistics see Krahmer and van Deemter
2012 for a survey). Influential work (e.g., Dale
1989; Dale and Haddock 1991) started to focus on
algorithms for content selection, comparing prop-
erties of a target object with potential distractors
to determine a set of properties that can be for-
mulated into discriminative descriptions. Building
on a Gricean notion of pragmatics (Grice, 1975),
algorithms are considered successful if they pro-
vide sufficient information to identify the intended
referent without being overly informative. A prime
example is the Incremental Algorithm (Dale and
Reiter, 1995), which iterates through attributes in a

defined order of preference, selecting those that rule
out any distractors until only the target remains.

Subsequent work extended the scope by includ-
ing, e.g., relational descriptions (Krahmer and The-
une, 2002; Krahmer et al., 2003), references to
sets of multiple targets (Horacek, 2004; Gatt and
van Deemter, 2007), or notions of prominence or
salience to pre-select contextually relevant distrac-
tors (Kelleher and Kruijff, 2006; Belz et al., 2010).

Much of the work in symbolic REG consists
of deterministic, rule-based search algorithms for
content determination that operate on symbolic
knowledge bases (see Figure 2a). However, there
are alternative approaches such as the probabilistic
PRO (van Deemter et al., 2012) and RSA (Frank and
Goodman, 2012) models or the graph-based algo-
rithm in Krahmer et al. (2003). Further approaches
combine content determination with linguistic real-
ization (Horacek, 1997; Stone and Webber, 1998;
Siddharthan and Copestake, 2004), see van Deemter
(2016). However, the reliance on symbolic input
information remains as a characteristic feature.

Neural REG Visual environments are commonly
used as prime examples or application domains
for symbolic REG algorithms, but the reliance on
symbolic inputs largely prohibits direct application
in natural visual scenarios where this information
is not available (Schüz et al., 2023). In recent years,
work on visual REG has reformulated the task
as an image-to-text generation problem, enabled
by corpora such as RefCOCO (Kazemzadeh et al.
2014; see Figure 2b) and more general advances
in neural vision-and-language modeling. Here, the
goal is to generate descriptions from raw visual
representations of objects in natural images.

Similar to image captioning (Vinyals et al., 2015),
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neural REG models are commonly trained end-to-
end and follow the encoder–decoder scheme, where
raw visual inputs are transformed into intermedi-
ate representations by an image encoder and then
passed to a language decoder. Hence, neural ap-
proaches to visual REG differ fundamentally from
their symbolic counterparts: Low-level perceptual
inputs replace the high-level symbolic information,
and while symbolic approaches often focus on con-
tent determination, neural systems cover all steps
from visual processing to linguistic realization, al-
though the exact processes are largely concealed in
the connectionist structures of the neural systems.

Much of the existing work revolves around meth-
ods to optimize the discriminative power of gen-
erated expressions (see Schüz et al., 2023), for
example by including different simulations of ad-
dressee behaviour (Mao et al., 2016; Luo and
Shakhnarovich, 2017; Yu et al., 2017; Schüz and
Zarrieß, 2021), enriching visual input representa-
tions with discriminative information (Yu et al.,
2016; Liu et al., 2017) or directing systems to
pragmatically relevant features (Li and Jiang, 2018;
Tanaka et al., 2019; Liu et al., 2020; Kim et al., 2020;
Sun et al., 2022). Other works focus on aspects be-
yond discriminativeness, e.g., iteratively refined
expressions (Zarrieß and Schlangen, 2016; Ye et al.,
2023), effects of decoding methods (Zarrieß and
Schlangen, 2018), generating diverse expressions
(Panagiaris et al., 2020, 2021), REG in visual dia-
logue (Willemsen and Skantze, 2024) or the role
of visual scene context (Junker and Zarrieß, 2024).
More recently, work on neural REG has started to
incorporate vision-language models (Bracha et al.,
2023; Guo et al., 2024; Liang et al., 2024) and re-
ferring expressions have been included in multitask
frameworks (Wang et al., 2022b; Lu et al., 2023;
You et al., 2023; Xiao et al., 2024), although with
focus on the inverse referring expression compre-
hension task.

2.2 Neuro-symbolic approaches in general
Neuro-Symbolic AI is a growing research field
concerned with the development of AI systems
which should be able to simulate and integrate
the two cognitive processes commonly considered
as the core of intelligent behaviour, namely the
ability to learn from experience and to reason on
what has been learned (Valiant, 2003). Researchers
have been trying to pursue this goal by combining
neural networks and deep learning methods, excel-
lent at handling parallel computation, unstructured

data, and pattern recognition, with purely symbolic
approaches, typically leveraging formal logic or
structured representations, which are verifiable and
data-efficient, and allow structured and logical rea-
soning about data and its patterns (Garcez and
Lamb, 2023; Hamilton et al., 2024).

The problem of how neural networks can han-
dle and represent symbolic knowledge has been
present in the literature since early attempts to
computationally model brain processes (Bader and
Hitzler, 2005). Over the past decade, however, it
was Deep Learning that got the most attention in
research and application. Lately, it was argued that
in order to achieve rich, semantically sound and
explainable AI systems, research efforts should fo-
cus on the integration between methods affording
reasoning abilities and Deep Learning (Garcez and
Lamb, 2023), resulting in a new interest in neuro-
symbolic integration. To clarify and systematize
the work on neuro-symbolic integration, highlight-
ing similarities and differences among the various
contributions, taxonomies have been devised. The
most well-known was proposed by Kautz (2022)
and further streamlined in Hamilton et al. (2024):

Sequential Sequential architectures are current
the dominant approach in Deep Learning when the
input and output of neural networks are symbolic
in nature, such as in the case of Natural Language
Processing, where symbolic inputs, namely words
and word sequences, are converted into vectors and
processed by a neural network.

Nested Nested architectures are those that loosely
couple a symbolic reasoning system, such as a prob-
lem solver or a planner, with a neural component
that will guide certain decision processes. One in-
stance is DeepMind’s AlphaGo (Silver et al., 2016),
where a Monte Carlo tree search algorithm is paired
with a neural network tasked to evaluate game states
and suggest moves.

Cooperative Cooperative architectures include a
neural component which receives raw inputs, such
as images’ pixels, and converts them into symbolic
data structures, for instance graphs or logic-based
representations, which will be used by a symbolic
reasoner. One example system is DeepProbLog
(Manhaeve et al., 2018), which involves a neural
network which parametrizes the truth distribution
of predicates with respect to an input, and a proba-
bilistic logic program for reasoning with them.
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Compiled Compiled architectures are tightly cou-
pled approaches, as there is no modular sub-division
to handle learning and reasoning. In fact, these
systems involve standard neural networks under-
going training regimes based on symbolic rules,
by having knowledge compiled into the training
set or the network’s weights, or enforced via spe-
cific optimization functions. They are instantiated
by Logic Neural Networks (Riegel et al., 2020),
where symbolic rules are embedded directly into
the architecture, as neurons in the network’s layers
represent specific logical operations, and Logic Ten-
sor Networks (Badreddine et al., 2022), which are
optimized to maximize the satisfiability of grounded
(represented as real-valued tensors) formulas.

Ultimately, a neuro-symbolic system could have
a fully integrated architecture where the symbolic
reasoning component is embedded in the neural
one. Hamilton et al. (2024) include this potential
architecture in the Nested class, though, to this
day, there are no implemented solutions that truly
embody this definition.

3 Neuro-symbolic approaches to REG
Encoder-decoder models in vision-language gener-
ation tasks like REG always combine neural and
symbolic aspects, as they map raw inputs (images)
to symbolic outputs (text). However, in most ap-
proaches for visual REG (Section 2.1) the transfor-
mation from perceptual to symbolic information
takes place at the very end of the processing pipeline
and merely consists of a final mapping over the
model’s vocabulary during inference, without any
reasoning processes involving those symbolic units.
In this section we describe existing approaches
for reference generation that go beyond this level
of neuro-symbolic integration, and include further
sources of symbolic information or symbolic rea-
soning processes.

Chamorro-Martínez et al. (2021) propose a sys-
tem for referring expression generation (REG) that
combines deep learning with symbolic processing.
They use a Mask R-CNN model to segment im-
ages and detect objects with associated confidence
scores. Fuzzy modeling is then applied to derive
color attributes and spatial relationships between
objects, which are represented in a graph struc-
ture—nodes represent objects with category and
color labels, and edges represent spatial relations,
all annotated with fuzzy confidence values. This
symbolic graph is used by a content selection algo-

rithm to identify the most discriminative properties
for referring to each object.

Tsvilodub et al. (2024) present a neuro-symbolic
Iterative Model (IM) for referring expression gener-
ation, inspired by the Incremental Algorithm (Dale
and Reiter, 1995). The model combines large lan-
guage models (LLMs) with symbolic reasoning.
An LLM-based utterance proposer generates sim-
ple candidate descriptions, which a second LLM
module evaluates for semantic adequacy. A sym-
bolic contrastivity selector then assesses how well
each description distinguishes the target from dis-
tractors. If no maximally contrastive expression is
found, the process iterates by adding more details.
Designed for visual tasks, the model avoids process-
ing raw visual input by working with verbal scene
descriptions.

In Junker and Zarrieß (2024), the low-level tar-
get representations used as input in their encoder-
decoder models are supplemented by symbolic
scene summaries that represent the relative area in
the visual context covered by different types of ob-
jects, in order to support the robustness of referring
expressions under visually challenging conditions.
The results show that by including scene-level sym-
bolic information, the models can correctly infer
the type of the target object, even when visual
representations of the target are severely distorted.

Apart from those works, the Rational Speech
Acts framework (RSA; Frank and Goodman, 2012;
Frank et al., 2016) emerges as the most promi-
nent approach for integrating neural processing and
symbolic reasoning. Here, generally, Bayesian in-
ference is used to model pragmatic behaviour, in
terms of rational speakers (𝑆1) that reason about
how literal listeners (𝐿0) would understand utter-
ances produced by literal speakers (𝑆0).

Andreas and Klein (2016) propose an approach
for generating contrastive scene descriptions in a
reference game involving visual scenes as targets
and distractors. Ignoring distractor context, a neu-
ral language model acting as the literal speaker 𝑆0
takes encoded images and produces descriptions
of them. A neural literal listener 𝐿0 takes an im-
age description and a set of possible referents and
produces a distribution over candidate scenes, for
each indicating the probability that this scene is
the referent described. Finally, a RSA reasoning
speaker 𝑆1 ties those models together by drawing
a set of samples from 𝑆0 and using Bayesian in-
ference to select a description scored high by both
𝑆0 and 𝐿0. Similar to Tsvilodub et al. (2024), this
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system relies on symbolic feature representations
for objects depicted in the scenes.

In their work on pragmatically informative image
captioning, Cohn-Gordon et al. (2018) follow the
same intuition, but apply the pragmatic reasoning
at each step of the iterative inference process. Here,
𝑆0 is a character-level image captioning model,
consisting of a CNN encoder and an LSTM decoder.
At each decoding step, 𝑆0 outputs a probability
distribution over possible continuations of a partial
caption consisting of the start token in the initial
run. For each possible continuation, 𝐿0 returns a
distribution over potential target images. Finally, 𝑆1
takes the 𝐿0 distribution over images and re-weights
the 𝑆0 predictions for possible continuations by 𝐿0’s
ability to infer the correct target image with this
continuation.

The decoding algorithm in Vedantam et al. (2017)
pursues the same idea, but with word-level caption-
ing models and without the recursive back-and-forth
between the speaker and listener agents as defined
in the RSA model.

Several papers in REG have adopted the idea
of performing pragmatic reasoning during the in-
ference of otherwise context-agnostic generation
models: Schüz and Zarrieß (2021) directly apply
this approach to REG using the discriminative de-
coding methods from Cohn-Gordon et al. (2018)
and Vedantam et al. (2017), but define targets and
distractors as objects within a single image rather
than as separate images. Here, at first, the bounding
box content for a visual target object is encoded
and passed to the model decoder. During decoding,
output probabilities are compared at each step with
the predictions of the same model when processing
distractor objects instead of the target. On this basis,
the token probabilities for the target are adjusted
in favor of words that have a higher probability
for the target than for distractors. In line with find-
ings from image captioning (Schüz et al., 2021),
the authors show that this method increases both
the pragmatic informativeness and the linguistic
diversity of generated expressions.

Zarrieß and Schlangen (2019) use a similar
method to reason about possible categorizations of
target objects, assuming that very specific terms
should be avoided when models are uncertain about
object categories. Again, they incorporate RSA-
style reasoning into the iterative decoding process.
However, their model does not reason about which
words are informative for identifying the target, but
about which terms should be used for the target to

avoid erroneous descriptions, given the uncertainty
about object categories. They show that their model
generates more expressions without any nouns or
category labels, consistent with the hypothesized
strategies for describing unknown objects. With
respect to an external listener model, the proposed
strategy increases the resolution accuracy for most
categories of objects.

Finally, White et al. (2020) consider further possi-
bilities for how the Rational Speech Acts framework
can be incorporated into neural generation models.
In addition to a full RSA model, which includes an
exhaustive reasoning process, where all possible
utterances are tested for how effectively they allow
the trained listener model to identify the target,
they also consider a sample re-rank model which
resembles Andreas and Klein (2016)’s approach in
that a smaller number of candidate utterances are
sampled from the speaker model and then re-ranked
by the listener. In addition, they present a model
that amortizes the computational costs of exhaustive
RSA reasoning by directly optimizing a speaker
model with respect to the utterances that an RSA
model would prefer. To this end, during training,
at each optimization step an utterance is sampled
from the speaker model to be trained, which is then
evaluated by the listener model and translated into
training signals depending on its communicative
success. This transfers the symbolic reasoning pro-
cess from the inference to the training stage; the
subsequent decoding process can thus be carried
out using computationally more efficient methods.
The results show that the amortized model almost
achieves the pragmatic effectiveness of the full RSA
model, but is significantly more efficient.

Overall, neuro-symbolic processing remains an
exception in REG and related tasks. Apart from
Junker and Zarrieß (2024), symbolic components
generally target the linguistic level rather than the
visual processing of inputs. Most commonly, RSA
or related approaches are used to reason about the
pragmatic informativeness of linguistic symbols
(characters, words, or sentences), sometimes as part
of the training procedure (White et al., 2020). Simi-
lar to content selection in symbolic REG, Chamorro-
Martínez et al. (2021) and Tsvilodub et al. (2024)
employ similar procedures at a more conceptual
level, i.e., with regard to the question of which
attributes best describe the referent, regardless of
the concrete realization.

Regarding Hamilton et al. (2024)’s taxonomy,
the approaches can be placed at different levels:
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The addition of symbolic inputs renders Junker and
Zarrieß (2024) a sequential system, while Tsvilo-
dub et al. (2024) can be seen as nested with sym-
bolic components controlling the entire process.
Chamorro-Martínez et al. (2021) and inference-
level RSA variants are cooperative because deep
learning methods form the basis for symbolic rea-
soning. Finally, White et al. (2020)’s amortized
model is a compiled system where symbolic rea-
soning is integrated into the training regime.

4 Neuro-symbolic NLG and Vision

Only a few approaches in REG surpass a level
of neuro-symbolic integration that is trivial for
vision-language generation tasks. This section will
therefore discuss some neuro-symbolic approaches
in two REG-relevant fields: NLG more generally
and visual processing in vision-language tasks.

4.1 Natural Language Generation
Graph-based methods One approach is to inte-
grate structured data representations, such as knowl-
edge graphs, into the language generation process.
This is often referred to as knowledge injection,
where knowledge from external sources is incorpo-
rated into models to improve their output quality
(Cadeddu et al., 2024). Knowledge graphs represent
general-purpose, or domain-specific (Ji et al., 2022)
data as nodes (entities) and edges (relations), a
flexible and powerful way of encoding knowledge.

Knowledge graphs have been used in various
NLG tasks (see Panchendrarajan and Zubiaga 2024
for a survey). In language modeling, knowledge
graphs can be used by converting them into vector
representations using graph embedding methods
and feeding them as input to a language model.
Other models adapt existing text-generation models
to generate text directly from knowledge graphs
(e.g., Koncel-Kedziorski et al., 2019). Knowledge
graphs have also been used in dialogue systems. For
instance, Zhang et al. (2020) proposed a method
that constructs concept graphs from dialogue inputs
and expands them to include related one-hop and
two-hop concepts from a commonsense knowledge
base. These graphs are then encoded into vector
representations using a graph neural network. The
resulting vectors are integrated with the original in-
put to incorporate external knowledge and guide the
model in generating coherent responses. Likewise,
knowledge graphs have been used in text summa-
rization tasks, where faithfulness to the original text

is essential. Some models (e.g., Wang et al., 2022a)
introduce a knowledge graph pipeline that extracts
relational triplets from the source text and encodes
them using graph embeddings. A filtering step uses
a trained classifier to identify key facts from the
source by predicting their importance. This allows
the model to focus on salient and relevant infor-
mation. The filtered knowledge graph embeddings
are then combined with the hidden states from a
BERT-based encoder and passed to the decoder.

Planning and constraint-guided generation
Typical neural data-to-text models, which generate
text from inputs like databases, often suffer from re-
dundancy and lack factual faithfulness. Puduppully
et al. (2019) proposed an alternative data-to-text
approach where the input is a record table and the
output is a natural language text. Their model ex-
plicitly separates content determination and content
planning before passing the result to a neural genera-
tor for surface realization. The input is first encoded
using a neural encoder. A content selection gate
then determines relevant content using an attention
mechanism over the table entries, followed by a
sigmoid activation to determine which content is
selected for further processing. Next, the content
planning module decides what to say and in what
order by generating a sequence of selected records
using a pointer network. These plans are learned by
aligning the summary text with table records. The
resulting plan is then fed into a neural generator,
which uses a standard encoder-decoder architecture
to produce the output text.

Other data-to-text approaches include LogicNLG
(Chen et al., 2020) and Symbolic Reasoning with
Entity Scheduling (SORTIE; Zhao et al., 2023)
which frame the task as logical data-to-text gen-
eration and aim to produce text that is logically
consistent with the input data.

Lu et al. (2021) propose logic-guided, constraint-
based generation that controls the decoding stage of
neural text generation. It uses negative and positive
constraints expressed as predicate logic formulas,
which are converted into a penalty term and added
to the decoding objective. This allows the model
to generate fluent output while satisfying symbolic
constraints, effectively guiding generation through
inference-time decoding.

4.2 Vision
Graph-based methods In order to obtain agents
which are able to proficiently understand the tem-
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poral, relational and causal dynamics that go into
performing everyday house-hold tasks, (Hazra et al.,
2023) proposes a benchmark called Egocentric Task
Verification (EgoTV), comprising a set of egocen-
tric videos of daily life tasks, accompanied by a
natural language description, as well as a novel
Neuro-Symbolic Grounding (NSG) approach to
counter the low performance exhibited by existing
vision-language models on the EgoTV benchmark.
The NSG architecture can convert a task description
into a graph through its different components. This
graph is then grounded in the video frames and
the information represented by its nodes is aligned
with the video. The NSG approach proposed by the
authors indeed proved able to outperform state-of-
the-art VLMs in capturing tasks’ steps on both the
EgoTV benchmark and on a dataset derived from
the CrossTask dataset (Zhukov et al., 2019).

Huang et al. (2025) show interest in the under-
standing of spatio-temporal dynamics in videos as
well. They introduce LASER, a neuro-symbolic
framework that converts videos into graphs repre-
senting the properties and relations of entities at
various time points. It then computes the alignment
between these graphs and video captions that have
been translated into formulas using an extended
Linear Temporal Logic. The model is trained using
weak supervision and displays enhanced perfor-
mance compared to previous solutions in capturing
relationships and dynamics in a range of video
datasets with rich spatio-temporal specifications.

He et al. (2023) aim at applying scene graph
generation to human-object interaction detection.
They propose the unified model SG2HOI+ based
on the Transformer architecture. The model is able
to extract semantic-spatial features from images
using a bounding box segmentation network, then
generating scene graphs using information from
said bounding boxes, and finally to convert the scene
graphs into human-object interactions. SG2HOI+
was tested on a variety on benchmarks (Visual
Genome, V-COCO, HICO-Det), and achieved better
results than pre-existing methods.

Methods with programmatic descriptions
Gupta and Kembhavi (2023) X presents VisProg,
a neuro-symbolic modular model that uses LLMs
prompted in a few-shot manner to generate Python-
like programs from image captions, questions and
instructions. At each step, the programmes invoke
one of the 20 modules currently supported (ranging
from other LLMs to CLIP-like models and logic and

arithmetic reasoning modules). VisProg performs
at a high level on a range of of V&L tasks.

Hsu et al. (2023) introduce a modular architec-
ture with neuro-symbolic components to solve 3D
grounding tasks. It uses a language-to-code model
to convert instructions in natural language asking to
identify objects in pictures into symbolic programs.
It then extracts object features and relations using
an encoder, executes the program using the learned
features and retrieves the target object.

Li et al. (2020) focus on jointly modeling cam-
era poses, object locations and scene structures of
naturalistic images presenting pronounced pattern
regularities, treating the task as an inverse graphics
problem, generating a graphic program from an
input image, then reconstructing the picture and
computing a loss between the reconstruction and
the target.

Program-based neuro-symbolic approaches have
also been applied to video related tasks. Kulal
et al. (2021) introduces a framework designed to
enhance human motion understanding in videos. It
follows a hierarchical pipeline which first detects
key points in videos, then produces both a concrete
motion program, by assigning parameters to three
motion primitives, and an abstract motion program,
which generalizes over the concrete one by captur-
ing higher-level repeated sequences and loops of
primitives in the video.

5 Neuro-symbolic REG: Future directions

After reviewing approaches of neuro-symbolic inte-
gration methods in the area of REG and its closely
related fields of Natural Language Generation and
Vision (& Language), we will now discuss future
directions to neuro-symbolic REG. In doing so,
we will take into account the cognitively plausible
properties of neuro-symbolic approaches – in par-
ticular, the combination of bottom-up, data-driven
learning and structured reasoning about such data
based on prior knowledge as two key aspects of
human cognitive abilities and intelligent behaviour.
In our discussion, we focus on the challenges in two
different (but potentially overlapping) REG settings,
i.e., interactive reference games set up as visual task-
oriented dialogue, and reference generation under
naturalistic real-world conditions.

Various neuro-symbolic approaches, previously
discussed in Sections 3 and 4, seem fit to be adapted
and applied to reference games, specifically Coop-
erative solutions (such as Chamorro-Martínez et al.,
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2021; Huang et al., 2025; He et al., 2023), which
are centered around the conversion of visual inputs
into graphs representing their properties and rela-
tions, further used to solve tasks involving reasoning
about those. Chamorro-Martínez et al. (2021) al-
ready applied such techniques, with an architecture
able to generate referring expressions to objects in
images employing fuzzy graphs.

Generating referring expressions in dialogical
reference games, however, should consider the ad-
dressee and treat reference as a collaborative pro-
cess (Clark and Wilkes-Gibbs, 1986), in which
feedback is provided and the interaction history is
available. While RSA-based models have a concept
of a ‘listener’, it is an abstract one and not an ac-
tual addressee the model is interacting with and to
whom the reference could be tailored. Adaptations
to the addressee should happen on different levels
of processing. Low level adaptations, such as inter-
active (lexical and syntactic) alignment (Pickering
and Garrod, 2004) can be handled neurally during
surface realization, whereas more strategic adap-
tations (Clark and Wilkes-Gibbs, 1986) could be
the result of symbolic planning processes, which,
however, could result from neural processing of the
addressee’s multimodal behaviors. If the addressee
makes an error in, or is unable to resolve an ini-
tial reference, a model such as Chamorro-Martínez
et al. (2021) could be adapted by implementing an
iterative process, which retrieves the fuzzy graph
previously produced and compares the target’s node
to that of the object wrongly selected by the ad-
dressee, in order to identify characteristics that were
mistakenly chosen for or left out of the generated
referring expression. The symbolic fuzzy graph is
therefore a useful intermediate (and mediating) rep-
resentation, that allows comparison of the speaker’s
and addressee’s conceptualization with features of
the target.

Nevertheless, more tightly integrated neuro-
symbolic solutions such as those belonging to the
Compiled class could be useful in modeling refer-
ence games, too. Methods including Logic Neural
Networks (Riegel et al., 2020) and Logic Tensor
Networks (Badreddine et al., 2022) could be used to
extract features from images, encode these features
as logical formulas, and then impose rules and con-
straints on them to guide the generation of referring
expressions. Adressee’s errors and feedback can be
accounted for by updating the model weights or
logic rules depending on whether the expression
generated was precise enough for resolution.

A concern that can easily arise in REG tasks
revolves around those cases where the exact cate-
gory of an object that should be identified is not
clear (Zarrieß and Schlangen, 2019). In such an
eventuality, the knowledge injection methods dis-
cussed in Section 4.1 could potentially prove useful.
In fact, through the use of knowledge graphs, it
could be possible to provide REG models with
knowledge bases granting them world knowledge,
and thus informing them of more generic and over-
arching characteristics of objects that they might
encounter in visual inputs, for instance common
uses and functions, which could be used in indirect
reference.

Cognitively oriented representations of the visual
scenes in which referential targets are embedded
also appear promising for generating referring ex-
pressions that are not only effective but also easy to
understand. For example, Võ (2021) provides an in
depth analysis of the rules and regularities of real
world scenes, referred to as Scene Grammars. They
include the notion of ‘anchor objects’, namely ob-
jects which are diagnostic of specific environments
and serve as points of reference to identify other
objects in a scene (e.g., the toilet in a bathroom).
Inside visual scenes, objects tend to cluster around
certain anchors, making it easier to identify them
by restricting the domain of attention. The ability to
take into consideration the pivotal role of anchors in
object identification could be useful for REG mod-
els, as they would be able to abide to the natural way
in which people parse visual scenes. Cooperative
techniques based on graph structures, such as those
presented in Section 4.2, could be optimized to
recognize anchor nodes and subsequently use them
to identify the target object in the scene, focusing on
the relevant phrase and using information contained
in it, such as the relationship the target has with the
anchor, to construct referring expressions which
can guide the listener’s attention to the target in a
way that is meaningful and familiar.

More generally, in vision and language tasks,
such as referring expression generation, neuro-
symbolic processing has great potential when pro-
viding both more autonomy as well as the ability
for bidirectional information flow to components
on all levels of processing. Neural vision compo-
nents could implement theories of visual attention
that respond to saliency and/or other features (e.g.,
Gestalts) from the visual scene such that they do not
provide an exhaustive representation of the scene
but are already selective or operate on a different
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level of abstraction and thereby influence object
naming or attribute selection when generating ref-
erences with IA-like algorithms. Conversely, atten-
tion and visual processing could also be guided
top down through symbolic information that is
grounded in an interlocutor’s utterance (such as a
clarification), the broader interaction history, or the
speaker agent’s goal. Following theories of ‘ecolog-
ical perception’ (Gibson, 1979), this could afford a
neural re-conceptualization of objects in the scene,
possibly yielding completely different features and
object description that fit the speaker’s need at a
specific moment in a reference game.

6 Conclusion
Neuro-symbolic approaches are gaining consider-
able interest in computational linguistics and NLP,
as they allow to integrate the complementary char-
acteristics of symbolic and neural processing, po-
tentially leading to strong and adaptive, but also
transparent and cognitively plausible systems. In
this paper, we reviewed existing neuro-symbolic
approaches in REG and discussed possible future
directions, drawing on related research areas such
as NLG and vision. As an inherently multimodal
task with defined pragmatic objectives, REG opens
up many possibilities for linking these paradigms
at different levels, opening up exciting possibilities
for further research.

Acknowledgments
This research has been funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) – CRC-1646, project no. 512393437,
project B02.

References
Jacob Andreas and Dan Klein. 2016. Reasoning about

pragmatics with neural listeners and speakers. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1173
–1182, Austin, TX, USA.

Sebastian Bader and Pascal Hitzler. 2005. Dimensions
of neural-symbolic integration – A structured survey.
In Sergei Artemov, Howard Barringer, Artur d’Avila
Garcez, Luis C. Lamb, and John Woods, editors, We
Will Show Them: Essays in Honour of Dov Gabbay,
pages 167–194. King’s College Publications.

Samy Badreddine, Artur d’Avila Garcez, Luciano Ser-
afini, and Michael Spranger. 2022. Logic tensor
networks. Artificial Intelligence, 303:103649.

Anja Belz, Eric Kow, Jette Viethen, and Albert Gatt.
2010. Generating referring expressions in context:
The GREC task evaluation challenges. In Emiel Krah-
mer and Theune Mariët, editors, Empirical Methods
in Natural Language Generation, pages 294–327.
Springer, Berlin, Germany.

Lior Bracha, Eitan Shaar, Aviv Shamsian, Ethan Fetaya,
and Gal Chechik. 2023. DisCLIP: Open-vocabulary
referring expression generation. In Proceedings of the
34th British Machine Vision Conference, Aberdeen,
UK.

Andrea Cadeddu, Alessandro Chessa, Vincenzo De Leo,
Gianni Fenu, Enrico Motta, Francesco Osborne,
Diego Reforgiato Recupero, Angelo Salatino, and
Luca Secchi. 2024. A comparative analysis of knowl-
edge injection strategies for large language models in
the scholarly domain. Engineering Applications of
Artificial Intelligence, 133:108166.

Jesús Chamorro-Martínez, Nicolás Marín, Míriam
Mengíbar-Rodríguez, Gustavo Rivas-Gervilla, and
Daniel Sánchez. 2021. Referring expression genera-
tion from images via deep learning object extraction
and fuzzy graphs. In Proceedings of the 2021 IEEE
International Conference on Fuzzy Systems, pages
1–6, Luxembourg.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020. Logical natural language
generation from open-domain tables. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7929–7942, Online.

Herbert H. Clark and Deanna Wilkes-Gibbs. 1986. Refer-
ring as a collaborative process. Cognition, 22:1–39.

Reuben Cohn-Gordon, Noah D. Goodman, and Christo-
pher Potts. 2018. Pragmatically informative image
captioning with character-level inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2 (Short
Papers), pages 439–443, New Orleans, Louisiana.

Robert Dale. 1989. Cooking up referring expressions.
In Proceedings of the 27th Annual Meeting of the
Association for Computational Linguistics, pages 68–
75, Vancouver, Canada.

Robert Dale and Nicholas Haddock. 1991. Content de-
termination in the generation of referring expressions.
Computational Intelligence, 7(4):252–265.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the Gricean Maxims in the gen-
eration of referring expressions. Cognitive Science,
19(2):233–263.

Michael C. Frank, Andrés Gómez Emilsson, Benjamin
Peloquin, Noah D. Goodman, and Christopher Potts.
2016. Rational speech act models of pragmatic rea-
soning in reference games. Preprint, OSF:f9y6b.

46

https://www.dfg.de/
https://www.dfg.de/
https://gepris.dfg.de/gepris/projekt/512393437
https://gepris.dfg.de/gepris/projekt/537416633
https://doi.org/10.18653/v1/D16-1125
https://doi.org/10.18653/v1/D16-1125
https://doi.org/10.48550/arXiv.cs/0511042
https://doi.org/10.48550/arXiv.cs/0511042
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1007/978-3-642-15573-4_15
https://doi.org/10.1007/978-3-642-15573-4_15
https://papers.bmvc2023.org/0670.pdf
https://papers.bmvc2023.org/0670.pdf
https://doi.org/10.1016/j.engappai.2024.108166
https://doi.org/10.1016/j.engappai.2024.108166
https://doi.org/10.1016/j.engappai.2024.108166
https://doi.org/10.1109/FUZZ45933.2021.9494544
https://doi.org/10.1109/FUZZ45933.2021.9494544
https://doi.org/10.1109/FUZZ45933.2021.9494544
https://doi.org/10.18653/v1/2020.acl-main.708
https://doi.org/10.18653/v1/2020.acl-main.708
https://doi.org/10.1016/0010-0277(86)90010-7
https://doi.org/10.1016/0010-0277(86)90010-7
https://doi.org/10.18653/v1/N18-2070
https://doi.org/10.18653/v1/N18-2070
https://doi.org/10.3115/981623.981632
https://doi.org/10.1111/j.1467-8640.1991.tb00399.x
https://doi.org/10.1111/j.1467-8640.1991.tb00399.x
https://doi.org/10.1207/s15516709cog1902_3
https://doi.org/10.1207/s15516709cog1902_3
https://doi.org/10.1207/s15516709cog1902_3
https://doi.org/10.31234/osf.io/f9y6b_v1
https://doi.org/10.31234/osf.io/f9y6b_v1


Michael C. Frank and Noah D. Goodman. 2012. Predict-
ing pragmatic reasoning in language games. Science,
336:998.

Artur d’Avila Garcez and Luís C. Lamb. 2023. Neu-
rosymbolic AI: The 3rd wave. Artificial Intelligence
Review, 56(11):12387–12406.

Albert Gatt and Kees van Deemter. 2007. Lexical choice
and conceptual perspective in the generation of plural
referring expressions. Journal of Logic, Language
and Information, 16(4):423–443.

James J. Gibson. 1979. The Ecological Approach to
Visual Perception. Houghton Mifflin, Boston, MA.

Herbert Paul Grice. 1975. Logic and conversation. In
Peter Cole and Jerry L. Morgan, editors, Syntax and
Semantics 3: Speech Acts, pages 41–58. Academic
Press, New York, NY, USA.

Danfeng Guo, Sanchit Agarwal, Arpit Gupta, Jiun-Yu
Kao, Emre Barut, Tagyoung Chung, Jing Huang,
and Mohit Bansal. 2024. Prompting vision-language
models for aspect-controlled generation of referring
expressions. In Findings of the Association for Com-
putational Linguistics: NAACL 2024, pages 2793–
2807, Mexico City, Mexico.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reason-
ing without training. In Proceedings of the 2023
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 14953–14962, Van-
couver, Canada.

Kyle Hamilton, Aparna Nayak, Bojan Božić, and Luca
Longo. 2024. Is neuro-symbolic AI meeting its
promises in natural language processing? A structured
review. Semantic Web, 15(4):1265–1306.

Rishi Hazra, Brian Chen, Akshara Rai, Nitin Kamra, and
Ruta Desai. 2023. EgoTV: Egocentric task verifica-
tion from natural language task descriptions. In 2023
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 15371–15383, Paris, France.

Tao He, Lianli Gao, Jingkuan Song, and Yuan-Fang
Li. 2023. Toward a unified transformer-based frame-
work for scene graph generation and human-object
interaction detection. IEEE Transactions on Image
Processing, 32:6274–6288.

Helmut Horacek. 1997. An algorithm for generating
referential descriptions with flexible interfaces. In
Proceedings of the 35th Annual Meeting of the Asso-
ciation for Computational Linguistics and 8th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 206–213, Madrid,
Spain.

Helmut Horacek. 2004. On referring to sets of objects
naturally. In Proceedings of the 3rd International
Conference on Natural Language Generation, pages
70–79, Brockenhurst, UK. Springer.

Joy Hsu, Jiayuan Mao, and Jiajun Wu. 2023. NS3D:
Neuro-symbolic grounding of 3d objects and relations.
In In Proceedings of the 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 2614–2623, Vancouver, Canada.

Jiani Huang, Ziyang Li, Mayur Naik, and Ser-Nam Lim.
2025. LASER: A neuro-symbolic framework for
learning spatial-temporal scene graphs with weak
supervision. In Procedings of the 13th International
Conference on Learning Representations, Singapore.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and Philip S. Yu. 2022. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning
Systems, 33(2):494–514.

Simeon Junker and Sina Zarrieß. 2024. Resilience
through scene context in visual referring expression
generation. In Proceedings of the 17th International
Natural Language Generation Conference, pages 344–
357, Tokyo, Japan.

Henry Kautz. 2022. The third AI summer: AAAI
Robert S. Engelmore memorial lecture. AI Magazine,
43(1):105–125.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara Berg. 2014. ReferItGame: Referring to
objects in photographs of natural scenes. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
787–798, Doha, Qatar.

John D. Kelleher and Geert-Jan M. Kruijff. 2006. In-
cremental generation of spatial referring expressions
in situated dialog. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Com-
putational Linguistics, pages 1041–1048, Sydney,
Australia.

Jungjun Kim, Hanbin Ko, and Jialin Wu. 2020. Co-
NAN: A complementary neighboring-based attention
network for referring expression generation. In Pro-
ceedings of the 28th International Conference on Com-
putational Linguistics, pages 1952–1962, Barcelona,
Spain (Online).

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
generation from knowledge graphs with graph trans-
formers. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2284–2293, Minneapolis, MN, USA.

Emiel Krahmer and Mariet Theune. 2002. Efficient
context-sensitive generation of referring expressions.
In Kees van Deemter and Rodger Kibble, editors,
Information Sharing: Reference and Presupposition
in Language Generation and Interpretation, pages
223–264. CSLI, Stanford, CA, USA.

47

https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10849-007-9047-0
https://doi.org/10.1007/s10849-007-9047-0
https://doi.org/10.1007/s10849-007-9047-0
https://doi.org/10.18653/v1/2024.findings-naacl.178
https://doi.org/10.18653/v1/2024.findings-naacl.178
https://doi.org/10.18653/v1/2024.findings-naacl.178
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.3233/SW-223228
https://doi.org/10.3233/SW-223228
https://doi.org/10.3233/SW-223228
https://doi.org/10.1109/ICCV51070.2023.01414
https://doi.org/10.1109/ICCV51070.2023.01414
https://doi.org/10.1109/TIP.2023.3330304
https://doi.org/10.1109/TIP.2023.3330304
https://doi.org/10.1109/TIP.2023.3330304
https://doi.org/10.3115/976909.979644
https://doi.org/10.3115/976909.979644
https://doi.org/10.1007/978-3-540-27823-8_8
https://doi.org/10.1007/978-3-540-27823-8_8
https://doi.org/10.1109/CVPR52729.2023.00257
https://doi.org/10.1109/CVPR52729.2023.00257
https://openreview.net/forum?id=HEXtydywnE
https://openreview.net/forum?id=HEXtydywnE
https://openreview.net/forum?id=HEXtydywnE
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1109/TNNLS.2021.3070843
https://aclanthology.org/2024.inlg-main.29/
https://aclanthology.org/2024.inlg-main.29/
https://aclanthology.org/2024.inlg-main.29/
https://doi.org/10.1002/aaai.12036
https://doi.org/10.1002/aaai.12036
https://doi.org/10.3115/v1/D14-1086
https://doi.org/10.3115/v1/D14-1086
https://doi.org/10.3115/1220175.1220306
https://doi.org/10.3115/1220175.1220306
https://doi.org/10.3115/1220175.1220306
https://doi.org/10.18653/v1/2020.coling-main.177
https://doi.org/10.18653/v1/2020.coling-main.177
https://doi.org/10.18653/v1/2020.coling-main.177
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238


Emiel Krahmer and Kees van Deemter. 2012. Computa-
tional generation of referring expressions: A survey.
Computational Linguistics, 38(1):173–218.

Emiel Krahmer, Sebastiaan van Erk, and André Verleg.
2003. Graph-based generation of referring expres-
sions. Computational Linguistics, 29(1):53–72.

Sumith Kulal, Jiayuan Mao, Alex Aiken, and Jiajun
Wu. 2021. Hierarchical motion understanding via
motion programs. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 6564–6572, Los Alamitos, CA, USA.

Xiangyang Li and Shuqiang Jiang. 2018. Bundled object
context for referring expressions. IEEE Transactions
on Multimedia, 20(10):2749–2760.

Yikai Li, Jiayuan Mao, Xiuming Zhang, William T.
Freeman, Joshua B. Tenenbaum, and Jiajun Wu. 2020.
Perspective plane program induction from a single
image. In Proceedings of the 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 4433–4442, Seattle, WA, USA.

Yaoyuan Liang, Zhuojun Cai, Jian Xu, Guanbo Huang,
Yiran Wang, Xiao Liang, Jiahao Liu, Ziran Li, Jin-
gang Wang, and Shao-Lun Huang. 2024. Unleash-
ing region understanding in intermediate layers for
MLLM-based referring expression generation. In
Advances in Neural Information Processing Systems,
volume 37, pages 120578–120601.

Jingyu Liu, Liang Wang, and Ming-Hsuan Yang. 2017.
Referring expression generation and comprehension
via attributes. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV),
Venice, Italy.

Jingyu Liu, Wei Wang, Liang Wang, and Ming-Hsuan
Yang. 2020. Attribute-guided attention for referring
expression generation and comprehension. IEEE
Transactions on Image Processing, 29:5244–5258.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh
Mottaghi, and Aniruddha Kembhavi. 2023. Unified-
IO: A unified model for vision, language, and multi-
modal tasks. In Proceedings of the 11th Interna-
tional Conference on Learning Representations, Ki-
gali, Rwanda.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
Logic decoding: (Un)supervised neural text genera-
tion with predicate logic constraints. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288–4299,
Online.

Ruotian Luo and Gregory Shakhnarovich. 2017. Com-
prehension-guided referring expressions. In Proceed-
ings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3125–3134,
Honolulu, HI, USA.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
DeepProbLog: Neural probabilistic logic program-
ming. In Advances in Neural Information Processing
Systems, volume 31, pages 1–11, Montréal, Canada.

Junhua Mao, J. Huang, A. Toshev, Oana-Maria Camburu,
A. Yuille, and Kevin Murphy. 2016. Generation and
comprehension of unambiguous object descriptions.
In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 11–20, Las Vegas, NV, USA.

Bill McDowell and Noah D. Goodman. 2019. Learning
from omission. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 619–628, Florence, Italy.

Nikolaos Panagiaris, Emma Hart, and Dimitra Gkatzia.
2020. Improving the naturalness and diversity of re-
ferring expression generation models using minimum
risk training. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
41–51, Dublin, Ireland.

Nikolaos Panagiaris, Emma Hart, and Dimitra Gkatzia.
2021. Generating unambiguous and diverse refer-
ring expressions. Computer Speech & Language,
68:101184.

Rrubaa Panchendrarajan and Arkaitz Zubiaga. 2024.
Synergizing machine learning & symbolic meth-
ods: A survey on hybrid approaches to natural lan-
guage processing. Expert Systems with Applications,
251:124097.

Martin J. Pickering and Simon Garrod. 2004. Toward a
mechanistic psychology of dialogue. Behavioral and
Brain Sciences, 27:169–226.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the 33rd AAAI Confer-
ence on Artificial Intelligence and 31st Innovative
Applications of Artificial Intelligence Conference and
9th AAAI Symposium on Educational Advances in
Artificial Intelligence, pages 6908–6915, Honolulu,
HI, USA.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge University
Press, Cambridge, UK.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed
Khan, Ndivhuwo Makondo, Ismail Yunus Akhal-
waya, Haifeng Qian, Ronald Fagin, Francisco Bara-
hona, Udit Sharma, Shajith Ikbal, Hima Karanam,
Sumit Neelam, Ankita Likhyani, and Santosh Sri-
vastava. 2020. Logical neural networks. Preprint,
arXiv:2006.13155.

Simeon Schüz, Ting Han, and Sina Zarrieß. 2021. Di-
versity as a by-product: Goal-oriented language gen-
eration leads to linguistic variation. In Proceedings
of the 22nd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 411–422,
Singapore and Online.

48

https://doi.org/10.1162/COLI_a_00088
https://doi.org/10.1162/COLI_a_00088
https://doi.org/10.1162/089120103321337430
https://doi.org/10.1162/089120103321337430
https://doi.org/10.1109/CVPR46437.2021.00650
https://doi.org/10.1109/CVPR46437.2021.00650
https://doi.org/10.1109/tmm.2018.2811621
https://doi.org/10.1109/tmm.2018.2811621
https://doi.org/10.1109/CVPR42600.2020.00449
https://doi.org/10.1109/CVPR42600.2020.00449
https://proceedings.neurips.cc/paper_files/paper/2024/file/da76884a4e003ad0de97804ec4578e5b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/da76884a4e003ad0de97804ec4578e5b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/da76884a4e003ad0de97804ec4578e5b-Paper-Conference.pdf
https://doi.org/10.1109/iccv.2017.520
https://doi.org/10.1109/iccv.2017.520
https://doi.org/10.1109/tip.2020.2979010
https://doi.org/10.1109/tip.2020.2979010
https://openreview.net/forum?id=E01k9048soZ
https://openreview.net/forum?id=E01k9048soZ
https://openreview.net/forum?id=E01k9048soZ
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.1109/CVPR.2017.333
https://doi.org/10.1109/CVPR.2017.333
https://proceedings.neurips.cc/paper_files/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
https://doi.org/10.1109/CVPR.2016.9
https://doi.org/10.1109/CVPR.2016.9
https://doi.org/10.18653/v1/P19-1059
https://doi.org/10.18653/v1/P19-1059
https://doi.org/10.18653/v1/2020.inlg-1.7
https://doi.org/10.18653/v1/2020.inlg-1.7
https://doi.org/10.18653/v1/2020.inlg-1.7
https://doi.org/10.1016/j.csl.2020.101184
https://doi.org/10.1016/j.csl.2020.101184
https://doi.org/10.1016/j.eswa.2024.124097
https://doi.org/10.1016/j.eswa.2024.124097
https://doi.org/10.1016/j.eswa.2024.124097
https://doi.org/10.1017/S0140525X04000056
https://doi.org/10.1017/S0140525X04000056
https://doi.org/10.1609/aaai.v33i01.33016908
https://doi.org/10.1609/aaai.v33i01.33016908
https://doi.org/10.1017/CBO9780511519857
https://doi.org/10.1017/CBO9780511519857
https://doi.org/10.48550/arXiv.2006.13155
https://doi.org/10.18653/v1/2021.sigdial-1.43
https://doi.org/10.18653/v1/2021.sigdial-1.43
https://doi.org/10.18653/v1/2021.sigdial-1.43


Simeon Schüz and Sina Zarrieß. 2021. Decoupling
pragmatics: Discriminative decoding for referring ex-
pression generation. In Proceedings of the Reasoning
and Interaction Conference (ReInAct 2021), pages
47–52, Gothenburg, Sweden.

Simeon Schüz, Albert Gatt, and Sina Zarrieß. 2023.
Rethinking symbolic and visual context in referring
expression generation. Frontiers in Artificial Intelli-
gence, 6:1067125.

Advaith Siddharthan and Ann Copestake. 2004. Gen-
erating referring expressions in open domains. In
Proceedings of the 42nd Annual Meeting of the Associ-
ation for Computational Linguistics, pages 407–414,
Barcelona, Spain.

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis.
2016. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–
489.

Matthew Stone and Bonnie Webber. 1998. Textual econ-
omy through close coupling of syntax and semantics.
In Proceedings of the 9th International Workshop
on Natural Language Generation, pages 178–187,
Niagara-on-the-Lake, Canada.

Mengyang Sun, Wei Suo, Peng Wang, Yanning Zhang,
and Qi Wu. 2022. A proposal-free one-stage frame-
work for referring expression comprehension and
generation via dense cross-attention. IEEE Transac-
tions on Multimedia, 25:2446–2458.

Mikihiro Tanaka, Takayuki Itamochi, Kenichi Narioka,
Ikuro Sato, Yoshitaka Ushiku, and Tatsuya Harada.
2019. Generating easy-to-understand referring ex-
pressions for target identifications. In Proceedings
of the 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 5793–5802, Seoul,
Korea.

Polina Tsvilodub, Michael Franke, and Fausto Carcassi.
2024. Cognitive modeling with scaffolded LLMs:
A case study of referential expression generation.
In ICML 2024 Workshop on LLMs and Cognition,
Vienna, Austria.

Leslie G. Valiant. 2003. Three problems in computer
science. Journal of the ACM, 50(1):96–99.

Kees van Deemter. 2016. Computational Models of
Referring: A Study in Cognitive Science. The MIT
Press, Cambridge, MA, USA.

Kees van Deemter, Albert Gatt, Roger P.G. van Gompel,
and Emiel Krahmer. 2012. Toward a computational
psycholinguistics of reference production. Topics in
Cognitive Science, 4(2):166–183.

Kees van Deemter, Ielka van der Sluis, and Albert Gatt.
2006. Building a semantically transparent corpus
for the generation of referring expressions. In Pro-
ceedings of the 4th International Natural Language
Generation Conference, pages 130–132, Sydney, Aus-
tralia.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy,
Devi Parikh, and Gal Chechik. 2017. Context-aware
captions from context-agnostic supervision. In Pro-
ceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1070–
1079, Honolulu, HI, USA.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA.

Melissa Le-Hoa Võ. 2021. The meaning and structure
of scenes. Vision Research, 181:10–20.

Guan Wang, Weihua Li, Edmund Lai, and Jianhua Jiang.
2022a. KATSum: Knowledge-aware abstractive text
summarization. In Proceedings of the 2022 Principle
and Practice of Data and Knowledge Acquisition
Workshop PKAW, Shanghai, China.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022b. OFA: Unifying
architectures, tasks, and modalities through a sim-
ple sequence-to-sequence learning framework. In
Proceedings of the 39th International Conference on
Machine Learning, pages 23318–23340.

Julia White, Jesse Mu, and Noah D. Goodman. 2020.
Learning to refer informatively by amortizing prag-
matic reasoning. In Proceedings of the Annual Meet-
ing of the Cognitive Science Society, volume 42,
Virtual.

Bram Willemsen and Gabriel Skantze. 2024. Referring
expression generation in visually grounded dialogue
with discourse-aware comprehension guiding. In
Proceedings of the 17th International Natural Lan-
guage Generation Conference, pages 453–469, Tokyo,
Japan.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai,
Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
and Lu Yuan. 2024. Florence-2: Advancing a uni-
fied representation for a variety of vision tasks. In
Proceedings of the 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages
4818–4829, Seattle, WA, USA.

Fulong Ye, Yuxing Long, Fangxiang Feng, and Xiaojie
Wang. 2023. Whether you can locate or not? Interac-
tive referring expression generation. In Proceedings
of the 31st ACM International Conference on Multi-
media, pages 4697–4706, Ottawa, ON, Canada.

49

https://aclanthology.org/2021.reinact-1.7/
https://aclanthology.org/2021.reinact-1.7/
https://aclanthology.org/2021.reinact-1.7/
https://doi.org/10.3389/frai.2023.1067125
https://doi.org/10.3389/frai.2023.1067125
https://doi.org/10.3115/1218955.1219007
https://doi.org/10.3115/1218955.1219007
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://aclanthology.org/W98-1419/
https://aclanthology.org/W98-1419/
https://doi.org/10.1109/TMM.2022.3147385
https://doi.org/10.1109/TMM.2022.3147385
https://doi.org/10.1109/TMM.2022.3147385
https://doi.org/10.1109/ICCV.2019.00589
https://doi.org/10.1109/ICCV.2019.00589
https://openreview.net/forum?id=gnGhkVfhje
https://openreview.net/forum?id=gnGhkVfhje
https://doi.org/10.1145/602382.602410
https://doi.org/10.1145/602382.602410
https://doi.org/10.7551/mitpress/9082.001.0001
https://doi.org/10.7551/mitpress/9082.001.0001
https://doi.org/10.1111/j.1756-8765.2012.01187.x
https://doi.org/10.1111/j.1756-8765.2012.01187.x
https://aclanthology.org/W06-1420
https://aclanthology.org/W06-1420
https://doi.org/10.1109/CVPR.2017.120
https://doi.org/10.1109/CVPR.2017.120
https://doi.org/10.1109/cvpr.2015.7298935
https://doi.org/10.1109/cvpr.2015.7298935
https://doi.org/10.1016/j.visres.2020.11.003
https://doi.org/10.1016/j.visres.2020.11.003
https://doi.org/10.48550/arXiv.2212.03371
https://doi.org/10.48550/arXiv.2212.03371
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://escholarship.org/uc/item/7n1717h7
https://escholarship.org/uc/item/7n1717h7
https://aclanthology.org/2024.inlg-main.38/
https://aclanthology.org/2024.inlg-main.38/
https://aclanthology.org/2024.inlg-main.38/
https://doi.org/10.1109/CVPR52733.2024.00461
https://doi.org/10.1109/CVPR52733.2024.00461
https://doi.org/10.1145/3581783.3612214
https://doi.org/10.1145/3581783.3612214


Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-
Fu Chang, and Yinfei Yang. 2023. FERRET: Refer
and ground anything anywhere at any granularity.
In The 12th International Conference on Learning
Representations, Vienna, Austria.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C.
Berg, and Tamara L. Berg. 2016. Modeling context
in referring expressions. In Computer Vision – ECCV
2016, pages 69–85, Cham, Switzerland. Springer.

Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L.
Berg. 2017. A joint speaker-listener-reinforcer model
for referring expressions. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3521–3529, Honolulu,
HI, USA.

Sina Zarrieß and David Schlangen. 2016. Easy things
first: Installments improve referring expression gen-
eration for objects in photographs. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, pages 610–620, Berlin,
Germany.

Sina Zarrieß and David Schlangen. 2018. Decoding
strategies for neural referring expression generation.
In Proceedings of the 11th International Conference
on Natural Language Generation, pages 503–512,
Tilburg, The Netherlands.

Sina Zarrieß and David Schlangen. 2019. Know what
you don’t know: Modeling a pragmatic speaker that
refers to objects of unknown categories. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 654–659, Florence,
Italy.

Houyu Zhang, Zhenghao Liu, Chenyan Xiong, and
Zhiyuan Liu. 2020. Grounded conversation genera-
tion as guided traverses in commonsense knowledge
graphs. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2031–2043, Online.

Xueliang Zhao, Tingchen Fu, Lemao Liu, Lingpeng
Kong, Shuming Shi, and Rui Yan. 2023. SORTIE:
Dependency-aware symbolic reasoning for logical
data-to-text generation. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
11247–11266, Toronto, Canada.

Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gok-
berk Cinbis, David Fouhey, Ivan Laptev, and Josef
Sivic. 2019. Cross-task weakly supervised learning
from instructional videos. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3532–3540, Long
Beach, CA, USA.

50

https://openreview.net/forum?id=2msbbX3ydD
https://openreview.net/forum?id=2msbbX3ydD
https://doi.org/10.1007/978-3-319-46475-6_5
https://doi.org/10.1007/978-3-319-46475-6_5
https://doi.org/10.1109/CVPR.2017.375
https://doi.org/10.1109/CVPR.2017.375
https://doi.org/10.18653/v1/P16-1058
https://doi.org/10.18653/v1/P16-1058
https://doi.org/10.18653/v1/P16-1058
https://doi.org/10.18653/v1/W18-6563
https://doi.org/10.18653/v1/W18-6563
https://doi.org/10.18653/v1/P19-1063
https://doi.org/10.18653/v1/P19-1063
https://doi.org/10.18653/v1/P19-1063
https://doi.org/10.18653/v1/2020.acl-main.184
https://doi.org/10.18653/v1/2020.acl-main.184
https://doi.org/10.18653/v1/2020.acl-main.184
https://doi.org/10.18653/v1/2023.findings-acl.715
https://doi.org/10.18653/v1/2023.findings-acl.715
https://doi.org/10.18653/v1/2023.findings-acl.715
https://doi.org/10.1109/CVPR.2019.00365
https://doi.org/10.1109/CVPR.2019.00365


Proceedings of the 2025 CLASP Conference on Language models And RePresentations (LARP), pages 51–64
September 8-9, 2025 ©2025 Association for Computational Linguistics

Extracting a Prototypical Argumentative Pattern in Financial Q&As

Giulia D’Agostino
Università della Svizzera italiana

Switzerland
giulia.dagostino@usi.ch

Michiel van der Meer
Universiteit Leiden

The Netherlands
m.t.van.der.meer@liacs.leidenuniv.nl

Chris Reed
University of Dundee

Scotland
c.a.reed@dundee.ac.uk

Abstract

Argumentative patterns are recurrent strategies
adopted to pursue a definite communicative
goal in a discussion. For instance, in Q&A
exchanges during financial conference calls, a
pattern called Request of Confirmation of Infer-
ence (ROCOI) helps streamline conversations
by requesting explicit verification of inferences
drawn from a statement. Our work presents
two ROCOI extraction approaches from inter-
rogative units: sequence labeling and text-to-
text generation. We experiment with multiple
models for each task formulation to explore
which models can effectively and robustly per-
form pattern extraction. Results indicate that
machine-based ROCOI extraction is an achiev-
able task, though variation among metrics that
are designed for different evaluation dimen-
sions makes obtaining a clear picture difficult.
We find that overall, ROCOI extraction is per-
formed best via sequence labeling, though with
ample room for improvement. We encourage
future work to extend the study to new argu-
mentative patterns.

1 Introduction

An argumentative pattern is a recurrent and iden-
tifiable structure with a specific function in an ar-
gumentative discussion. Such a pattern offers valu-
able insights into the reasoning processes and di-
alectical strategies employed by interlocutors in
argumentative discourse.

Extracting argumentative patterns from natural
discourse presents a significant challenge in the
field of Argument mining (AM) (Lawrence and
Reed, 2019). Typically, AM involves three stages:
(1) the identification, segmentation, and classifi-
cation of argumentative discourse units (ADUs)
(Ghosh et al., 2014), (2) the characterization of
the relations between ADUs (Peldszus and Stede,
2013), and (3) the identification of argument
schemes, which denote implicit and explicit infer-
ential relations within and across ADUs (Macagno

“We should implement
more rigorous testing proce-
dures."

“You’re suggesting our cur-
rent testing is insufficient?
How do you propose to do
that?"

Model 2:
Text2Text

LLM

Model 1:
IOB LLM

Generated Response
[You’re suggesting ...]

Sequence Labels
[B, I, I, I, I, ...]

reply

input

input

Context

MIU

Figure 1: Example ROCOI and the two extraction ap-
proaches.

and Walton, 2014). This area of research is of-
ten challenged by the idiosyncrasies of spoken
language. For instance, in Earnings Conference
Call (ECC) Q&A sessions, argumentative content
is often embedded in complex statements aimed
at maximizing information content while minimiz-
ing exchanges (Keith and Stent, 2019). Instead
of employing a typical end-to-end AM pipeline,
leveraging linguistic patterns that are clearly identi-
fiable as part of argument schemes could be useful
for locating argumentative moves, unraveling the
complexities in such dialogues.

In this paper, we present a novel task and ap-
proach to the extraction of a prototypical argumen-
tative pattern called the Request Of Confirmation
Of Inference (ROCOI). Our work focuses on this
argumentative pattern that emerges in questions,
which presents some easily identifiable surface ele-
ments that complement the underlying argumenta-
tive function.

The ROCOI pattern is a structure that signals
the presence of a reasoning process, of which the
interrogative instance represents the conclusion
(or, more accurately, the request for confirmation
thereof). By carefully bridging lexical and syntac-
tic recurrent features with the pragmatic role that
such a pattern plays, ROCOIs constitute a unique
pattern whereby we shed light on the reasoning
process behind strategic inquiry. In the extraction
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process, we move beyond the analysis of entire
discourse units, instead allowing us to localize RO-
COIs inside dialogues. This approach allows us
to maintain precise control over pattern detection
while dealing with the inherent complexity of argu-
mentative texts. In this sense, the current approach
moves beyond pattern identification–a task already
tackled by D’Agostino and Rocci (2024)–towards
pattern extraction.

We specifically focus on the ROCOI pattern as
it represents an ideal proto-pattern for exploring
how well NLP methods can extract argumentative
patterns from text. These patterns exhibit char-
acteristics that make them readily identifiable by
trained human annotators, including their interroga-
tive nature on an inferential conclusion, and explicit
marking of prior reasoning. This clarity provides
an excellent starting point for developing and eval-
uating automated extraction methods. At the same
time, such characteristics are neither regular nor
exclusive to this task, so they must be paired with
recognition of the argumentative reasoning that
the patterns reside in Since LLMs may not behave
like human annotators in argumentative reasoning
(de Wynter and Yuan, 2024), with this study, we
probe the limits of pragmatic pattern recognition
by means of surface elements.

The selection of our domain of application is
mainly utilitarian: ECCs are strategic exchanges
that constrain discourse in a way that makes the
ROCOI pattern relatively frequent and prominent–
an optimal environment for an exploratory study.

Our experiments encompass two task formula-
tions, comparing a classification (sequence label-
ing) and generation (text-to-text extractive genera-
tion) paradigm. Comparing these two approaches
allows us to bridge traditional boundary-marking
techniques (Eger et al., 2017; Kuribayashi et al.,
2019; Bao et al., 2021) with state-of-the-art lan-
guage modeling approaches (Raffel et al., 2020;
Gorur et al., 2024).

This work represents a crucial step toward the
broader goal of comprehensive argumentative anal-
ysis, laying the groundwork for future exploration
of more complex patterns, as well as the incorpora-
tion of contextual features in detecting argumenta-
tive patterns. Furthermore, our models can support
humans in locating argumentation in financial con-
texts (van der Meer et al., 2024), with potential
applications in areas such as investor relations, cor-
porate communication, and financial analysis.

2 Related Work

2.1 The Request of Confirmation of Inference:
An argumentative pattern in ECCs

The ROCOI (previously introduced and qualita-
tively studied by Rocci and Raimondo, 2018) is an
argumentative pattern in ECCs that is originated in
question units. It is relevant to the discussion in the
sense that it creates an argumentative confrontation
(van Eemeren and Grootendorst, 2004).

A ROCOI is an assertive question, i.e., in which
a stance is asserted by the questioner. As a conse-
quence, when it is formulated directly, a ROCOI
is a closed question. Moreover, ROCOIs make
explicit by lexical means the fact that the stance as-
serted is the result of an inferential process, the con-
clusion of which is expected to be (dis)confirmed
by the interlocutor. This results in the ROCOI be-
ing a challenging question, regardless of the degree
of semantic indirectness of its formulation.

Example 1 shows some ROCOIs; underlined, the
lexical elements that indicate the inferential pro-
cess, which constitutes the keystone of the pattern.

(1) a. Does that mean that customers are
reluctant to term out these sort of
prices?

b. Should we think of the capital
commitment has a hard cap now.

c. Is it fair to say that you’ve maxed out
on what was pre-approved at the AGM
and that any incremental issue from
here would require AGM approval?

Previous studies on the ROCOI (Rocci and Rai-
mondo, 2018; D’Agostino and Rocci, 2024) iden-
tify subcategories of the pattern. This article con-
siders the class that D’Agostino and Rocci (2024)
call Type 1, that is, ROCOIs in which the infer-
ential conclusion–of which the questioner asks
confirmation–is part of the interrogative unit, as
shown in all questions of Example 1. On the other
hand, Type 2 ROCOIs correspond to patterns in
which the questioner’s inference is not explicitly
part of the interrogative sentence, such as in the fol-
lowing example (ROCOI in italics): “And looking
at the take rate in the fourth quarter, might have
slowed down a little bit. So just – is that true?”.
The reason behind the choice of experimenting
with Type 1 only is twofold: on the one hand, Type
1 ROCOIs are more compact, in the sense that the
conclusion and the question pertain to the same
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unit, and are therefore more easily identifiable; on
the other hand, they are the most frequent ones.

Easiness in identification should not be mistaken
with triviality of the task, and so the retrieval of
this pattern cannot be simply achieved via rule-
based search of key-phrases such as those empha-
sized in Example 1. The reason is twofold. The
typical lexical signals that indicate the presence
of a ROCOI belong to the domain of knowledge
management (epistemicity and evidentiality) (Musi
and Rocci, 2017; Miecznikowski, 2020; Lucchini
et al., 2024); however, while not all ROCOIs dis-
play them, these indicators also have a much wider
scope of application than introducing this question
type. Conversely, the retrieval of such key-phrases
does not ensure the extraction of the entire pat-
tern, as it does not provide any indication about its
extension–which is not predefined.

3 Method

We outline the dataset, task formulation, and evalu-
ation setup for the ROCOI extraction approaches.

3.1 Dataset

Our work focuses on a dataset that comprises
60 Earnings Conference Calls (ECCs) between
2020–2023 for companies Airbnb (ABNB), British
Petroleum (BP), Credit Suisse (CS), Door Dash
(DASH), Hasbro (HAS), Shell (SHEL), Exxon Mo-
bil (XOM) and Zillow (Z), for a total of 1377 ques-
tion units. Manual annotation identified 180 ques-
tion units featuring ROCOIs, in total containing
193 unique ROCOI patterns. Of these, 134 were
Type 1 ROCOIs, and thus represent the final corpus
for this study.

The annotation was first carried out by trained
student assistants. Annotators were MA students
selected on the basis of their joint background in
linguistics/languages and financial communication.
Whereas financial literacy supports domain knowl-
edge and text comprehension, higher impact in an-
notation quality is credited to linguistic awareness:
ROCOIs are, in fact, a linguistic phenomenon that
happens to be frequent in this context, but whose
form is not influenced by the content.

Each document was analyzed by two to four an-
notators. The agreement on the request type label-
ing task (for which the ROCOI is one out of eight
possible values) is α = 0.79 (Krippendorff, 1970)1;

1Disagreements relate to the selection of a different request
type, mostly biased by the content of the inference: a ROCOI

agreement on ROCOI span length is Γ = 0.52 (Ma-
thet et al., 2015). Two PhD students subsequently
curated the annotation until reaching a shared gold
standard. This was followed by an additional round
of dictionary-based search of (potential) remaining
instances, performed by the first contributor of the
current paper. Further information about the anno-
tation guidelines for request types is provided in
Lucchini and D’Agostino (2023, p. 15-19); ROCOI
type classification is borrowed from D’Agostino
and Rocci (2024). In total, 18% of tokens in the
dataset are part of a ROCOI, whereas 82% of to-
kens are non-ROCOI tokens. At the present stage
and to the best of our knowledge, this is the most ex-
tensive collection of manually annotated ROCOIs.

3.2 Task formulation

We compare two task formulations for ROCOI ex-
traction: (1) sequence labeling and (2) text gen-
eration, applied to interrogative units that were
previously identified as exhibiting the pattern in
question. These two tasks allow us to compare the
results obtained from applying a classification and
a generation paradigm. Classification, where we
mark the boundaries between the presence and ab-
sence of a ROCOI, represents the standard method
of identifying a substructure. However, such an
approach usually requires ample training data. In
contrast, text-to-text extractive generation, which
involves generating the part of the input text that
contains the ROCOI pattern, is similar to more re-
cent state-of-the-art LLMs. We aim to investigate
which approach works better given our relatively
small dataset. We describe each task formulation
separately and provide details about hyperparam-
eters and training settings for all models in Ap-
pendix A. The results of both these experiments
are compared against an LLM-generated baseline
(decoder-only architecture), obtained by prompting
the GPT-4o API. Seven-shot in-context learning
was adopted as prompting technique for sequence
labeling, five-shot for text-to-text generation.2

(1) Sequence labeling Sequence labeling for RO-
COI extraction is formulated as a task whereby we
mark the boundaries between the presence and ab-

may be tagged as a request for opinion if, for instance, the
inference is about an opinion that the management may hold.
No trends were found upon disagreement analysis.

2Models GPT-4o, GPT-4o-mini, and GPT-4.1 were com-
pared across 0-, 3-, 5-, and 7-shot contexts; reported as “LLM
baseline” is the combination that performed best on average
across metrics for the task.
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sence of the pattern. Each token is classified as
whether pertaining to the sequence (tags “B” and
“I”), or not (tag “O”). Such a format represents the
standard method of identifying a substructure in a
text–for instance, for Named Entity Recognition
(NER). Unlike traditional NER, we only consider
one type of pattern and thus do not need to specify
the class to which the tags pertain.

We experiment with 5 open-source models in
total; three of those are encoder-only models:

TinyBERT The smallest model to gauge task com-
plexity. If the smallest model can learn it well, we
do not need to train a more capable model (Jiao
et al., 2020).
Vanilla BERT Since it is commonly used as a
baseline (Devlin et al., 2019).
SpanBERT As a version of BERT that is opti-
mized to represent spans of text, since ROCOIs are
often single contiguous spans (Joshi et al., 2020).

In addition, we also experiment with two encoder-
decoder models:

T5 Strong empirical results indicate that this
model may be used across contexts and tasks (Raf-
fel et al., 2020).
FlanT5 Updated version of T5 that includes a
wider array of tasks, the model may generalize
better to unseen tasks (Longpre et al., 2023).

(2) Text-to-text generation For this task, the pat-
tern is considered a substring of the question unit
given as an input; hence, the output corresponds to
a verbatim generation of a portion of the wider unit
(similar to the use of the text-to-text architecture
already intended by Raffel et al. (2020)). There-
fore, particular attention must be devoted to the
quality of the generation and, specifically, that the
fine-tuned model reports an exact portion of the
original text (and not, for instance, a summariza-
tion of it) and learns that a pattern is a continuous
sequence within the text.

This portion of the study is carried out on two
text-to-text model families:

BART serves as the encoder-decoder counterpart
to our BERT baseline for sequence labeling. We
use the base and large varieties (Lewis et al., 2020)
to further investigate the impact of model size.
T5 in the small, base, and large varieties, again
to see whether a more versatile text-to-text train-
ing procedure benefits performance (Raffel et al.,
2020).

3.3 Evaluation
We outline how we evaluate models on each task
formulation.

3.3.1 Sequence labeling
We initially aimed to adopt a similar evaluation ap-
proach as Named Entity Recognition (NER), as it
shares the IOB tagging setup (Li et al., 2020). Per-
formance in NER and similar tasks is traditionally
evaluated at the token level (Tjong Kim Sang and
Buchholz, 2000). However, tagging is typically
performed (a) on short sequences, (b) in multiclass
classification, and (c) featuring multiple units in
a text; none of these characteristics strictly hold
for ROCOIs. Even in the NER extraction domain,
however, there has been a propensity towards evalu-
ation at the full entity level, especially if the predic-
tion is aimed at downstream tasks (Segura-Bedmar
et al., 2013). Since ROCOIs are long and complex
spans of text with potentially variable boundaries,
we additionally adopt span-level evaluation and
compare it to individual token-level evaluation.

Token-level evaluation At the token level, we
first provide an overview of the accuracy in the
prediction by individual tags (‘O’, ‘I’, ‘B’). Then
we aggregate the tags and provide a measure of
precision, recall, and F1 score, alongside the calcu-
lation of token-based Krippendorff’s α (Krippen-
dorff, 1970).
Span-level evaluation To evaluate the entire span
over which the ROCOI develops and not only the
individual tokens that constitute it, we make use
of the ROUGE-L metric, to determine the longest
matching string, as well as the Gamma (Γ) method
for inter-annotator agreement measure and align-
ment (Mathet et al., 2015)3 in a basic, one-label,
positional dissimilarity detection configuration.

3.3.2 Text-to-text generation
For the text-to-text generation evaluation, we use
various metrics to investigate the quality of the ex-
tracted pattern. Each model is evaluated according
to six metrics, clustered into three classes, each
of which corresponds to a different way of inter-
preting the nature of the task: syntactic (pattern
matching), semantic (embedding similarity), or an-
notation (inter-annotator agreement). The rationale
behind such a three-fold choice lies in the nature of
generative models: on the one hand, they tend to

3Taken from the Python library pygamma-agreement
(https://github.com/bootphon/pygamma-agreement)
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be too creative despite being nudged to extract ver-
batim text. This would not be captured by semantic
metrics but is counterbalanced by syntactic metrics.
On the other hand, syntactic evaluation cannot cap-
ture whether some slightly shifted boundary still
correctly identifies the core of the pattern–which
can however be reintegrated into the equation to
some extent by the use of semantic similarity (al-
though not entirely, since such metrics are not spe-
cialized in ROCOI core meaning detection, similar
to sequence labeling). Inter-annotator agreement
metris works as a sanity check that decidedly sig-
nals the presence of ill-formed sequences in gener-
ated patterns.

Syntactic evaluation In this view, the extraction
performance is evaluated in terms of string match-
ing. The first naïve evaluation that establishes the
baseline consists of checking whether the pattern is
present in the extracted string. We call this evalua-
tion “pattern matching” and its most obvious flaws
are that (a) over-extraction to the point of reporting
the entire original string is a hit and (b) even slight
under-extraction is a complete miss. The three
possible values are ‘full match’ (if the retrieved
string contains exactly the correct pattern), ‘partial
match’ (if the retrieved string contains at least the
full correct pattern), and ‘no match’ otherwise; re-
ported are the frequency distributions across the
three classes. This is paired with a more refined
version of such an evaluation, that is, the calcula-
tion of the ROUGE score (Lin, 2004); specifically
the ROUGE-L metric, which identifies the longest
co-occurring sequence.
Semantic evaluation In this case, what is evalu-
ated is the semantic distance between the predicted
and the actual pattern. This is achieved by (1) cal-
culating a simple Euclidean distance between the
embedding representation of the patterns and (2)
applying some well-established evaluation methods
that are typically used for text generation and sum-
marization: notably (a) BERTScore (Zhang et al.,
2020) and (b) Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019).4

Annotation agreement evaluation The true pat-
tern can be considered a gold standard annotation
and the extracted pattern a machine-generated an-
notation; in this perspective, the two are compared
with a tool designed to capture the inter-annotator
agreement and the dissimilarity in span boundaries.

4SBERT in its base configuration measures cosine similar-
ity.

Accuracy
Model O I B

BERT (base) 0.93 0.61 0.70
TinyBERT 0.92 0.39 0.40
SpanBERT 0.89 0.61 0.60
T5 (base) 0.95 0.67 0.65
FlanT5 (base) 0.92 0.67 0.70
GPT-4o 0.83 0.40 0.05

Table 1: Sequence labeling accuracy by tag. The best
models are shown in bold, second best underlined. The
LLM baseline is in italic.

In particular, we use the Gamma (Γ) method for
inter-annotator agreement measure and alignment
(Mathet et al., 2015). The metric cannot compute
on instances in which the extracted pattern is not a
lexical match to a substring of the input text, and
thus tells us that the generated string is ill-formed.

4 Results and discussion

We describe our results after training the models
on the two tasks: sequence labeling and text-to-text
generation respectively.

4.1 Sequence labeling
Table 1 reports the accuracy values by individual
tag. As reported in Section 3.1, 82% of tokens
in the dataset are non-ROCOI elements; these are
identified by ‘O’ tags. Therefore, since they repre-
sent the most frequent type, as expected ‘O’ tokens
reach a higher accuracy across models. On the
contrary, ‘B’-type tokens understandably are the
least frequent ones in the corpus but its accuracy
levels are not far from that of ‘I’ tokens overall–
if not better. It is worth noticing that SpanBERT
appears to be performing badly despite being op-
timized for encoding contiguous spans of texts. It
achieves the lowest accuracy on the ‘O’ tag, indicat-
ing it most strongly mislocates ROCOI patterns in
the text. The LLM baseline confirms the accuracy
trends but uniformly scores lower than any other
model. At this stage, the best performing models
seem to be the two belonging to the T5 family (both
best in two out of three accuracy values), followed
by vanilla BERT (second best in two out of three
accuracy values).

Further classification results aggregated over the
three tag categories are displayed in Table 2, both
at the token level (former four columns) and span
level (latter two columns). Token-level evaluation
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appears to favor FlanT5, which achieves the high-
est results in three out of four metrics and is second
best in the remaining one. Surprisingly, SpanBERT
performs below par in full span detection, accord-
ing to span-level evaluation results, which are in-
stead dominated again by T5 (ROUGE-L = 0.90)
and FlanT5 (Γ = 0.63). To conclude, the perfor-
mance exhibited by T5, FlanT5, and TinyBERT
on sequence labeling at the span level compares
with or exceeds human agreement (i.e, Γ ≥ 0.52).
This indicates that we may use automatic ROCOI
extraction for machine annotation for new samples
in the future. However, the machine annotations
fail in a way that is not captured by this metric,
or disagree with human annotators in novel ways.
Hence, we set out to further understand the limita-
tions of the automatic ROCOI extraction approach
in Section 5.1.

The LLM baseline confirms weak over both
token- and span-level labeling, displaying for most
metrics below average to nearly zero agreement.
Tag sequences appear to be well formed, but not la-
beling the pattern correctly; moreover, the returned
sequence is shorter than the reference in 98% of
cases. This indicates that the model is unfit for the
job, even though sequence labeling is a generation
task in the linguistic domain–which is supposedly
the type of task at which these models excel.

4.2 Text-to-text generation
We present the evaluation results sorted by eval-
uation approach type (syntactic, semantic, annto-
tation), each of which is presented in a dedicated
table.

Table 3 reports syntactic evaluation. For both
evaluation methods, the two BART models appear
to be by far the best-performing ones, particularly
the large configuration–with best results across all
metrics. Semantic measures are reported in Table 4.
The baseline metric represented by raw Euclidean
distance between the true and predicted pattern
favors BART models; moreover, both SBERT and
BERTScore, again identify BART-large as the best-
performing model, reaching F1 = 0.94. Similar
outcomes are shown in Table 5, which displays
surprisingly bad results for the T5 models on the
inter-annotator agreement metrics. This will be
appropriately discussed in Section 5.2.

Different metrics capture different aspects of the
ROCOI extraction task in a text-to-text generation
setup, For instance, syntactic pattern matching in-
forms us of the capability to lexically overlap with

the ground truth patterns, while semantic evalua-
tion allows us to observe how well the model cap-
tures the underlying meaning and intent of the RO-
COI spans. We observe that BART models achieve
good performance along all three dimensions for
this task.

It is worth noting that for the text-to-text gen-
eration task, in contrast with what previously ob-
served for sequence labeling, the tested models are
often outperformed by the LLM baseline; this is
especially evident in the semantic and annotation
agreement metrics. This practically means that pat-
tern boundaries detection may not be extremely
accurate in the majority of cases, but the core con-
tent of the reference sequence is often included in
the generated one. The good level of annotation
agreement, moreover, ensures that the generated
text is sufficiently well-formed with reference to
the original pattern string.

5 Error analysis

In addition to our previous results, we present
a qualitative analysis of the predicted patterns.
Specifically, we observe the onset point and length
of all extracted patterns in the test set to identify
whether models tend to make consistent mistakes.

Further, we also present an overview of the dis-
tribution of ill-formed sequences in the prediction.
In the sequence labeling task, this corresponds to
cases in which a sequence onset is not correctly
followed by the next element in the sequence: a ‘B’
tag is immediately followed by an ‘O’ (not possible
in a well-formed ROCOI). In the text generation
task, this corresponds to token sequences that are
inconsistent with the original text.

While the results here summarize the findings,
Tables 9 and 10 for sequence labeling and text
generation respectively–available in Appendix B–
report by row the measures over each instance in
the test set.

5.1 Sequence labeling

We compare performance between T5 and FlanT5.
As for T5, perfect alignment with the start of the

pattern occurs in 60% of cases, while the major-
ity of predicted patterns appear to be shorter than
expected (55%). Worth noting is the near-perfect
acquisition of the IOB-tagging rules, which is re-
flected in a single instance of ill-formed sequence.

As for FlanT5, the right starting point is detected
in 70% of cases; extraction of exact right length
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Token-level Span-level
Model Precision Recall F1 α ROUGE-L Γ

BERT (base) 0.22 0.25 0.23 0.58 0.87 0.49
TinyBERT 0.09 0.05 0.06 0.37 0.82 0.60
SpanBERT 0.27 0.30 0.29 0.51 0.83 0.47
T5 (base) 0.17 0.15 0.16 0.67 0.90 0.56
FlanT5 (base) 0.32 0.30 0.31 0.61 0.87 0.63
GPT-4o 0.03 0.02 0.02 0.28 0.77 0.39

Table 2: Additional results for the sequence labeling approaches. The best models are shown in bold, second best
underlined. The LLM baseline is in italic.

Pattern matching
Model Full match Partial match No match ROUGE-L

BART (base) 0.20 0.50 0.30 0.63
BART (large) 0.20 0.60 0.20 0.67
T5 (small) 0.00 0.45 0.55 0.43
T5 (base) 0.15 0.50 0.35 0.54
T5 (large) 0.00 0.15 0.85 0.31
GPT-4o 0.40 0.44 0.16 0.72

Table 3: Syntactic evaluation for text-to-text generation. For pattern matching, results must be read as “the higher
the better” for full and partial match, and “the lower the better” for no match. The best models are shown in bold,
second best underlined. The LLM baseline is in italic; additionally, baseline results are in bold if their value is equal
or better than the best result.

spurts to 30%. However, 100% of predicted pat-
terns contain 1 to 4 ill-formed sequences. If the
extraction process was integrated in a pipeline, this
would easily result in error propagation.

Following, a test instance misclassified by both
models (ROCOI pattern in italics): “And secondly,
on U.S. gas, you’re very well-positioned with I
believe pretty much fully hedged production for
this year, but I’m wondering if at $2 per MCF
gas, you’re actually starting to see the opportunity
to perhaps take away some of the rigs and refo-
cus them in the Permian where you keep strongly
growing the activity. Thank you.”

In this example, FlanT5 recognizes three starting
points (underlined the tokens corresponding to a ‘B’
tag in the predicted sequence) and one well-formed
sequence roughly corresponding to the true pattern
(in bold the tokens corresponding to ‘I’ tags): “And
secondly, on U.S. gas, you’re very well-positioned
with I believe pretty much fully hedged production
for this year, but I’m wondering if at $2 per MCF
gas, you’re actually starting to see the opportunity
to perhaps take away some of the rigs and refocus
them in the Permian where you keep strongly grow-

ing the activity. Thank you.”. FlanT5 therefore not
only marks multiple onset points, but those may
also interrupt ongoing sequences.

In brief, T5 is the most reliable model for onset
position prediction (offset mean = 0.93); FlanT5
is the best at predicting pattern length (offset mean
= −6.2), as confirmed by similar length distribu-
tion in Figure 2f compared to the gold standard
of Figure 2a. For further insight, we refer to the
overview of Figure 2 (Appendix B).

5.2 Text-to-text generation
The two varieties of BART models were the best
performing across metrics. They show similar be-
havior and the large configuration mostly hits some
of the misses of the base configuration (cf. Table
10). The right starting point is detected in 45% of
cases by BART base, increasing to 60% for BART
large. The distribution of predicted lengths was the
same across both varieties; this means that the base
configuration is already powerful enough to pick
up such a feature to the best that this model family
allows given the quantity of training data available.
In conclusion, both BART models learned to iden-
tify the start of the pattern in the vast majority of
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BERTScore

Model Euclidean
distance

SBERT
similarity Precision Recall F1

BART (base) 0.42 0.07 0.91 0.95 0.93
BART (large) 0.46 0.08 0.92 0.96 0.94
T5 (small) 0.46 0.05 0.86 0.93 0.90
T5 (base) 0.59 0.06 0.89 0.94 0.91
T5 (large) 0.54 0.07 0.84 0.90 0.87
GPT-4o 0.35 0.78 0.93 0.95 0.94

Table 4: Semantic evaluation for text-to-text generation. The best models
are shown in bold, second best underlined. The LLM baseline is in italic;
additionally, baseline results are in bold if their value is equal or better than the
best result.

Model Γ

BART (base) 0.56
BART (large) 0.54
T5 (small) 0.07
T5 (base) 0.26
T5 (large) —
GPT-4o 0.69

Table 5: Annotation agreement
evaluation for text-to-text genera-
tion. The best models are shown
in bold, second best underlined.
The LLM baseline is in italic; ad-
ditionally, baseline results are in
bold if their value is equal or bet-
ter than the best result.

cases; remaining errors, however, greatly diverge
from the gold standard and both models tend to
considerably overgenerate in the majority of cases
(by 77 tokens on average for BART base, 73 for
BART large).

T5-large is, conversely, a case of extremely
flawed generation: despite all safeguards imple-
mented, none of the retrieved patterns corresponds
to a substring of the original text–hence hinder-
ing the calculation of the Γ metric in Table 5. For
example, compared to the true pattern “Are you
suggesting that you could potentially ship to Rus-
sia later this year?”, the corresponding generation
reads: “- And then my follow, as it is in terms of
Europe. I just want to clarify that? So this has the
potential risk from Russia for approximately 100
million.”.

6 Conclusions and future work

This paper introduces a prototypical argumentative
pattern that originates in the questions asked during
the Q&A sessions of financial dialogues, called the
Request Of Confirmation Of Inference (ROCOI).
Since argumentation is a pivotal aspect of human
communication, the identification and extraction of
argumentative patterns is argued to be fundamental
in the study of language in interaction. Particularly,
given that the identification of argumentative pat-
terns is a challenging yet doable task for trained
humans, this study seeks to answer the question of
whether language models can perform this task as
well.

We adopted two concurrent ML approaches to
the extraction of ROCOIs from a wider interrog-

ative unit: sequence labeling and text-to-text gen-
eration. The sequence labeling approach, evalu-
ated both at the token- and span-level, shows that
FlanT5 is the best-performing model. Qualitative
observation of the results, however, marks its out-
puts as potentially unreliable. T5 is therefore the
best-performing model both for accuracy and re-
liability of the output. The text-to-text genera-
tion approach identifies BART-large as the best-
performing model across syntactic, semantic, and
annotation agreement evaluation measures.

GPT-4o was identified as the state-of-the-art rep-
resentative for the decoder-only category of lan-
guage models: appropriate for the task due to its
power and despite its limited reasoning abilities–
as pattern extraction is not formulated as a rea-
soning task. The LLM performed poorly in the
sequence labeling task in terms of pattern identifi-
cation, whereas it represents state-of-the-art for ex-
tractive generation. The increment in performance,
however, does not appear to hold effective positive
correlation with model size and its use price. Con-
sequently, we do not deem the LLM baseline as the
winning model–especially due to its unreliability
across tasks.

In conclusion, this task can be carried out by lan-
guage models. At the present stage, results suggest
that sequence labeling is still the most trustworthy
method to approach the task. While results would
improve with a larger training dataset, gathering
additional samples containing ROCOIs is difficult
due to their low absolute frequency (although it rep-
resents a relatively frequent argumentative pattern
in the ECC context).
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Further work may include the insertion of in-
termediate steps to fine-tune for similar tasks
(such as argumentative sequence labeling) be-
fore applying them to ROCOI extraction (van der
Meer et al., 2022), alongside cross-domain ex-
traction and cross-pattern comparison in extrac-
tion performance. Additionally, ROCOI retrieval
may enhance current argument mining techniques
(D’Agostino, 2025). Type 1 ROCOIs, in fact, al-
ways explicitly include the conclusion of a reason-
ing instance. Even if the rest of the inferential pro-
cess was omitted from the conversation (i.e., they
are enthymemic), the acknowledgment of the RO-
COI functions as a placeholder that marks where
an inference was drawn in the conversation–thus
supporting the retrieval of argumentative instances.

Limitations

Our work has several limitations to consider. While
we carefully selected the models for fine-tuning
that are open source and accepted baselines among
related work in Argument Mining literature, our
choice of model architecture remains limited. Fur-
ther, our relatively limited dataset size affects the
generalizability of our results, especially in cases
of context shift. Training models with more data or
increasing the size of the evaluation set may paint a
different image of the relative performance among
models. Despite using fixed model checkpoints and
consistent dataset splits, we observed that T5’s gen-
eration outputs exhibit high predictive variability.
In addition, we found that FlanT5 has a system-
atic tendency to overpredict multiple ROCOI spans
within individual samples, potentially inflating our
metrics.

Consideration must also be given to the inherent
limitations in the formulation of the current task.
All instances fed to the models did contain at least
one ROCOI by design–as the experimental setup
assumes the availability of candidate question units,
and considers their identification an upstream task
(see D’Agostino and Rocci, 2024). However, it
is true that the current study neither accounts for
guardrails against potential error propagation, nor
explicitly handles cases that would entail empty
generation (alternatively, fully “O” labeling) as the
correct output. This can be addressed with the
development of a pipeline that performs pattern
identification before its extraction.

Lastly, the span length of the gold standard an-
notations over which a ROCOI develops is not a

settled matter–in fact, IAA is only fair with value
Γ = 0.52. The gold standard against which models
are tested in this experimental setup is a pairwise
expert curation of such annotations until almost
perfect agreement was achieved. Additionally, two
ROCOI configurations were defined: the minimal
and maximal extension of the pattern–the latter typ-
ically including a phrase or sentence that contains a
premise to the conclusion that constitutes the core
of a ROCOI (e.g., minimal ROCOI: “should we as-
sume that Premier Agent revenue growth should be
more muted for the remainder of the year?”, max-
imal ROCOI: “But given both of those are likely
to remain challenges for at least the remainder of
2022, should we assume that Premier Agent rev-
enue growth should be more muted for the remain-
der of the year?”). Experiments were conducted on
both settings; this study only reports on the mini-
mal setting, as it was the one consistently achieving
better results. Further studies will also include re-
finement of the characterization of the maximal
ROCOI extension and a comparison of the retrieval
of the two varieties.

Ethical Considerations

Recognizing argumentative content can be biased
to the content of the training set. This may result
in predictions that are poor in novel contexts or
edge cases. Responsible implementations of an ex-
traction system, especially in the financial domain,
should always be checked by a human. Our work
is a first attempt at creating a system for analyzing
argumentative patterns for financial dialogues. Sit-
uating our approach in an ecosystem that contains
checks and balances will not only ensure responsi-
ble use of the predictive model but also may yield
valuable insights into the actual use of the model.

Supplementary materials availability
statement

The dataset on which these experiments were
conducted is freely available on GitHub:
https://github.com/dagosgi/ROCOIs/tree/
main/LARP2025
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A Experimental details

A.1 Training parameters
We present additional details regarding the usage of pretrained models for the two formulations of the
ROCOI extraction. We present an overview of the initial model checkpoints and their parameter counts in
Table 6. The hyperparameters to train the models on the sequence labeling task are given in Table 7, and
the ones for text-to-text generation are given in Table 8. Training a single model generally takes up to one
hour at most on modern hardware (one RTX3090 or A100 GPU).

Model Checkpoint Size

BERT (base) google-bert/bert-base-uncased 109M
SpanBERT SpanBERT/spanbert-base-cased 108M
TinyBERT huawei-noah/TinyBERT_General_4L_312D 14M
T5 (base) google-t5/t5-base 110M
Flan-T5 (base) google-t5/flan-t5-base 110M

BART (base) facebook/bart-base 139M
BART (large) facebook/bart-large 406M
T5 (small) google-t5/t5-small 61M
T5 (base) google-t5/t5-base 223M
T5 (large) google-t5/t5-large 738M

Table 6: Description of each model and the specific checkpoint we used.

Sequence labeling For the sequence labeling models, we train on the training set (75% of total available
samples) while observing metrics on a validation set (10% of samples). We pick the model iteration with
the highest token-level F1 score and evaluate that model on the test set (15% of samples) to obtain the
results reported in Tables 1 and 2. We use the same split for each experiment.

Model Parameter Value

BERT (base) learning rate 2e-05
SpanBERT learning rate 2e-05
TinyBERT learning rate 2e-05
T5 (base) learning rate 4e-04
Flan-T5 (base) learning rate 4e-04
all batch size 16
all max sequence length 256
all max epochs 100

Table 7: Hyperparameters for the sequence labeling approaches.

Text-to-text sequence generation For the text-to-text generation models, we train on the training set
(75% of total available samples) while observing metrics on a validation set (10% of samples). We
optimized hyperparameters and picked the best model iteration with the lowest loss value, and evaluated
that model on the test set (15% of samples) to obtain the results reported in Tables 3, 4, and 5. We use the
same split for each experiment.

B Error analysis

We present additional details upon which we based our qualitative observations of Section 5. Particularly,
we display the the raw numerical data for each test instance, which in the body of the paper was instead
merged in the form of percentage over the total. Table 9 refers to the sequence labeling task and reports
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Model Parameter Value

all learning rate 6e-06
BART all batch size 4
T5 (all) batch size 6
all max sequence length 256
all max epochs 100

Table 8: Hyperparameters for the text-to-text approaches.

begin- and length- offsets of the predicted patterns with respect to the gold standard, alongside the number
of ill-formed sequences in the tag sequence. Table 10 presents begin- and length- offset numbers only,
from the text-to-text generation task. Finally, Figure 2 displays the differences in predicted ROCOI lengths
across models for the sequence labeling approach, compared to gold standard.

begin length ill-formed
offset offset sequences

0 -2 0
n.a. n.a. 0

0 0 0
0 0 0

n.a. n.a. 1
0 -5 0
0 -9 0
0 -33 0
0 -2 0
0 0 0

-41 -16 0
n.a. n.a. 0

0 -34 0
n.a. n.a. 0

0 3 0
1 -41 0
0 3 0

73 -5 0
-18 -6 0

0 -15 0

(a) T5 (base)

begin length ill-formed
offset offset sequences

0 -1 4
0 0 4
0 0 3
0 0 1
0 10 2
0 0 3
0 4 2
0 -33 3
0 0 2
0 0 3

n.a. n.a. 2
0 -1 2
0 -34 3

n.a. n.a. 2
0 5 3
1 -14 3

12 -5 2
69 -1 2

-18 -6 2
0 -26 4

(b) FlanT5 (base)

Table 9: Qualitative error analysis: sequence labeling approach. Reported the two best performing models. For each
sub-table, the first two columns indicate offsets (predicted-true) and the third one indicates the absolute number of
instances. The best value is zero for all features.
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begin offset length offset

-218 187
0 0

n.a. n.a.
0 0
0 78

158 5
0 71

-47 47
0 0

-160 77
-179 34
-196 196

0 0
n.a. n.a.

0 33
n.a. n.a.

0 70
-4 87

-74 74
0 38

(a) BART (base)

begin offset length offset

0 182
0 228

n.a. n.a.
0 0
0 78

158 5
0 22

-47 47
0 0
0 35

-179 34
0 0
0 0

-186 85
0 33

n.a. n.a.
0 70

-4 87
n.a. n.a.

0 38

(b) BART (large)

Table 10: Qualitative error analysis: text-to-text sequence generation approach. Reported the two best performing
models. For each sub-table, the two columns indicate offsets (predicted-true). The best value is zero for all features.
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(a) Labeled data
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(b) TinyBERT
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(c) BERT
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(d) SpanBERT
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(e) T5

0 20 40 60 80 100
ROCOI length

0

5

10

15

20

25

Fr
eq

ue
nc

y

(f) FlanT5

Figure 2: Error analysis: sequence labeling approach. True (upper left) and predicted (others) ROCOI lengths.
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