@inproceedings{bonenkamp-etal-2025-transforming,
title = "Transforming adaptation tracking: benchmarking Transformer-based {NLP} approaches to retrieve adaptation-relevant information from climate policy text",
author = "Bonenkamp, Jetske and
Biesbroek, Robbert and
Athanasiadis, Ioannis N.",
editor = "Dutia, Kalyan and
Henderson, Peter and
Leippold, Markus and
Manning, Christoper and
Morio, Gaku and
Muccione, Veruska and
Ni, Jingwei and
Schimanski, Tobias and
Stammbach, Dominik and
Singh, Alok and
Su, Alba (Ruiran) and
A. Vaghefi, Saeid",
booktitle = "Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.climatenlp-1.19/",
doi = "10.18653/v1/2025.climatenlp-1.19",
pages = "266--277",
ISBN = "979-8-89176-259-6",
abstract = "The voluminous, highly unstructured, and intersectoral nature of climate policy data resulted in increased calls for automated methods to retrieve information relevant to climate change adaptation. Collecting such information is crucial to establish a large-scale evidence base to monitor and evaluate current adaptation practices. Using a novel, hand-labelled dataset, we explored the potential of state-of-the-art Natural Language Processing methods and compared the performance of various Transformer-based solutions to classify text based on adaptation-relevance in both zero-shot and fine-tuned settings. We find that fine-tuned, encoder-only models, particularly those pre-trained on data from a related domain, are best suited to the task, outscoring zero-shot and rule-based approaches. Furthermore, our results show that text granularity played a crucial role in performance, with shorter text splits leading to decreased performance. Finally, we find that excluding records with below-moderate annotator confidence enhances model performance. These findings reveal key methodological considerations for automating and upscaling text classification in the climate change (adaptation) policy domain."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bonenkamp-etal-2025-transforming">
<titleInfo>
<title>Transforming adaptation tracking: benchmarking Transformer-based NLP approaches to retrieve adaptation-relevant information from climate policy text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jetske</namePart>
<namePart type="family">Bonenkamp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robbert</namePart>
<namePart type="family">Biesbroek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Athanasiadis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kalyan</namePart>
<namePart type="family">Dutia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Henderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Leippold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christoper</namePart>
<namePart type="family">Manning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaku</namePart>
<namePart type="family">Morio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veruska</namePart>
<namePart type="family">Muccione</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingwei</namePart>
<namePart type="family">Ni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tobias</namePart>
<namePart type="family">Schimanski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Stammbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alok</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alba</namePart>
<namePart type="given">(Ruiran)</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saeid</namePart>
<namePart type="family">A. Vaghefi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-259-6</identifier>
</relatedItem>
<abstract>The voluminous, highly unstructured, and intersectoral nature of climate policy data resulted in increased calls for automated methods to retrieve information relevant to climate change adaptation. Collecting such information is crucial to establish a large-scale evidence base to monitor and evaluate current adaptation practices. Using a novel, hand-labelled dataset, we explored the potential of state-of-the-art Natural Language Processing methods and compared the performance of various Transformer-based solutions to classify text based on adaptation-relevance in both zero-shot and fine-tuned settings. We find that fine-tuned, encoder-only models, particularly those pre-trained on data from a related domain, are best suited to the task, outscoring zero-shot and rule-based approaches. Furthermore, our results show that text granularity played a crucial role in performance, with shorter text splits leading to decreased performance. Finally, we find that excluding records with below-moderate annotator confidence enhances model performance. These findings reveal key methodological considerations for automating and upscaling text classification in the climate change (adaptation) policy domain.</abstract>
<identifier type="citekey">bonenkamp-etal-2025-transforming</identifier>
<identifier type="doi">10.18653/v1/2025.climatenlp-1.19</identifier>
<location>
<url>https://aclanthology.org/2025.climatenlp-1.19/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>266</start>
<end>277</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transforming adaptation tracking: benchmarking Transformer-based NLP approaches to retrieve adaptation-relevant information from climate policy text
%A Bonenkamp, Jetske
%A Biesbroek, Robbert
%A Athanasiadis, Ioannis N.
%Y Dutia, Kalyan
%Y Henderson, Peter
%Y Leippold, Markus
%Y Manning, Christoper
%Y Morio, Gaku
%Y Muccione, Veruska
%Y Ni, Jingwei
%Y Schimanski, Tobias
%Y Stammbach, Dominik
%Y Singh, Alok
%Y Su, Alba (Ruiran)
%Y A. Vaghefi, Saeid
%S Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-259-6
%F bonenkamp-etal-2025-transforming
%X The voluminous, highly unstructured, and intersectoral nature of climate policy data resulted in increased calls for automated methods to retrieve information relevant to climate change adaptation. Collecting such information is crucial to establish a large-scale evidence base to monitor and evaluate current adaptation practices. Using a novel, hand-labelled dataset, we explored the potential of state-of-the-art Natural Language Processing methods and compared the performance of various Transformer-based solutions to classify text based on adaptation-relevance in both zero-shot and fine-tuned settings. We find that fine-tuned, encoder-only models, particularly those pre-trained on data from a related domain, are best suited to the task, outscoring zero-shot and rule-based approaches. Furthermore, our results show that text granularity played a crucial role in performance, with shorter text splits leading to decreased performance. Finally, we find that excluding records with below-moderate annotator confidence enhances model performance. These findings reveal key methodological considerations for automating and upscaling text classification in the climate change (adaptation) policy domain.
%R 10.18653/v1/2025.climatenlp-1.19
%U https://aclanthology.org/2025.climatenlp-1.19/
%U https://doi.org/10.18653/v1/2025.climatenlp-1.19
%P 266-277
Markdown (Informal)
[Transforming adaptation tracking: benchmarking Transformer-based NLP approaches to retrieve adaptation-relevant information from climate policy text](https://aclanthology.org/2025.climatenlp-1.19/) (Bonenkamp et al., ClimateNLP 2025)
ACL